
Credible Group-Stability in General

Multi-Partner Matching Problems∗

Hideo Konishi† M. Utku Ünver‡

April 18, 2003

Abstract

Pairwise-stable matching mechanisms are practically used and per-

form very well in the real world two-sided matching markets (e.g., the

US hospital-intern market, and the British hospital-intern markets: see

Roth 1984 and 1991, respectively). It is known, however, that in a two-

sided many-to-many matching market (the British market), pairwise-

stability is not logically related with the (weak) core unlike in a one-

to-many matching market (the US market) [see Blair (1988) and Roth

and Sotomayor (1990)]. In this paper, we use a graph representation of

matching problems, and we define strong group-stability, a matching-

variation of a solution concept in the network literature (Jackson and

van den Nouweland, 2002). Although strong group-stability is equiva-

lent to pairwise-stability in a one-to-many matching market, unfortu-

nately, the solution concept is too strong for many-to-many matching

markets. Therefore, we proceed to define executable coalitional devia-

tions to discuss the credibility of coalitional deviations, and define cred-

ibly group-stable matchings. We prove that credible group-stability is

equivalent to pairwise-stability in a wide class of matching problems. We

also prove the equivalence between the set of pairwise-stable matchings

and the set of matchings resulting from coalition-proof Nash equilibria

in an appropriately defined strategic form game.
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1 Introduction

Two-sided matching problems have been extensively studied theoretically, and

they also have practical applications in the real world.

In the United States, medical interns compete for roughly 20,000 positions

offered by hospitals every year. Interns seek for exactly one position each,

but hospitals may offer multiple positions. From 1945 to 1951, the market

was characterized by chaotic last-minute recontracting with interns seeking

more preferable positions. This chaos lasted until a central matching proce-

dure was introduced in 1952 to replace a decentralized market procedure (the

National Resident Matching Program, NRMP). In this program, interns and

hospitals submit preference orderings over hospitals and interns, respectively,

and a matching algorithm matches them up. Under responsive preferences,1

Roth (1984a) demonstrates that the NRMP matching algorithm is actually

a deferred-acceptance algorithm introduced in Gale and Shapley (1962),2 and

produces a pairwise-stable matching. A matching is pairwise-stable if and

only if (i) no intern is matched with an unacceptable hospital, (ii) no hospi-

tal is matched with an unacceptable intern, and (iii) no intern and hospital

would rather be matched with one and other than some agents in their current

match (by getting rid of some current matches or using an unfilled position).3

Pairwise-stability requires that a matching is immune to any one or two person

deviations, and is a necessary condition for a matching to be stable in the fol-

lowing sense: These small size deviations are practically very important since

they do not require much information, and as a result, they can be organized

and carried out easily. However, Roth (1984a) shows that pairwise-stability

is also sufficient. If a bigger size coalition can deviate from a matching, then

either a size one or two coalition can also deviate from the matching. Thus, a

pairwise-stable matching is also group-stable in the sense that it is in the weak

1An agent’s preferences are responsive if and only if she prefers a partner to another
partner (including an empty set) irrespective of the composition of her other partners. A
partner is acceptable to an agent if and only if she is preferred to empty set.

2Actually this observation is true in the simple model. In the more complex and realistic
model, two doctors can declare themselves as a couple and search for jobs together in the
same geographic region. In the paper, we will not permit the existence of complementarities,
like couples, in our theoretical model.

3In 1998, the hospital-proposing matching algorithm was replaced by a newly de-

signed applicant-proposing algorithm (Roth and Peranson, 1998). Both algorithms produce
pairwise-stable matchings. About the deferred-acceptance algorithm, see Gale and Shapley
(1962), and Roth and Sotomayor (1990).
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core (see also Roth and Sotomayor, 1990). Roth argues that it is reasonable

to say that the introduction of the centralized matching procedure in the US

medical intern market was extremely successful in calming down the market.

In the United Kingdom, medical intern markets are slightly different, but

in important ways. First, matches are regional rather than national. There

are many different matching mechanisms, which are (were) used in different

regions. Second, each intern needs to experience two (medical and surgical) po-

sitions in twelve months to be eligible for full registration. These two positions

are arranged separately by different agents (Roth, 1991). As a result, this is a

two-to-many matching problem (with a special structure). It may seem natural

that we can apply the deferred-acceptance algorithms for these two categories

separately to such a matching problem. Although such a matching mechanism

still finds a pairwise-stable matching, it may be no longer group-stable in a two-

to-many matching problem unlike in a one-to-many matching problem (Roth,

1984b, 1985, Blair, 1988, and Roth and Sotomayor, 1990). The same state-

ment applies even if (i) there are two categories, (ii) interns’ preferences are

separable between these categories, and (iii) hospitals’ preferences are both

responsive within each category and separable across categories.4 The fact

that a pairwise-stable matching may not be group-stable makes the celebrated

deferred-acceptance algorithms (and pairwise-stable matchings) less attrac-

tive in many-to-many matching problems. Nevertheless, Roth (1991) reports

an intriguing observation in the history of the U.K. medical intern markets.

In different regions, central matching programs adopted different algorithms

to match up hospitals and interns. Interestingly, central matching programs

have been abandoned in many regions that adopted pairwise-unstable algo-

rithms, while they survived in the regions that adopted deferred-acceptance

algorithms. This observation says that pairwise-stability itself may have some

importance for robustness of the matching programs.

In this paper, we provide a general class of matching problems that in-

cludes many-to-many two-sided matching problems. Our approach utilizes

graph representation of matchings (borrowed from the literature on network

formation games). Graph representation has two advantages. One is that it

enables to describe a many-to-many matching problem more easily. The other

is more significant. In the matching literature, group-stability is usually de-

fined by utilizing characteristic function form games: that is, members in a

4See an example in the appendix. Preferences over two categories are separable if and
only if preference ordering over one category of positions are preserved whatever position in
the other category is given.
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coalition cannot keep matches (links) with outsiders in order to participate in

a deviation. However, this is the very reason why there is no logical relation-

ship between pairwise-stability and weak core (in characteristic function form

game) in many-to-many matching problems. One of our examples even shows

the weak core can be empty, although there always exists a pairwise-stable

matching in the domain.

By using the graph representation, we introduce an appropriate defini-

tion of coalitional deviations. Then, we first define a solution concept, strong

group-stability that has a close relationship with a strongly stable network in

the network literature (Jackson and van den Nouweland, 2001). In one-to-

many matching problems, the set of strongly group-stable matchings, the set

of pairwise-stable matchings and the weak core all coincide with each other.

However, in many-to-many matching problems, the situation is very differ-

ent. Although strong group-stability implies pairwise-stability (thus, there is

a logical relationship between these two unlike between pairwise-stability and

the weak core), there is no equivalence between strong group-stability and

pairwise-stability: a strongly group-stable matching may not even exist in a

many-to-many matching problem.

However, a close look at coalitional deviations from pairwise-stable match-

ings reveals that these deviations are not self-enforcing in certain ways. Even

if a group of agents agree on deviating by reorganizing their (matches) links,

some members may not have incentives to follow the suggested reorganization

of links. Thus, unless a coalition can form a binding agreement, these coali-

tions cannot be carried out, and we say these deviations are not “executable”.

We call a coalitional deviation is executable if and only if no member of a

coalition has an incentive to betray her new partners by recovering her link

with any of her former partners in the original matching instead of some of

new partners (or simply cutting some of links with her new partners). We

say that a matching is credibly group-stable if and only if it is immune to any

executable coalitional deviations.

Under responsive and separable preferences, we prove that the set of cred-

ibly group-stable matchings is equivalent to the set of pairwise-stable match-

ings in a large domain of multi-partner matching problems that contain many

matching problems as special cases, such as one-sided and two-sided many-to-

many matching problems, hierarchical organizations, and the British hospital-

intern matching problems.

Although credible group-stability might seem arbitrary (since it considers
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only a deviation and a counter-deviation like in bargaining sets, see Aumann

and Maschler, 1974), it has two nice features. One is that it is simple and

informationally not demanding. Checking executability requires only limited

amount of information about agents’ preferences and their thoughts about

other players’ behavior unlike sophisticated solution concepts. Thus, the pro-

posed members of a coalition can decide whether they join the coalition or

not after checking if it is going to be executed. The other nice feature is that

credible group-stability actually has a deep game theoretic foundation. Con-

sider a strategic form game of a multi-partner matching problem in which each

agent simultaneously announces a set of agents that she wants to be matched

with, and the outcome of the game is a matching which matches each pair

of agents who announced one and other. We show that the set of matchings

generated as outcomes of coalition-proof Nash equilibria (Bernheim, Peleg, and

Whinston, 1987) of this game coincides with the set of credibly group-stable

matchings (thus with the set of pairwise-stable matchings).5 This implies that

although our credibly group-stable matching only considers deviations and

counter-deviations, it is actually immune to any credible coalitional deviations

defined recursively as in Bernheim, Peleg, and Whinston (1987).

Now, let us go back to the observations made in Roth (1991) on the British

hospital-intern markets. Although different regions used different matching

programs, only the matching programs that generate pairwise-stable matchings

have survived historically. We know that a pairwise-stable matching may not

be necessarily group-stable. However, survival of pairwise-stable programs may

make sense, since pairwise-stability has both theoretical and practical grounds:

A pairwise-stable matching is indeed a coalition-proof Nash equilibrium of a

strategic form game, and agents can check relatively easily if a coalitional

deviation is executable.6

The rest of the paper is organized as follows. In Section 2, we discuss

the two-sided many-to-many matching problem, discuss the solution concepts

in the literature, and introduce new solutions. We provide examples that

illustrate the differences among them. In Section 3, we introduce general multi-

partner matching problems and define our solution concepts formally. Then,

we proceed to prove the equivalence between pairwise-stability and credible

group-stability (Theorem 1). In Section 4, we consider a strategic form game

5Note that the set of matchings generated as outcomes of strong Nash equilibria of this
game (Aumann, 1959) coincides with the set of strongly group-stable matchings.

6Unlike executability, tremendous amount of information is needed to check coalition-
proofness due to its recursive nature of the definition.
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of our general multi-partner matching problems, and show the equivalence

between the set of the resulting matchings from coalition-proof Nash equilibria

and the credibly group-stable matchings. This result together with Theorem

1 shows the equivalence between the set of matchings resulting from coalition-

proof Nash equilibria and the set of pairwise-stable matchings (Corollary 1).

Section 5 concludes.

2 The Two-Sided Matching Problem and Sta-

bility Concepts

2.1 The Model

The model is based on Roth (1984, 85) and Blair (1988). We have finite

(disjoint) sets of firms F and workers W . The set of agents is P = F ∪W .

A firm hires a subset of W , i.e., an element of 2W . A subset may be feasible

for some firms and not for others. For each firm, there is a linear (strict)

ordering over feasible subsets, which indicates the firm’s preferences (strict

preferences). In the same way, each worker works for a subset of F, i.e. an

element of 2F , and there is a preference ordering associated with the feasible

subsets of firms for each worker. Agent i’s preference ordering is denoted by

%i: she is indifferent between two elements if and only if they are the same

elements.7 Her strict preference ordering is denoted by Âi. Let %= (%i)i∈P
denote the preference profile of agents. For each agent i ∈ P , there is a positive

integer quota qi ∈ Z++. Let q = (qi)i∈P . List (F,W, q,%) is called a many-
to-many two-sided matching problem. Let a many-to-many two-sided
matching problem (F,W, q,%) be fixed in the rest of the section.
For agent i ∈ F (i ∈W ), preference ordering %i is responsive if and only

if for any T ⊂ W (T ⊂ F ) and any j, j0 ∈ W − T (j, j0 ∈ F − T ) we have (i)

T∪{j} Âi T∪{j0}⇔ j Âi j
0, (ii) T∪{j} Âi T ⇔ j Âi ∅, and (iii) T Âi T∪{j0}

⇔ ∅ Âi j
0.8 We say that an agent j is acceptable for i if and only if j %i ∅.

It is sometimes convenient to represent matchings in our problem by graphs.
Let gP be the collection of all elements of F ×W . This graph is called the

complete graph. An element (i, j) ∈ F ×W describes a match (or a link in

graph-theoretic terminology). We will make use of the graph representation

7Without confusion, we abuse notations: j %i j
0, ∅ %i j and j %i ∅ denote {j} %i {j0},

{j} %i ∅ and ∅ %i {j} , respectively, for any j, j0.
8For any two sets S and T , S − T denotes a set substraction (S\T ).
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of a matching in the rest of the analysis. A matching is a subset of gP . Let
π(i, g) = {j ∈ P : (i, j) ∈ g or (j, i) ∈ g} be the set of partners of i under
matching g ⊆ gP .9 A feasible matching is a matching g ⊆ gP such that for

any i ∈ P we have |π(i, g)| ≤ qi. Let G be the collection of feasible matchings.

2.2 Pairwise-Stability, Core, and Weak Core

The central solution concept in the (two-sided) matching literature is pairwise-

stability. In order to introduce the notion, we first define blocking pairs. We

say that a pair (i, j) /∈ g blocks a feasible matching g if and only if (i) j is

acceptable for i, and either |π(i, g)| < qi or j is more preferable than one of

agents in π(i, g), and (ii) i is acceptable for j, and either |π(j, g)| < qj or i

is more preferable than one of agents in π(j, g). We say that a matching g is

pairwise-stable if and only if (i) it is feasible, (ii) for all i ∈ P we have every

j ∈ π(i, g) is acceptable for i, and (iii) there is no pair (i, j) /∈ g that blocks

g. Condition (i) says that each agent is matched with a number of partners

no more than her quota. Condition (ii) says that nobody has an incentive to

cut an existing match. Condition (iii) says that no pair of a worker and a

firm who are not matched with each other under g has any incentive to form a

new match by either replacing an existing match or simply establishing a new

match.

We introduce two notions of group-stability (Roth and Sotomayor, 1990).

We say that a feasible matching g0 dominates a feasible matching g via
coalition T ⊆ P if and only if (i) for all i ∈ T , j ∈ π(i, g0) implies j ∈ T , and

(ii) π(i, g0) Âi π(i, g) holds for every i ∈ T . The core of the problem is the set
of feasible matchings that are not dominated by any other feasible matching.

We say that a feasible matching g0 weakly dominates a feasible matching g
via coalition T ⊆ P if and only if for any i ∈ T , j ∈ π(i, g0) implies j ∈ T ,

and π(i, g0) %i π(i, g), and π(i, g0) Âi π(i, g) holds for at least for some i ∈ T .

The weak core of the problem is the set of feasible matchings that are not

weakly dominated by any other feasible matching.10 Under strict preferences,

9In the standard matching literature, a matching is defined as a function µ : P → 2P

such that (i) If i ∈ µ(j) then j ∈ µ(i), (ii) If i ∈ F , then µ(i) ∈ 2W , and (iii) If i ∈W , then
µ(i) ∈ 2F . Obviously, π(i, g) = µ(i) if g and µ represent the same matching. However, in
many-to-many matching problems or in even more general problems, graph representation
seems simpler and more useful.
10The weak core is sometimes called the strict core. Allowing weakly dominating coali-

tional deviations increases the number of possible deviations. Indeed, the weak core is
contained in the core.
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it is known that in one-to-one matching problems, the above three concepts

coincide, and that in one-to-many matching problems, the set of pairwise-

stable matchings and the weak core coincide (the core is bigger). The following

simple example (a simplified version of Example 2.6 in Blair, 1988) illustrates

the difference between the set of pairwise-stable matchings and the weak core

in many-to-many matching problems.

Example 1 There are two firms (F1 and F2) and two workers (w1 and w2)

with the following preference orderings. Quota for the number of matches for

each agent is two.

F1 F2 w1 w2

w1 w2 F2 F1

w1, w2 w1, w2 F1, F2 F1, F2

∅ ∅ ∅ ∅
w2 w1 F1 F2

In this game there is a unique pairwise-stable matching, an empty matching ∅,
and a unique weak core matching, a complete matching gP with π(i, gP ) = F

if i ∈ W and π(i, gP ) = W if i ∈ F . It is easy to see that empty graph ∅ is
the unique pairwise-stable matching, since for any pair of a firm and a worker,

if one wants to be matched with the other, then the other does not want to

be matched. The complete matching is in the weak core, since gP is strictly

individually rational, and no pair can improve upon gP . It is also easy to see

that gP is the only weak core matching. ¤

A weak core matching is sometimes called a group-stable matching. How-

ever, in many-to-many matching problems, group-stability does not make too

much sense. It can be seen from the fact that in the above example gP is

not even pairwise-stable. What is wrong? It is basically because a coalitional

deviation T (including a single agent deviation) has to act within T , and the

members have to cut all the matches with members of P − T . For example,

consider F1. Under gP , F1 is matched with w1 and w2, but she does not want

to be matched with w2 yet wants to keep a match with w1. In the definition of

weak core, if F1 alone wants to deviate, F1 needs to cut all matches. Thus, it

is not allowed to cut a match with w2 only. However, why does w1 need to cut

the match with F1 when F1 decides to cut the match with w2? It is not clear

especially because w1 does not care about what happens to a match between

F1 and w2: there is not such spillover or externality in this game. Actually,
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this is precisely the reason why the weak core and the core are not the same

in one-to-many matching problems under strict preference orderings. With-

out including unaffected agents in a coalition, a pair of agents cannot form

a new link. However, it is still possible to argue that pairwise-stability is a

relevant game-theoretic concept, since strengthening the solution concept from

core to weak core does keep the equivalence between the set of pairwise-stable

matchings and the weak core in the one-to-many matching problems.

In many-to-many matching problems, the problem with the weak core is

severer. In the above example, in order for F1 to cut a match with w2 without

affecting the match with w1, F1 needs to include w1 in the deviating coalition.

However, unlike in one-to-many matching problems, w1 is linked with another

agent F2, and the deviating coalition needs to include F2 in order to keep the

same payoff for w1. Unfortunately, F2 is matched with both w1 and w2. Thus,

in order for F1 to cut the match with w2 unilaterally, w2 needs to be in the

coalition, which is not possible. This is why a weak core matching needs not

even be pairwise-stable. Our observation points out the limitation of describing

a matching problem in a characteristic function form game.

2.3 Coalitional Deviations in Networks and Executabil-
ity

The main problem is that in a characteristic function form game, ability of a

coalition is limited to the set of feasible matchings within the coalition. Here,

we give more power to coalitional deviations by allowing them to keep existing

links if they wish. For this purpose, a graph representation of a matching is

useful. We adopt (and then modify) a solution concept introduced in Jackson

and van den Nouweland (2001) in network formation games.11 In a many-to-

many two-sided matching problem, we say a feasible matching g0 is obtainable
from a feasible matching g via deviation by T if and only if (i) (i, j) ∈ g0

and (i, j) /∈ g implies {i, j} ⊆ T , and (ii) (i, j) ∈ g and (i, j) /∈ g0 implies
{i, j} ∩ T 6= ∅. A coalitional deviation from a feasible matching g is a

coalition and feasible matching pair (T, g0) such that (i) g0 is obtainable from
g via T , and (ii) for any i ∈ T we have π(i, g0) Âi π(i, g). One way to interpret

this concept is the following: A coalition T is organized by telephone calls

11Our solution is the same as the strongly stable network in Jackson and van den Nouwe-
land (2001). However, note that “pairwise-stability” in a network game (Jackson and Wolin-
sky, 1996) is a very different solution concept from the standard notion of pairwise-stability
in matching problems due to existence of quotas.
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among the members, and they discuss how they reorganize the links after the

deviation. They can form new links and cut old links within the coalition, or

they can unilaterally cut some of existing links with outsiders. We say that a

matching g is strongly group-stable if and only if (i) it is feasible, and (ii) for
any T ⊆ P , for any g0 that is obtainable from g via deviation by T , and for any

i ∈ T such that π(i, g0) Âi π(i, g), there exists j ∈ T with π(j, g) Âj π(j, g
0).

Consider one-to-many (or one-to-one as a special case) matching problems.

In this case, the weak core, the set of pairwise-stable matchings, and the set

of strongly stable matchings all coincide with each other (the argument is

obvious). Although strong group-stability also makes sense in a many-to-many

matching problem, unfortunately, the set of strongly group-stable matchings

may be empty. It is indeed empty in Example 1. The two strongly group-stable

matching candidates ∅ and gP are not strongly group-stable. This is because

empty graph ∅, which is pairwise-stable, is dominated by gP via P , and gP ,

the unique weak core matching, is not immune to any one agent deviation.

Thus, there is no strongly group-stable matching in Example 1.

However, it is easy to see that the coalitional deviation (P, gP ) is somewhat

unreasonable. In this coalitional deviation, agents are matched up with un-

acceptable partners. This implies that even if the coalition deviates from the

empty graph ∅, the coalitional deviation itself would fall apart by members’
individual deviations to cut off unacceptable partners. In this sense, the coali-

tional deviation itself is not credible. The readers may think that we can get

around the nonexistence problem of a group-stable matching by prohibiting a

coalition to have links with unacceptable partners. However, having unaccept-

able partners is not the only source of such phenomenon. A little more subtle

example is the following.

Example 2 Consider the following many-to-many two-sided matching prob-
lem. Quotas are all two. Their preferences are as follows:

F1 F2 F3 F4 w1 w2 w3 w4

w1w3 w2w4 w1 w2 F2F3 F1F4 F1 F2

w2w3 w1w4 ∅ ∅ F1F3 F2F4 ∅ ∅
w1w2 w1w2 F1F2 F1F2

w3 w4 F3 F4

w1 w2 F2 F1

w2 w1 F1 F2

∅ ∅ ∅ ∅
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This preference profile is responsive. The unique pairwise-stable matching is

g = {(F1, w3), (F2, w4), (F3, w1), (F4, w2)}.
Now, consider a coalitional deviation P 0 = {F1, F2, w1, w2} with gP

0
(fully

matched up within P 0). This is improving for P 0, and it kills g. However, gP
0

is not stable, since say agent F1 would cut a link with w1 and form a link with

w3 (keeping a link with w2). Thus, there is no strongly stable matching in this

example. ¤

The coalitional deviation (P 0, gP
0
) from g does not have unacceptable part-

ners in the links, but it may not be credible in the following sense. Notice

that F1 is originally matched with w3, and discusses with another member of

P 0 to cut a link with w3 and to be matched with w1 and w2. Certainly, it is

beneficial to F1. However, after the deviation is agreed, F1 wants to exclude

w2 secretly and to form a link only with w1 by keeping the link with w3 intact.

In our interpretation of a coalitional deviation, even if members make phone

calls and agree on forming gP
0
, they may not follow the suggestion on their link

formation. In this sense, a coalitional deviation P 0 with g is not executable (or
not self-enforcing). To state the definition formally, we need one more nota-

tion. Let βi(V ) ∈ V be such that j %i βi(V ) for any V (V ⊆W if i ∈ F , and

V ⊆ F if i ∈ W ) i.e., βi selects the least preferable (or the bottom) element.

We say that coalitional deviation (T, g0) is executable, if and only if (i) for
any (i, j) ∈ g0− g, agents i and j are mutually acceptable (j Âi ∅ and i Âj ∅),
and (ii) for any (i, j) ∈ g − g0, either (a) j is unacceptable for i (∅ Âi j), or

βi(π(i, g
0)) Âi j and |π(i, g0)| = qi, or (b) i is unacceptable for j (∅ Âj i), or

βj(π(j, g
0)) Âj i and |π(j, g0)| = qj. That is, an executable coalitional devi-

ation (T, g0) from a feasible matching g means is the following: a member of

a coalition T may be suggested to cut some matches in g − g0, and form new

matches in g0 − g. All the members of T strictly improve by this, but some

may prefer to keep some of links in g− g0 and to discard some of ones in g0− g

so that they can do even better. If there is such an agent, then (T, g0) will not
be carried out even if it is agreed beforehand. In Examples 1 and 2, planned

coalitional deviations are not immune to cheating by the members. Then, why

do they agree to deviate in the first place? We may say that we can dismiss

such nonexecutable deviations when we check stability of a matching. In these

examples, if we do not allow nonexecutable deviations, then pairwise-stable

matchings survives group deviations as well. This is not a coincidence: as we

will see in the next section, a matching is immune to executable coalitional

deviations if and only if it is pairwise-stable.
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Although credible group-stability may seem to be arbitrary, it has a deep

game theoretic foundation. By introducing a strategic form game of multi-

partner matching problems, we can actually show that the set of matchings

generated from coalition-proof Nash equilibria (Bernheim, Peleg, and Whin-

ston, 1987) of this game coincides with the set of credibly group-stable match-

ings (see Section 4).12 This gives a strong game-theoretical support for a simple

solution concept like pairwise-stability.

2.4 An Example of Empty Core

Before closing this section, we provide an example that has an empty core. In

many-to-many two-sided matching problems, there always exists a pairwise-

stable matching under responsive preferences. However, as the following exam-

ple shows, the core may be empty in the characteristic function form game.13

12A coalition-proof Nash equilibrium is a strategy profile that is immune to any credible
coalitional changes in the members’ strategies, and the credibility of coalitional deviations is
defined recursively in a consistent manner (see Bernheim, Peleg, and Whinston, 1987). Our
equivalence result gives us another reason that our network approach is more preferable than
characteristic function approach in matching problems. The counterpart of a coalition-proof
Nash equilibrium in a characteristic function form game is the credible core in Ray (1989)
that checks credibility of coalitional deviations in a recursive way. However, as is shown
in Ray (1989), the core and the credible core are equivalent in characteristic function form
games. This implies that in characteristic function form game, credibility argument does

little in justifying pairwise stability.
13Although this example does not fit with the British hospital-intern market problem as

it is, the same logic goes through (see an example in the Appendix).
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Example 3 Consider the following matching problem. Quotas are all two.

F1 F2 F3 F4 F5 w1 w2 w3 w4 w5

w2w3 w1w3 w1w2 w2 w1 F1F4 F2F5 F3 F2 F1

w2w4 w3w4 w1w4 w1w2 w1w2 F1 F2 F1F3 F1F2 F1F2

w3w4 w1w4 w2w4 ∅ ∅ F1F5 F2F4 F2F3 ∅ ∅
w2 w3 w1 F1F2 F2F3 ∅

w2w5 w3w4 w2 F4 F5

w3 w1 w1w3 F4F5 F4F5

w3w5 w1w4 w2w3 F1F3 F1F2

w1w2 w2w3 ∅ ∅ ∅
w4 w5

w4w5 w4w5

w1w3 w1w2

∅ ∅
Preferences are responsive, and we listed all individually rational choices. Choices

in bold characters are the relevant choices that compose individually rational

matchings. Note that F1, F2, and F3 do not want to be matched with w1, w2,

and w3, respectively, unless one is matched with one of the other two. However,

w1, w2, and w3 want to be matched with F1, F2, and F3: they do not mind

being matched with one of the others only when they get their favorites. Note

also that F1 and F2 (w1 and w2 by symmetry) do not want to be matched with

w5 and w4 (F5 and F4), respectively, unless they are matched with w4 and w5

(F4 and F5), respectively. We list the graph representations of all individually

rational matchings:

g1 = {(F1, w1), (F1, w2), (F2, w1), (F2, w2)},
g2 = {(F2, w2), (F2, w3), (F3, w2), (F3, w3)},
g3 = {(F1, w1), (F1, w3), (F3, w1), (F3, w3)},
g4 = {(F1, w1), (F1, w3), (F2, w2), (F2, w1), (F3, w3), (F3, w2)},
g5 = {(F1, w1), (F1, w2), (F2, w2), (F2, w3), (F3, w3), (F3, w1)},
g6 = {(F1, w4), (F1, w5), (F2, w4), (F2, w5)},
g7 = {(F4, w1), (F4, w2), (F5, w1), (F5, w2)},
g8 = ∅.

We can see that none of the above matchings is in the core, although an

empty matching g8 is pairwise stable. There is always a coalitional devia-

tion that yields another matching: g1 →{F2,F3,w2,w3} g2, g2 →{F1,F3,w1,w3} g3,

13



g3 →{F1,F2,w1,w2} g1, g4 →{F1,F2,w4,w5} g6, g5 →{F4,F5,w1,w2} g7, g6 →{F1,F2,F3,w1,w2,w3}
g5, g7 →{F1,F2,F3,w1,w2,w3} g4, and g8 is dominated by all other individually ra-

tional matchings. Thus, the core (and the weak core) is empty. ¤

3 General Multi-Partner Matching Problems

3.1 The Setup

So far, we discussed only two-sided matching problems. Although two-sidedness

is sometimes crucial in getting many interesting properties of pairwise-stable

matchings (including existence), the solution concepts we introduce are ap-

plicable to one-sided or multi-sided matching problems (as is pairwise-stability).14

A general multi-partner matching problem is a list (P, ((Mk
i , q

k
i )k∈K ,%i

)i∈P ) such that (i) P is a finite set of agents, (ii) K is the set of categories of

agent i’s partners, (iii) Mk
i ⊆ P − {i} is the set of feasible partners of agent

i in category k, (iv) qki is a quota for category k partners of agent i, (v) %i is

agent i’s preference relation over subsets of Πk∈KMk
i . In the rest of the paper,

we fix a general multi-partner matching problem (P, ((Mk
i , q

k
i )k∈K ,%i)i∈P ).

Let gP ≡ {S ∈ 2P : |S| = 2} ×K be the complete graph which matches

every pair of agents under each category. A matching is a subset of gP . For
any matching g ⊆ gP , let π(i, k, g) = {j ∈ Mk

i : (i, j; k) ∈ g} be the set
of agents whom i is matched with in category k under g, and let π(i, g) =

(π(i, k, g))k∈K ⊆ Πk∈KMk
i . A feasible matching is a matching g ⊆ gP such

that (i) for any (i, j; k) ∈ g we have j ∈ Mk
i and i ∈ Mk

j , and (ii) we have

|π(i, k, g)| ≤ qki for any i ∈ P , for any k ∈ K. Let G be the set of all feasible
matchings.

Preferences are separable among categories: we say that agent i’s preference

relation is separable across categories if and only if for any k ∈ K, any

S, T ⊆Mk
i , and any (π(i, l, g))l∈K−{k} and (π(i, l, g

0))l∈K−{k} we have¡
S, (π(i, l, g))l∈K−{k}

¢
% i

¡
T, (π(i, l, g))l∈K−{k}

¢⇔¡
S, (π(i, l, g0))l∈K−{k}

¢
% i

¡
T, (π(i, l, g0))l∈K−{k}

¢
.

14It may be said that “pairwise-stability” does not make any sense in N -sided matching
problems (N ≥ 3). This is absolutely true if a N -sided matching means a coalition formed
by N different agents from every side. However, such a definition works only for one-to-one

matching problems. If an agent can be matched with multiple agents from each side, a
coalition does not make sense again. In this paper, we naively assume that an agent can be
matched with multiple agents from each group (side). Thus, a “match” still means a link
between two players in this paper.
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Thus, within category k, agent i’s preferences can be written as %k
i , where

for any S, T ⊆ Mk
i we have S %k

i T if and only if
¡
S, (π(i, l, g))l∈K−{k}

¢
%i¡

T, (π(i, l, g))l∈K−{k}
¢
for any feasible matching g ∈ G. We assume that %k

i

is responsive for each category k ∈ K and agent i ∈ P . For a feasible

matching g, we say that (i, j; k) /∈ g blocks g if and only if (i) j is acceptable
for i in category k, and either |π(i, k, g)| < qki or j is more preferable than

one of agents in π(i, k, g) in category k, and (ii) i is acceptable for j, and

either |π(j, k, g)| < qkj or i is more preferable than one of agents in π(j, k, g) in

category k. We say that a matching g is pairwise-stable if and only if (i) it is
feasible, (ii) for all i ∈ P , for all category k ∈ K, we have every j ∈ π(i, k, g) is

acceptable for i, and (iii) there is no pair and category (i, j; k) /∈ g that blocks

g.15 Note that in our class of problems, we cannot guarantee the existence of

pairwise-stable matching, since it covers one-sided matching problems.16

This general definition covers not only many-to-many (thus, one-to-many

and one-to-one) two-sided matching problems, but also many interesting prob-

lems including the British hospital-intern markets. In many-to-many two-sided

matching markets, set |K| = 1, and partition P into two groups F and W in

which for any i ∈ F , Mi = W and for any i ∈ W , Mi = F . In British

hospital-intern markets, K has two elements: m, denoting medical positions,

and s, denoting surgical positions. The set of agents P is partitioned into two

sets, H and I (hospitals and interns, respectively). Any hospital h ∈ H has

a quota for each category, qmh and qsh, and any intern i ∈ I has unit quota for

each category, qmi = qsi = 1. Actually, the framework is also good for one-sided

15Note that our definitions of blocking and pairwise-stability are category-wise. Consider
the following example: Agent j (i) is not acceptable for i (j) in category k (k0), while j (i)
is quite preferable candidate for i (j) in category k0 (k). In such a case, forming two links
between i and j in categories k and k0 is not considered as pairwise-stable. We adopt this
definition since such a “trade” is not self-enforceable, unless i and j can write a binding
contract on the matches in the two categories.
16In one-to-many two-sided matching problems, there exists a pairwise stable matching,

and a randomized myopic adjustment process brings a pairwise-stable matching with proba-
bility one (see Roth and Vande Vate, 1990, and in a somewhat different context, Corollary 2
in Jackson and Watts, 2002) (note that Jackson and Watts use different terminologies since
the paper is on network: their core stable network corresponds to our pairwise-stable match-
ing). In more general one-sided matching problems, Chung (2000) generalizes Roth-Vande
Vate argument by introducing a “no odd rings condition”, and Diamantoudi, Miyagawa,

and Xue (2002) show a convergence whenever a pairwise stable matching exists by confining
their attention to the strict preference domain. However, it is not clear if these discussions
extend to a general multi-partner matching problem even when there exists a pairwise-stable
matching.
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matching problems as well. We can just let Mi = P − {i} for any agent i,
and |K| = 1. This framework can also incorporate hierarchical organization

structure by crafting Mi’s to describe the hierarchy as long as an agent cares

only about her immediate bosses and immediate supporting people (by creat-

ing many categories so that we can classify bosses and supporting people of

each agent in different categories).

What our framework cannot cover are N-sided matching problems with

N ≥ 3: a match is composed of an agent each from N sides (for three-sided

matching problems, see Alkan, 1988). Thus, in N- sided matching problems

with N ≥ 3, a match no longer means a link between a pair: it means a

coalition formed by N-sides. Our multi-partner matching problem definition

is only valid for the cases where a match means a link between two agents.

Similarly, Shapley and Scarf’s (1974) housing market problem and Sönmez’s

(1999) generalized matching problem are not included in this domain by the

same reason.17 In these problems, matchings create coalitions (say, the top

trading cycle in the housing market problems), and “pairwise” stability does

not make much sense.

3.2 Credible Group-Stability

Now, we generalize the solution concepts introduced in the previous section.

Let g be a feasible matching. A feasible matching g0 is obtainable from g

via deviation by T if and only if (i) (i, j; k) ∈ g0 and (i, j; k) /∈ g for some

category k implies {i, j} ⊆ T , and (ii) (i, j; k) ∈ g and (i, j; k) /∈ g0 for some
category k implies {i, j} ∩ T 6= ∅. A matching g is strongly group-stable if
and only if (i) it is feasible and (ii) for any T ⊆ P , for any feasible matching

g0 that is obtainable from g via deviation by T , and for any i ∈ T such that

π(i, g0) Âi π(i, g), there exists j ∈ T with π(j, g) Âj π(j, g
0). A coalitional

deviation from g is a coalition and a feasible matching pair (T, g0) such that (i)
g0 is obtainable from g via T , and (ii) for any i ∈ T we have π(i, g0) Âi π(i, g).

For any agent i, let βki (V ) ∈ V be such that j %k
i βki (V ) for any V ⊆ Mk

i :

i.e., βki selects the least preferable (or the bottom) element within category

k. We say that coalitional deviation (T, g0) from g is executable, if and

17The generalized matching problem in Sönmez (1999) actually covers both the housing
market problem and one-to-one two-sided matching problem. The fact that it does not
cover many-to-one matching problem shows the intrinsic difference between our network-
based approach and his coalition-based approach (recall that we need the weak core instead

of the core for an equivalence with pairwise stability in many-to-one matching problem).
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only if (i) for any (i, j; k) ∈ g0 − g, agents i and j are mutually acceptable

in category k (j Âk
i ∅ and i Âk

j ∅), and (ii) for any (i, j; k) ∈ g − g0, either
(a) j is unacceptable for i in category k (∅ Âk

i j), or βi(π(i, k, g
0)) Âk

i j and

|π(i, k, g0)| = qki , or (b) i is unacceptable for j in category k (∅ Âk
j i), or

βj(π(j, k, g
0)) Âk

j i and |π(j, k, g0)| = qkj . Condition (i) says that any newly

matched agents in T are acceptable to each other within the category they got

matched, and condition (ii) says that if a match between i and j in category

k in the previously existing matching is dismissed in an executable coalitional

deviation, if and only if one of them, say i, is unacceptable to the other, say

j, or i is acceptable to j but i is less preferable than the worst partner of j in

the new matching and j’s quota is binding under the new matching. If these

conditions are met, for any member of T , there is no reason to keep some of

the matches that she is supposed to cut, or not to form a match with an agent

she is supposed to form a match. That is why we say that such a coalitional

deviation is executable. We say a matching g is credibly group-stable if
and only if it is feasible and there is no executable coalitional deviation from

g. The main result of this section is as follows:

Theorem 1 In a general multi-partner matching problem with separable and

responsive preferences, the set of pairwise-stable matchings is equivalent to the

set of credibly group-stable matchings.

In order to show the equivalence, we need to prove two directions in order.

Hence, we prove Theorem 1 by two propositions.

Proposition 1 A credibly group-stable matching is pairwise-stable.

Proof. Suppose that a credibly group-stable matching g is not pairwise-stable.
Then, either (i) for some agent there is an unacceptable match in some cate-

gory, or (ii) there is a blocking pair in some category but there is no unaccept-

able match. Suppose that case (i) is true. It means that some agent i is willing

to cut a link in some categories in g. Let her cut any possible link in the most

preferable way, and obtain a new matching g0. Letting T = {i}, it is obvious
that i does not want to cut any more link nor to recover links. Thus, such a

deviation ({i}, g0) is executable. However, this contradicts with g being cred-

ibly group-stable. Thus, suppose that case (ii) is true: there is no acceptable

match in any category, and there is a pair (i, j) that blocks g in all categories

in K 0 ⊆ K (K 0 6= ∅). Consider a coalitional deviation ({i, j}, g0) such that
(i) |π(i, k, g0)| ≤ qki and π(i, k, g0) %k

i S for any S ⊆ π(i, k, g0) ∪ {j} with
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|S| ≤ qki for all k ∈ K 0, and (ii) |π(j, k, g0)| ≤ qkj and π(j, k, g0) %k
j S for any

S ⊆ π(j, k, g0)∪{i} with |S| ≤ qkj for all k ∈ K 0. Since there is no unacceptable
match, agents i and j has no incentive to cut any link in categories in K −K 0

under separability of their preferences. Since (i, j) blocks g in all categories

K 0 and not in categories K −K 0, we have that j ∈ π(i, k, g0) Âk
i π(i, k, g) and

i ∈ π(j, k, g0) Âk
i π(j, k, g) for all k ∈ K 0. This deviation is improving for both

agents i and j by separability of their preferences, moreover it is obviously exe-

cutable. These contradict with the supposition that g is credibly group-stable.

¤
The proof of the other direction is more involved.

Proposition 2 A pairwise-stable matching is credibly group-stable.

Proof. Suppose that g is pairwise-stable, and (T, g0) is an executable coali-
tional deviation from g. First note that for any (i, j; k) ∈ g0 − g, we have

i, j ∈ T , since g0 is obtainable from g. Moreover, for any (i, j; k) ∈ g0 − g, we

have j Âk
i ∅ and i Âk

j ∅ by executability. We first prove the following claims.
Claim 1 : For any i, j ∈ T and category k with (i, j; k) ∈ g0 − g, either

βki (π(i, k, g)) Âk
i j or β

k
j (π(j, k, g)) Âk

j i.

Proof of Claim 1 . Suppose not. Then, under g, there are agents i and j and

a category k such that agents i and j can cut βki (π(i, k, g)) and βkj (π(j, k, g)),

respectively, and establish a link (i, j; k). Both i and j are better off by respon-

siveness and separability of preferences. This implies that g is not pairwise-

stable. This is a contradiction. ♦
Claim 2 : For any i, j ∈ T and category k with (i, j; k) ∈ g0 − g, either

βki (π(i, k, g)) Âk
i j and |π(i, k, g)| = qki , or β

k
j (π(j, k, g)) Âk

j i and |π(j, k, g)| =
qkj .

Proof of Claim 2 . Let (i, j; k) ∈ g0 − g for some agents i, j ∈ T and category

k. By Claim 1, without loss of generality let βki (π(i, k, g)) Âk
i j. There are two

cases.

1. Suppose that |π(i, k, g)| = qki . Then the proof of Claim 2 is complete.

2. Suppose that |π(i, k, g)| < qki . Since g is pairwise-stable, there are no

blocking pairs. In particular, (i, j; k) cannot block g. Since i and j are

mutually acceptable by executability, βkj (π(j, k, g)) Âk
j i and |π(j, k, g)| =

qkj must follow. ♦

18



Claim 2 allows us to order any pair (j, i; k) in g0− g in such a way that the

second argument i satisfies βki (π(i, k, g)) Âk
i j and |π(i, k, g)| = qki . That is, (i)

the latter argument i is matched with a partner who is less preferable than any

other partner that i was matched with under g, and (ii) i used up her quota

under g. We say that i is pointed in category k by j if (j, i; k) ∈ g0 − g.

Since (T, g0) is improving for such an agent i, there exists h ∈ T such that

(i, h; k) ∈ g0 − g and l, l0 ∈ g − g0, and h Âk
i l Âk

i l0 Âk
i j. It says that

since i was pointed by a less preferable partner j in category k, she needs

to be compensated by pointing a more preferable partner h. Since we know

h Âk
i βi(π(i, k, g)), h is indeed pointed in category k. However, then, h needs

to be compensated by pointing a more preferable partner than i, say i00. Thus,
we need (h, i00; k) ∈ g0 − g, and so on and so forth. The same agent can be

pointed by different agents, but whenever she is pointed by someone different,

she must point someone who she has not pointed yet. Thus, to be consistent

with the finiteness of agents, we need to have agent j who pointed i first to be

pointed by somebody in this chain. This creates a cycle, and the number that

each agent i shows up as the first argument of the elements of g0 − g must be

equal to the one that i shows up as the second arguments of them.

However, a close look leads us to a contradiction. Agent i was pointed by

j and pointed h in order to be compensated. However, since her quota was

binding, she needed to cut two links with l and l0. Focus on l. Note that

executability of (T, g0) also implies for l that l ∈ T . Otherwise, i will come

back to l by cutting j off in category k. Hence π(l, k, g0) − π(l, k, g) 6= ∅.
For any (i0, l; k) ∈ g0 − g, i0 Âl i must follow. Otherwise, i will come back

to l by cutting j off and l will come back to i by cutting i0 contradicting to
executability of (T, g0). By Claim 2, l points i0 in category k. This creates a

chain of pointing agents, by finiteness of T . However, l cannot be pointed by

anybody unlike the last case: more precisely, for any h0 ∈ π(l, k, g0), we have
h0 Âk

l i. Otherwise, (T, g0) is not executable since i and l can recover their

link by cutting inferior partners. Now, l cannot be pointed in category k by

anybody in a chain, but l also initiates the chain.

This process necessarily generates an infinite number of chains or an infinite

chain. Since the number of players is finite, we reach a contradiction. ¤
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4 Strategic Form Games

We can rewrite our matching problem in a strategic form: a player announces

a subset of players who she wants to be matched with, and a match is made

if and only if a pair of players announce each other’s name. Here, we show

that this game is useful to clarify the relationships among the notions of stable

matchings in matching problems. Consider a general multi-partner matching

problem (P, ((Mk
i , q

k
i )k∈K ,%i)i∈P ). A strategic form game is a list G(P ) =

(P, (Si, ui)i∈P ), where (i) Si = {(T k)k∈K ⊆ Πk∈KMk
i : |T k| ≤ qki for all k ∈ K}

is the strategy set for player i ∈ P (a typical element si ∈ Si is such that

si = (ski )k∈K ⊆ Πk∈KMk
i ); and (ii) ui : Πj∈PSj → R is player i’s payoff

function such that ui(s) ≥ ui(s
0) if and only if mi(s) %i mi(s

0), where mi(s) =

(mk
i (s

k))k∈K = Πk∈K{j ∈ P : j ∈ ski and i ∈ skj} is the list of the sets of
players who are matched with i in each category under a matching resulting

from strategy profile s ∈ Πj∈PSj. Obviously, a resulting matching g from s

satisfies π(i, g) = (π(i, k, g))k∈K = (mk
i (s

k))k∈K = mi(s) for all i ∈ P . A

strategy profile s∗ is a strong Nash equilibrium of G(P ) if and only if for

any T ⊆ P , any s0T ∈ Πj∈Ts0j, there exists i ∈ T such that ui(s0T , s
∗
−T ) ≤ ui(s

∗)
(Aumann, 1959). Note that a coalitional deviation T in this strategic form

game not only rearranges matches within any deviating coalition, but also can

keep some of preexisting matches between the members of T and the outsiders

if the members wish. If we apply the notion of a strong Nash equilibrium,

to a one-to-many (and, of course, to a one-to-one) matching game, the set of

the matchings generated from strong Nash equilibria and the set of pairwise-

stable matchings are equivalent without invoking the weak core (by the reason

described before).18 Although the strong Nash equilibrium concept makes

sense in a many-to-many matching game, unfortunately, it may not exist. It

does not exist indeed in Example 1, since the two candidates, empty graph ∅ is
dominated by gP via P (attainable by calling all feasible links), and gP is not

immune to any one player deviation (attainable by removing an unacceptable

player’s name).

Now, we define a weaker solution concept based on credibility of coalitional

deviations: coalition-proof Nash equilibrium (CPNE: Bernheim, Peleg,
and Whinston, 1987).19 For P 0 ⊆ P , consider a reduced game G(P 0, s−P 0)

18One of the results in Kara and Sönmez (1997) shows that in a one-to-many matching
problem, the same game form implements pairwise-stable matching in strong Nash equilib-
rium.
19In a network formation problem, Dutta and Mutuswami (1998) use CPNE of a strategic

20



that is a strategic form game with players in P 0 and is created from G(P ) by

setting each player j ∈ P −P 0 to be a passive player who plays a given sj ∈ Sj

no matter what happens. (i) For any P 0 = {i} and any s−P 0 ∈ Πj∈P−P 0Sj, s∗i ∈
Si is a coalition-proof Nash equilibrium if and only if there is no s0i ∈ Si with

ui(s
0
i, s−P 0) ≥ ui(s

∗
i , s−P 0). (ii) For a positive integer c, for any P 0 ⊂ P with

|P 0| ≤ c, and any s−P 0 ∈ Πj∈P−P 0Sj, all CPNE of a reduced game G(P 0, s−P 0)
have been identified. Then, (a) for any P̃ ⊂ P with |P̃ | = c + 1, s∗

P̃
is self-

enforcing in a reduced game G(P̃ , s−P̃ ) if and only if s
∗
P 00 is a CPNE of a

reduced game G(P 00, (s−P̃ , s
∗
P̃−P 00)) of G(P̃ , s−P̃ ) with P 00 ⊂ P̃ . (b) for any

P̃ ⊂ P with |P̃ | = c + 1, s∗
P̃
is a CPNE of a reduced game G(P̃ , s−P̃ ) if and

only if s∗
P̃
is self-enforcing in reduced game G(P̃ , s−P̃ ), and there is no other

self-enforcing s0−P̃ that dominates s
∗
−P̃ . That is, CPNE can be interpreted as a

strategy profile that is immune to any credible coalitional deviation (deviation

itself is a CPNE in the reduced game). Let CPNE(G(P 0, s−P 0)) denote the
set of CPNE strategy profiles on P 0 for the game G(P 0, s−P 0) for all P 0 ⊆ P

and strategy profile s.

Recall that mi(s) = (m
k
i (s

k))k∈K = Πk∈K{j ∈ P : j ∈ ski and i ∈ skj} for
any agent i ∈ P . An immediate observation is the following.

Proposition 3 Suppose that s∗ ∈ CPNE(G(P )). Then, a matching g gen-

erated from s∗ via function (mi)i∈P is pairwise-stable, thus, is credibly group-
stable.

Proof. Suppose that matching g generated from s∗ ∈ CPNE(G(P )) is not

pairwise-stable. Then, there is a category k in which either (i) one of players

is matched with an unacceptable agent, and there is no blocking pair in any

category, or (ii) there is a pair who blocks g. Suppose that case (i) is true.

It means that player i is willing to cut some of links in g. She can do that

in G(P ) by simply not announcing such partners. Considering G({i}, s∗−{i}),
we can easily see that s∗i is not a CPNE of the reduced game. This is a

contradiction. Thus, suppose that case (ii) is true, and there is a pair and a

category (i, j; k) which blocks g. Suppose that both i and j improve by forming

a link in category k (j Âk
i ∅ and i Âk

j ∅) if and only if k ∈ K 0 for some K 0 ⊆ K.

Consider a coalitional deviation by (i, j) with (s0i, s
0
j), where s

0
i = (s

k0
i )k∈K and

s0j = (sk0j )k∈K such that (i) sk0i = {S ⊆ Mk
i : |S| ≤ qki and S %k

i T for any

T ⊆ sk∗i ∪ {j} with |T | ≤ qki } for k ∈ K 0 and sk0i = {S ⊆ Mk
i : |S| ≤ qki

and S %k
i T for any T ⊆ sk∗i with |T | ≤ qki }, for k ∈ K − K 0; and (ii)

form game to analyze the resulting networks.
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sk0j = {S ⊆ Mk
j : |S| ≤ qkj and S %k

j T for any T ⊆ sk∗j ∪ {i} with |T | ≤ qkj }
for k ∈ K 0 and sk0j = {S ⊆ Mk

j : |S| ≤ qkj and S %k
j T for any T ⊆ sk∗j with

|T | ≤ qkj }, for k ∈ K − K 0. This deviation is obviously improving for both
agents i and j. Moreover, under separable and responsive preferences, neither

i and j cannot improve upon the matching generated from (s0i, s
0
j, s

∗
−i,j) by

changing their strategies alone or together. Thus, it is credible as well. ¤
We also prove the other direction, which requires a more tedious analysis.

This is the main result of this section.

Proposition 4 A credibly group-stable matching is supported by a CPNE of
game G(P ).

Proof. First recall that a CPNE is immune to credible coalitional deviations
and a credibly group-stable matching is immune to executable coalitional de-

viations. Hence, if a matching generated from a credible coalitional deviation

is executable, then a credibly group-stable matching is supported by a CPNE.

Thus, we will show that a matching generated from a credible deviation in

the strategic form game is obtainable by an executable coalitional deviation.

Suppose that a coalitional deviation (T, s0T ) from s is a credible deviation: i.e.,

s0T ∈ CPNE(G(T, s−T )). Let s0 = (s0T , s−T ). Let g = {(i, j; k) ∈ gP : j ∈ si

and i ∈ sj}, and g0 = {(i, j; k) ∈ gP : j ∈ s0i and i ∈ s0j}. Note that s0j = sj for

any P−T . We want to show that (T, g0) is an executable deviation from g. We

will prove that (i) for any (i, j; k) ∈ g0 − g, j Âk
i ∅ and i Âk

j ∅, and (ii) for any
(i, j; k) ∈ g − g0, either (a) ∅ Âk

i j, or β
k
i (π(i, k, g

0)) Âk
i j and |π(i, k, g0)| = qki ,

or (b) ∅ Âk
j i, or β

k
j (π(j, k, g

0)) Âj i and |π(j, k, g0)| = qkj .

It is easy to see that Condition (i) holds: otherwise, s0T is not immune to a
single player i’s deviation to exclude j (in the case of ∅ Âk

i j), this contradicts

to s0T ∈ CPNE(G(T, s−T )).
Now, we check Condition (ii). Suppose, to the contrary, that for some

(i, j; k) ∈ g−g0, (qa) j Âk
i ∅, and either j Âk

i β
k
i (π(i, k, g

0)) or |π(i, k, g0)| < qki ,

and (qb) i Âk
j ∅, and either i Âk

j βkj (π(j, k, g
0)) or |π(j, k, g0)| < qkj . By the

construction of g0, i ∈ T or j ∈ T must follow. Suppose that i ∈ T . Then,

from (qa), player i would be better off by having j as a partner either by

replacing βki (π(i, k, g
0)) by i, if |π(i, k, g0)| = qki , or by simply including j, if

|π(i, k, g0)| < qki . Two cases are possible:

1. j /∈ T . Then by optimally modifying s0i in category k to include j, agent
i will be better off, since i ∈ skj . Since it is a unilateral optimal deviation,

it is credible. This is a contradiction with s0T ∈ CPNE(G(T, s−T )).
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2. j ∈ T . We have j /∈ sk0i or i /∈ sk0j , otherwise (i, j) /∈ g − g0. The
question is if i or j can credibly deviate from s0T by forming a link

between them in category k. The issue is if there is a further de-

viation after {i, j} deviates once. Since s0T is a CPNE, it is also a

Nash equilibrium. Thus, s0i ∈ argmaxs̃i∈Si ui(s̃i, s0T−{i}, s−T ) and s0j ∈
argmaxs̃j∈Sj uj(s̃j, s

0
T−{j}, s−T ). Now, suppose that {i, j} deviate from

this by letting s00i ∈ argmaxs̃i∈Si ui(s̃i, s̄j , s0T−{i,j}, s−T ) and
s00j ∈ argmaxs̃j∈Sj uj(s̃j, s̄i, s0T−{j,i}, s−T ), where i ∈ s̄j and j ∈ s̄i. Note

that ui is dependent on strategy of j only if strategy of j contains

i. That is, agent i only cares about whether strategy of j contains i.

By the construction, and since only i and j are changing strategies to-

gether or unilaterally (since it may be true that i ∈ sk0i or j ∈ sk0j but
not both), we have s00i ∈ argmaxs̃i∈Si ui(s̃i, s00j , s0T−{i,j}, s−T ) and s00j ∈
argmaxs̃j∈Sj uj(s̃j, s

00
i , s

0
T−{j,i}, s−T ) (recall (qa) and (qb)). This is a cred-

ible deviation, since there is no further deviation from this. This is a

contradiction with s0T ∈ CPNE(G(T, s−T )). ¤

Since the resulting matching of a CPNE is pairwise-stable, and pairwise-

stability is equivalent to credible group-stability (Theorem 1), Propositions 3

and 4 conclude that the set of resulting matchings of CPNEs and the set of

pairwise-stable matchings are equivalent.

Corollary 1 Consider a multi-partner general matching problem (P, ((Mk
i , q

k
i )k∈K ,%i

)i∈P ) with separable and responsive preferences. Then, the set of pairwise-stable
matchings is equivalent to the set of matchings generated from CPNE(G(P )).

5 Conclusion

In this paper, we provide theoretical foundations for pairwise-stability in gen-

eral multi-partner matching problems when agents’ preferences are responsive

and separable across categories. Our framework covers not only many-to-many

two-sided matching problems but also the British hospital-intern markets, hier-

archical organizations, one-sided matching problems, and multi-unit matching

with constant marginal benefits.

The domain of the problems can be further generalized allowing the case

in which one agent does not distinguish two categories yet others place quotas

on different categories. For example, a small college wants to hire an econome-

trician but it does not care if she is a time-series or a cross-section specialist,
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and another small college wants to hire a person who knows microeconometrics

but it does not distinguish whether she is a labor economist or a cross-section

econometrician. However, a big university may have a quota for each of time-

series econometrics, cross-sectional econometrics, and labor economics. The

logic of the proofs work perfectly in such a case, as well. We chose a simpler

setting for the sake of easy explanations and readability of the proofs.

In this paper, we focused on the case of responsive and separable prefer-

ences. However, in two-sided matching problems, weaker preference restriction

introduced in Kelso and Crawford (1982), substitutable preferences, still pre-

serves many of the results obtained in the responsive preference domain (see

Roth, 1984b, 1985, Blair, 1988, Roth and Sotomayor, 1990, Roth, 1991, and

Milgrom, 2003). It is not immediately clear if our results extend in this do-

main, since we are concerned about group deviations, yet all other papers on

this domain are only analyzing pairwise-stability. This is an open question.
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Appendix:

Here, we adjust our Example 2 in order to make it fit better with the British

hospital intern matching problem. The logic to obtain empty core is identical

to Example 2. One special feature of the British market is that interns are

required to get two positions: medical and surgical ones. Thus, an intern

can be matched twice with the same hospital twice as long as categories are

different. Moreover, potentially, an intern’s preference ordering over hospitals

can depend on the category (some hospital is good at surgical category, but not

in medical one, and some intern is good at medical one but not at surgical one).

These imply that preference ordering is not defined over subsets of agents, but

over ordered subsets of agents. In the following example, we simply assume

that agents’s preference orderings are common in each category. Thus, the

ordering of elements of subsets does not matter in each agent’s preferences.

We assume preferences are separable.

Example 4 Consider the British hospital-intern market with two categories,
i.e. K = {m, s}. Assume that there are five hospitals and five interns, i.e.
H = {H1,H2, ...,H5} and I = {i1, i2, ..., i5}. Each hospital has a position for
each category, and each intern needs to have a position in each category. Each

agent has a common preference ordering irrespective of categories (only brand

name matters). These intrinsic preference orderings (irrespective of categories)
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are listed as follows.

H1 H2 H3 H4 H5 i1 i2 i3 i4 i5

i2 i3 i1 i2 i1 H1 H2 H3 H2 H1

i3 i1 i2 ∅ ∅ H4 H5 ∅ ∅ ∅
i4 i5 ∅ i1 i2 ∅ ∅ H1 H1 H2

∅ ∅ i3 i3 i3 H5 H4 H2 H3 H3

i5 i4 i4 i4 i4 H2 H3 H4 H4 H4

i1 i2 i5 i5 i5 H3 H1‘ H5 H5 H5

The resulting separable and responsive preferences over pairs of agents satisfy

the following: We assume that for any Hj (ij), (il, il0) ∼Hj (il0 , il) ((Hl, Hl0) ∼ij

(Hl0 ,Hl)), i.e., Hj (ij) is indifferent between having il (Hl) and il0 (Hl0) as med-

ical and surgical interns (hospitals that offer medical and surgical positions),

respectively, and having il0 (Hl0) and il (Hl) as medical and surgical interns

(hospitals that offer medical and surgical positions), respectively.20 Thus, we

just list unordered pair of agents in the table below.

H1 H2 H3 H4 H5 i1 i2 i3 i4 i5

i2i2 i3i3 i1i1 i2i2 i1i1 H1H1 H2H2 H3H3 H2H2 H1H1

i2i3 i1i3 i1i2 i2∅ i1∅ H1H4 H2H5 H3∅ H2∅ H1∅
i3i3 i1i1 i2i2 i1i2 i1i2 H1∅ H2∅ H1H3 H1H2 H1H2

i2i4 i3i4 i1i4 ∅∅ ∅∅ H1H5 H2H4 H2H3 ∅ ∅
i3i4 i1i4 i2i4 H1H2 H2H3 ∅∅
i2∅ i3∅ i1∅ H4H4 H5H5

i2i5 i3i4 i2∅ H4∅ H5∅
i3∅ i1∅ i1i3 H4H5 H4H5

i3i5 i1i4 i2i3 H1H3 H1H2

i1i2 i2i3 i4∅ ∅∅ ∅∅
i4i4 i5i5 ∅∅
i4∅ i5∅
i4i5 i4i5

i1i3 i1i2

∅∅ ∅∅
Preferences are separable, and we listed all individually rational choices. Choices

in bold characters are the relevant choices that compose individually rational

20Here, we assume indifferences in players’ preferences for the sake of simplifying the
analysis. It must be clear that even if we introduce small differences between, say, (il, ik)
and (ik, il), the result does not change.
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matchings. Note that H1, H2, and H3 do not want to be matched with i1, i2,

and i3, respectively, unless it is matched with one of the other two in the other

position. However, i1, i2, and i3 want to be matched with H1, H2, and H3:

they do not mind being matched with one of the others only when they get their

favorites. Note also that H1 and H2 (i1 and i2 by symmetry) do not want to

be matched with i5, and i4 (H5 and H4), respectively, unless it is matched with

i4 and i5 (H4 and H5) in the other position, respectively.

In the above matching problem, the core is empty. We list the graph repre-

sentations of all individually rational matchings. Superscripts of parentheses

represent links in categories k and k0 (k, k0 ∈ {m, s} with k 6= k0):

g1 = {(H1, i1)
k, (H1, i2)

k0 , (H2, i1)
k0 , (H2, i2)

k},
g2 = {(H2, i2)

k, (H2, i3)
k0 , (H3, i2)

k0 , (H3, i3)
k},

g3 = {(H1, i1)
k, (H1, i3)

k0 , (H3, i1)
k0 , (H3, i3)

k},
g4 = {(H1, i1)

k, (H1, i3)
k0 , (H2, i2)

k, (H2, i1)
k0 , (H3, i3)

k, (H3, i2)
k0},

g5 = {(H1, i1)
k, (H1, i2)

k0 , (H2, i2)
k, (H2, i3)

k0 , (H3, i3)
k, (H3, i1)

k0},
g6 = {(H1, i4)

k, (H1, i5)
k0 , (H2, i4)

k0 , (H2, i5)
k},

g7 = {(H4, i1)
k, (H4, i2)

k0 , (H5, i1)
k0 , (H5, i2)

k},
g8 = ∅.

We can see that none of the above matchings is group-stable. There is al-

ways a coalitional deviation that brings another matching: g1 →{H2,H3,i2,i3} g2,
g2 →{H1,H3,i1,i3} g3, g3 →{H1,H2,i1,i2} g1, g4 →{H1,H2,i4,i5} g6, g5 →{H4,H5,i1,i2} g7,
g6 →{H1,H2,H3,i1,i2,i3} g5, g7 →{H1,H2,H3,i1,i2,i3} g4, and g8 is dominated by all

other individually rational matchings. Thus, the core (thus, the weak core) is

empty. ¤
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