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Abstract

1 Introduction

Harsanyi’s model for games with incomplete information has been a key practical tool
for much of economic analysis. Among the most important applications of the Harsanyi
(1967-68) formulation has been to the theory of mechanism design. A mechanism designer,
in order to implement her desired outcome requires the private information held by some
agents. Applying Harsanyi’s approach, all relevant private information held by an agent
is summarized by the agent’s type, and the principal’s problem is reduced to providing
incentives for agents to truthfully reveal their type.

Mertens and Zamir (1985) (see also Brandenburger and Dekel (1993)) demonstrated that
the Harsanyi formulation is without loss of generality in the following sense. There is no
incomplete information scenario that cannot be modeled using Harsanyi’s approach. In
fact, given the primitive payoff relevant data, there exists a universal type space in which
every conceivable state of private information is represented by a distinct type. Thus, one
can analyze all problems of incomplete information using this particular universal Harsanyi
model. But notice that only this universal model can be used without loss of generality.
Any smaller type space implictly embeds some assumption about the nature of incomplete
information.

In practical applications of the theory the universal type space is almost never used. It
is simply too complicated to be tractable even in the simplest of cases. Instead, analysis is



carried out in the context of smaller, easily definable type spaces. A common methodological
view among game theorists is that in yielding to this practical necessity, the analyst must be
conscious of the trade-off between tractability and generality, particularly the possibility that
models constructed for simplicity may unnoticably entail strong assumptions that deliver
special results.!

These concerns are equally germane to the theory of mechanism design. Indeed, it has
been argued in the literature (Neeman (2002) and Bergemann and Morris (2002)) that com-
monly used small type spaces are at the heart of strong results such as full surplus extraction
in, for example, auction theory (Crémer and McLean (1988)). Whether or not these argu-
ments are compelling, it cannot be disputed that the unexamined use of small type spaces
rules out any analysis of the extent to which some specific result holds more generally across
the full range of incomplete information environments.

There are at least two short-cuts that have been taken in the literature to address these
concerns without sacrificing tractability. The first is to make the nongeneric assumption of
independent distribution whenever possible. While incentive compatibility in general has no
bite when types are correlated, the problem of optimal mechanism design becomes interesting
again in the hairline case of independently distributed types.

Another short-cut is to strengthen the solution concept. In particular, while interim
incentive compatibility (hereafter interim IC or iIC) is very permissive within commonly
used simple type spaces,? dominant strategy incentive compatibility (hereafter dominant
strategy IC, or dsIC) remains consistent with the intuitive postulates of information rent,
the tradeoff between efficiency and optimality, etc.3

An informal motivation for this short-cut is the following. Take the problem of optimal
auction design as an example. The auctioneer may have confidence in her estimate of the
distribution v of the bidders’ valuations, perhaps based on data from similar auctions in
the past, but does not have reliable information on which to base a conjecture about the
bidders’ beliefs (including their beliefs about one another’s valuations, their beliefs about
these beliefs, etc.), as these are arguably never observed. Given her lack of information on
bidders’ beliefs, she may consider many different combinations of valuation and belief as
probable. The set of probable combinations, from her point of view, may be much larger

!Myerson (1991) neatly articulates this perspective.

2In the literature on mechanism design, the term of “Bayesian incentive compatibility” is usually used.
In this paper, we follow the convention of Bergemann and Morris (2002) and adopt the terminology of
“interim incentive compatibility,” partly to emphasize that agents’ beliefs do not necessarily come from the
Bayeisan updating of any (common) priors. Bergemann and Morris (2002) also use the terminology of “ex
post incentive compatibility” instead of “dominant strategy incentive compatibility” even in private-value
settings (these two concepts are different in interdependent-value settings). In this paper, however, we
continue to use the more traditional terminology of “dominant strategy incentive compatibility,” partly to
remind the reader that we are focusing on private-value settings only.

3We use the phrase “incentive compatible” to include individual rationality. This is important because
dominant strategy incentive compatibility alone is not enough to rule out full-surplus-extraction mechanisms.
See Crémer and McLean (1988).



than those captured by commonly used small type spaces, so much so that she actually find
a dominant strategy auction being optimal.

The goal of this paper is to examine this informal motivation.

While suggestive, the above informal motivation do not yet constitute a formal ratio-
nale for an expected-revenue-maximizing auctioneer to choose a dominant strategy mecha-
nism. After all, any formal foundation must first explain how the auctioneer chooses among
mechansims when she faces uncertainty over bidders’ higher-order beliefs. One approach is
to think of this auctioneer as a rational Bayesian decision maker: she first forms a belief y
about bidders’ Harsanyi types, and then chooses a p-optimal interim incentive compatible
mechanism. This Bayesian approach requires us to identify a belief i that would rationalize
the auctioneer’s choice of a dominant strategy mechanism.

In other words, the following question is crucial to a Bayestan foundation of dominant
strategy mechanisms: given any distribution v over bidders’ valuations, is there always a
belief 1 consistent with v against which the optimal interim IC mechanism s also dominant
strategy IC?

Our answer is negative, and the proof is by counterexample. In Section 3, we provide
an auction example, which only involves two bidders and two possible valuations for each
bidder, where the dominant strategy mechanism can never be rationalized by any belief
about bidders’ Harsanyi types. In fact, for any belief ;4 about bidders’ Harsanyi types, the
auctioneer’s u-expected revenue generated by an optimal interim IC mechanism is uniformly
bounded away from the p-expected revenue generated by any dominant strategy mechanism.

The negative result in Section 3 notwithstanding, when one imposes enough restrictions
on the environments, dominant strategy mechanisms can still be proved to be rationalizable.
The second half of this paper hence seeks to shed some insights on the qualitative features of
those beliefs that rationalize dominant strategy mechanisms. In particular, we are interested
in whether or not dominant strategy mechanisms, whenever they can be rationalized by some
beliefs, can always be rationalized by some common-prior beliefs. This question is especially
interesting given the prevalence of the common-prior assumption in the theory of mechanism
design.

Our answer to this second question is also negative. In Section 4, we present a special
case of the optimal auction design problem—namely single-object private-value auction with
two bidders, each bidder has two possible valuations, and no bidder is known for sure to
have a higher valuation—where dominant strategy mechanisms can be proved to be always
rationalizable. We show that, however, in fairly general situations, those rationalizing beliefs
necessarily involve the auctioneer believes that the bidders hold “wrong” beliefs.

Section 2 provides the preliminaries of this paper. Section 5 concludes.



2 Preliminaries

2.1 Types

Although the questions we address here are related to the broader theory of mechanism
design, all the examples used in this paper take the form of an optimal auction design
problem.

A single unit of an indivisible object is up for sale. Two bidders with privately known
valuations will compete for the object. We model this by supposing that bidder 7 is described
by a payoff-relevant type, his valuation v;, which is commonly known to be an element of
a finite set V; C R. Let V = V; x V5. In all the examples used in this paper, each V; will
consist of two possible valuations, 0 < v; < ¥;. A bidder with valuation v; receives expected
utility p;v; — ¢; if the the probability with which he will be awarded the object is p; € [0, 1]
and if his expected monetary payment is ;.

To characterize the (equilibrium) behavior of the bidders who compete in some given
auction mechanism, it is not enough to specify the bidder’s possible payoff-relevant types
or even the probability distribution from which they are drawn. In addition, we must also
specify their beliefs about the valuations of their opponents (called the first-order beliefs),
their beliefs about one anothers’ first-order beliefs (second-order beliefs), etc.

We wish to consider a formulation of the optimal auction problem which avoids implicit
assumptions on higher-order beliefs. The way to do this is to first consider the universal
belief space in which for every conceivable (coherent) hierarchy of higher-order beliefs there
is a representative “belief type.” This prevents the modeler from implicitly building in
any assumptions about the connections between beliefs among bidders and across orders.
Then a “type” consists of a payoff-relevant type together with a belief type. The universal
type space is the set of all such types. Finally, the auctioneer’s uncertainty is described by
some probability measure over the universal type space. Any assumption connecting the
auctioneer’s beliefs with those of the bidders is then made explicit by the choice of this
probability measure.

Specifically, we construct the universal belief space from the basic payoff-relevant data
as follows (the construction is standard, see Mertens and Zamir (1985) and Brandenburger
and Dekel (1993) for details). To begin with, whenever X is a metric space, we treat X as a
measurable space with the Borel o-algebra and let AX be the space of all Borel probability
measures on X endowed with the weak topology.

The set of possible first-order beliefs for bidder 7 is
Tzl = AV_,L
and the set of all possible kth-order beliefs is

TE = A(V_; x TFh).

4



Because the set AX is compact metric whenever X is, by induction each T% is a com-

pact metric space. The projections ¢f : T% — T¥~1 defined inductively by ¢2(72)(v_;) =
72({v_;} x T,), and for each measurable subset {v_;} x B C V_; x T*22,

_17-1
¢ () ({v—i} x B) = 7 ({v-i} x [¢%5'] 7 (B)),
demonstrate that each kth-order belief for ¢ implicitly defines beliefs at lower orders as well.

A universal belief type for bidder i is a sequence (or hierarchy) 7; = (7}, 77, ...) satisfying

77 "1
7% € TF and the coherency condition that ¢¥(7¥) = 7. The universal belief space for bidder

o

i is then the set T C [] T% of all such coherent hierarchies. The product space endowed
k=1

with the product topology is compact. Since the set of coherent hierarchies is closed, the

universal belief space is compact. By Mertens and Zamir (1985) and Brandenburger and
Dekel (1993), there is a homeomorphism between 77 and A(V_; x T*,) and thus the latter
is compact. Let g; : TF — A(V_; x T*,) be such a mapping, and let f; : TF — AV, be the
marginal distribution of g; over V ;.

A type is a pair w; = (v;,7;). A type space is a set Q =y x Qy, where Q; C V; x ;. In
this paper, we are mainly interested in two kinds of type space.

The universal type space (2* is the type space where each Qf = V; x T7. Notice that every
type space is a subset of the universal type space. Let T* = T x J5. For any v € V, we
shall write Q*(v) for the open subset {v} x T* C Q*.

Another kind of type space, used almost without exception in the literature of mechanism
design, is the naive type space (2¥ generated from some distribution v over the set of payoff-
relevant types V.4 Specifically, this means that bidder i’s first-order belief is a function of
his valuation v; and is given by the conditional distribution 7} (v;) = v(-|v;). Furthermore,
since bidder —i’s first-order beliefs are 71,(v_;) = v(-|v_;), bidder i’s second-order beliefs can
be computed from v as well. In particular, bidder i believes that with probability

72(7) = (7] (1)),

bidder —: has first-order belief y. Similarly, all higher-order beliefs can be inductively derived
from v.

4This terminology is due to Bergemann and Morris (2002).



2.2 Mechanisms

We consider direct revelation mechanisms.®> A direct revelation auction mechanism for
type space (2 is a game form in which the bidders simultaneously announce their types from
the corresponding set €2;, and the object is allocated and monetary transfers enforced as a
function of their announcements. Formally, an auction I' = (p, t) is defined by two functions,
p:Q — [0,1] x [0,1] and t : @ — R? The allocation rule p specifies the probabilities
pi(w) with which each bidder ¢ will receive the object. The allocation rule is restricted to
be feasible: > ., ,p;(w) < 1. The transfer rule ¢ defines payments ¢;(w) made from bidder
i = 1,2 to the auctioneer. Denote by £(w) the sum t;(w) + t2(w).

The auctioneer’s problem is to choose an incentive compatible mechanism which generates
the highest possible expected revenue. The revenue possibilities thus depend on the type
space as well as the definition of incentive compatibility. The focus of this paper is the
connection between optimal mechanisms for different type spaces and different definitions of
incentive compatibility.

Definition 1 An auction T' is dominant strategy incentive compatible with respect to the
naive type space ¥ (or simply dsIC) if for each bidder i and type profile w € Q,

pi(w)v; — ti(w) >0, and
pi(w)v; — ti(w) > pi(@s, w_)v; — (Wi, w_y),

for any alternative type w; € QY.

Since |Q7| = |Vi|, and since the incentive compatibility constraints for dsIC depend only
on valuations, an auction is dominant strategy IC with respect to a naive type space 2" if
and only if it is dominant strategy IC with respect to any other naive type space 2. So
we can always discuss whether an auction is dominant strategy IC with respect to the naive
type space without referring to the specific distribution v from which the naive type space
is generated.

Definition 2 An auction I' is interim incentive compatible with respect to the universal type
space Q* (or simply iIC) if for each bidder i and type w; € QF,

/Q [pi(w)v; — ti(w)]gi(r;)(dw—;) > 0,  and

*
—1

/Q i (@)vs — t4(@)] gi(m)(dw—s) = [ [ps(@ss wos)s — ta(@5 w_o)] gs(ms) (o),

Qr,

*
—1

5 According to revelation principle, the proposition that there is no loss of generality in restricting attention
to incentive compatible direct revelation mechanisms, can be shown by standard arguments to hold for all
type spaces and all definitions of incentive compatibility considered here.



for any alternative type w; € €1}

Notice that any auction I' that is dominant strategy IC with respect to the naive type
space can be extended naturally into a mechanism that is interim IC with respect to the
universal type space in a straightforward manner. We shall abuse notation and use I' to
denote this natural extension as well.

2.3 A Bayesian Auctioneer

In this paper, we assume that the auctioneer is a Bayesian decision maker, and hence
decision making under uncertainty over bidders’ higher-order beliefs can be modelled as an
optimization problem given a certain belief over the universal type space.

Specifically, let u be the auctioneer’s belief over 2*. For any interim IC auction I', the
auctioneer’s p-expected revenue is defined as R,(T') = [,,. T p(dw).

For any distribution v over V, let M(v) denote the compact subset of beliefs 1 € AQ*
with marginal distribution over V' equal to v. There is a unique element v* in this subset
that concentrates on the naive type space 2” generated by v. In this paper, we always take
the distribution v over V as given, as these data are arguably easier to estimate from past
auctions. However, contrary to the standard approach, we do not insist on the auctioneer
holding the belief v*, but allow her belief to be anything in the subset M(v) instead.

Notice that if an auction I' is dominant strategy IC with respect to the naive type space,
then for any belief 4 € M(v) that is consistent with the distribution v, the u-expected revenue
of '—or, more precisely, its natural extension into the universal type space—depends only
on the distribution v. Hence we can write R,(I') as R, (I") without ambiguity.

Definition 3 Given any distribution v over V', the optimal dominant strategqy IC revenue
18 defined as
VP():= sup R,(T).

T is dsIC

Definition 4 Given any belief u over Q*, the optimal interim IC revenue is defined as

VIi(p) = sup R,(T).

T is iIC

2.4 The Problem

Take any distribution v over V as given, if we follows the standard approach and insist
on the auctioneer holding belief v*, then generically it is irrational for the auctioneer to use

a dominant strategy auction; i.e., generically we will have V!(v*) > VP(v) (Crémer and
McLean (1988)).



An informal argument for studying dominant strategy mechanisms is that that the mech-
anism designer holds belief v over V' does not imply she must then hold belief v* over (.
In fact, her belief may actually be very different from v*. She may actually consider many
different combinations of payoff-relevant types and belief types as possible, so much so that
the support of her belief may actually be very different from the naive type space QY. It
may actually turn out that it is rational for her to use a dominant strategy mechanism given
how little information she has on agents’ higher-order beliefs.

To examine this informal argument, we ask the following question: for any given distri-
bution v over V/, is it always possible to find a belief 4 € M(v) such that VI(u) = VP (v)? If
such as a belief exists, we shall say that it rationalizes the auctioneer’s choice of a dominant
strategy auction, just like how v* would have rationalized her choice of the Crémer-McLean
full-surplus-extraction mechanism.

Our answer will be negative, and the proof is by counterexample (Section 3).

This negative result nevertheless does not rule out the possibility that, in some restrictive
enough special case, dominant strategy mechanisms are still rationalizable by some beliefs.
So we also seek to shed some insights on the qualitative features of those rationalizing
beliefs, if they ever exist (Section 4). In particular, we are interested in whether or not
dominant strategy mechanisms, if they can ever be rationalized, can always be rationalized
by common-prior beliefs. A common-prior belief p is a probability measure over 2* such
that, for every type profile within its support, bidders’ beliefs over their opponents’ types
are conditional probabilities derived from u. An example of common-prior beliefs is once
again v*. If the auctioneer holds a common-prior belief, she believes that both bidders share
the same prior as u, and derive their beliefs by Bayesian updating. If the auctioneer’s belief
is not a common-prior belief, she believes that the bidders sometimes hold “wrong” beliefs
about each other’s types.

For any subset A € Qf, we shall write u(A) as a short hand for u(A x Q*;). In other

words, we abuse notation and use the same notation for a probability measure as well as its
marginal distributions.

Definition 5 A belief i over Q0* is a common-prior belief if for any measurable subsets
ACQf and B C QF,,

/Agz'(Ti)(B) p(dw;) = u(A x B).

Our answer to this second question will also be negative, and the proof is also by coun-
terexample (Section 4).



3 On the Lack of Bayesian Foundation

In this section, we shall provide an example that has the following property. No matter
what the mechanism designer thinks the agents’ beliefs are, it is never justified to use a
dominant strategy mechanism. As it will be clear from the proof, this example is robust to
perturbations.

The example is one of single-object private-value auction. Consider an auctioneer facing
two bidders. The auctioneer has one indivisible object to sell. The object is worth nothing
to the her. Each of the two bidders has two possible valuations on the object, and their
valuations are correlated as described in the distribution v (Figure 1).

V1 = 5 v = 10
vs=4 | 1/6 0
v,=2 | 1/3 1/2

Figure 1: The distribution v.

The optimal dominant strategy IC auction is depicted in Figure 2. We use “a =1 as a
shorthand for “allocating the object to bidder ¢” (i.e., p; =1 and p_; = 0).

v1 =35 v; = 10
’02:4 a=2,t1:0,t2:2 azl,t1:10,t2:0
’02:2 a=2,t1:0,t2:2 azl,t1:10,t2:0

Figure 2: The optimal dominant strategy IC auction T'.

Notice that the valuation of bidder 1 is always higher than that of bidder 2. However,
conditional on bidder 2 having low valuation (i.e., conditional on the second row of the
matrix), the u-conditional probability that bidder 1 is of a high-valuation type is so high,
so much so that the auctioneer chooses to sell to bidder 2 instead when bidder 1 has low
valuation. This is the same logic as monopoly pricing, where a monopolist refuses to sell to
low-valuation buyers. Conditional on bidder 1 having low valuation (i.e., conditional on the
first column), since the auctioneer is selling to bidder 2 when his valuation is low, she also
needs to sell to bidder 2 when his valuation is high in order to satisfy dominant strategy
incentive compatibility.

Proposition 1 The optimal dominant strategy IC auction I' depicted in Figure 2 cannot
be rationalized by any belief u of the auctioneer that is consistent with the distribution v
depicted in Figure 1.



In the remainder of this section we will present the proof of Proposition 1. In Appendix
A we prove the following stronger result.

Proposition 2 For the distribution v depicted in Figure 1, the optimal interim IC revenue
18 uniformly bounded away from the optimal dominant strategy IC revenue; i.e.,

inf sup  R,(T)>VP(v).

BEM(V) T is interim IC

To prove Proposition 1, fix any belief 4 € M(v) that rationalizes the optimal dominant
strategy IC auction I', we shall prove that there exists another interim IC auction that
generates higher u-expected revenue than I' does. This would contradict the assumption
that u rationalizes I' and complete the proof.

We shall break the proof into several lemmata. For the purpose of this proof, it suffices
to work only with bidder 2’s first-order beliefs in order to arrive at a contradiction. So, for
notational convenience, we shall summarize bidder 2’s belief type 75 by one single number,
which is his first-order belief that bidder 1 has high valuation. Specifically, for any type
wy = (vg,7») of bidder 2, if v, = 4, we shall use a to denote f3(72)(vy = 10); and if vy = 2,
we shall use b to denote fo(m)(vy = 10). For any (measurable) subset A C [0,1], we shall
use “a € A” to denote the event {wy = (vq, 2) : v2 = 4, fa(72)(v1 = 10) € A}; similarly for
the notation “b € B C [0,1].”

The first lemma says that, conditional on any p-non-null subset of low-valuation types
of bidder 2, the u-conditional-probability that bidder 1 having high valuation cannot be too
low, otherwise the auctioneer can improve upon I' by selling to some low-valuation types of
bidder 1.5

Lemma 1 For any z € (0,1] such that u(b=z) =0, if u(b < z) > 0, then p(v; = 10[b <
z) > 3/8.

Proof: Suppose there exists x € (0,1] such that u(b < z) = u(b < z) > 0, and yet
p(vy = 10[b < z) < 3/8. Consider the modified auction I'(z) as depicted in Figure 3.

To see that I'(z) continues to be interim IC, notice that (¢) truth-telling continues to
be a dominant strategy of bidder 1, (4¢) low-valuation types of bidder 2 always have zero
rent regardless of what they announce, and (#47) high-valuation types of bidder 2 would not
announce the (newly added) message “b < x” as that gives them zero rent.

The only difference between I'(z) and T is in the (u-non-null) event of b < z, in which
case I'(x) generates p-expected revenue of 5u(v; = 5|b < z) + 5u(v; = 10/b < z) = 5,

In Lemma 1 (and similarly in Lemmata 2-4), the seemingly redundant requirement of u(b=z) = 01is a
null-boundary property used only in the proof of Proposition 2.

10



1)1:5 ’U1:10
CLE[O,l] a=2,t1=0,t2=2 oz:l,t1=10,t2=0
bZLL‘ a=2,t1=0,t2=2 a:1,t1=10,t2:0
b<czx a=1,t1 =5,to =0 a=1,t, =5t =0

Figure 3: The modified auction I'(z).

whereas I' only generates u-expected revenue of 2u(v; = 5|b < ) + 10u(vy = 10[b < z) <
2(5/8) 4+ 10(3/8) = 5, contradicting the assumption that u rationalizes I'. |

The second lemma says that for any low-valuation type of bidder 2 that the auctioneer
perceives as possible, his first-order belief b also cannot be too low, otherwise his belief
would be too “wrong” (relative to the auctioneer’s belief), so much so that the auctioneer
can improve upon I' by betting against him.

Lemma 2 Let b =sup{z € [0,1] : u(b < z) =0}. Then b > 3/13.

Proof: Suppose b < 3/13. Then pick any z in between b and 3/13 such that u(b=z) = 0,7
and consider the modified auction I"'(z) as depicted in Figure 4.

v, =25 v; = 10
a€[0,1] a=21 =0t =2 a=114 =10t =0
bZ.’I? a:2,t1=0,t2=2 a=1,t1=10,t2=0
b<zx a=0,t1 =0,t, = -2 a:1,t1=10,t2:2(1—w)/m

Figure 4: The modified auction I''(z).

To see that I"(z) continues to be interim IC, notice that (i) truth-telling continues to
be a dominant strategy of bidder 1, (i) low-valuation types of bidder 2 would have strict
incentive to announce the (newly added) message “b < z” if and only if the resulting rent of
2(1-b6)—[2(1 —=x)/x]b = 2(1 —b/z) is positive, or equivalently if and only if b < x, and (77)
high-valuation types of bidder 2 would not announce the (newly added) message “b < z” as
that gives them rent of 2(1 — a) — [2(1 — z)/z]a = 2(1 — a/x), which is lower than the rent
of 2(1 — a) if they tell the truth.

"It is always possible to pick such an z, as any distribution over [0,1] can have at most countably many
mass points.

11



The only difference between I''(z) and T is in the (u-non-null) event of b < z, in which
case I''(z) collects from bidder 2 an u-expected amount of

(=2)u(vr = 5]b < z) + [2(1 — z)/z]u(vr = 10[b < z)

> (=2)(5/8) + [2(1 — z)/=](3/8)
= 3/(4z) — 2

> [3/4(3/13)] — 2

= 5/4

(where the first inequality follows from Lemma 1), whereas I" only collects from bidders 2
an p-expected amount of 2u(v; = 5b < z) < 2(5/8) = 5/4, contradicting the assumption
that p rationalizes I'. [ |

The third lemma says that for any high-valuation type of bidder 2 that the auctioneer
perceives as possible, his first-order belief a also cannot be too low, otherwise beliefs held
by high- and low-valuation types of bidder 2 would be too different, so much so that the
auctioneer can improve upon I' by introducing Crémer-McLean-kind of bets to separate these
types and relax incentive compatibility constraints.

Lemma 3 Let a = sup{y € [0,1] : u(a <y) =0}. Then a > 1/11.

Proof: Suppose a < 1/11. Then pick any y in between a and 1/11 such that u(a = y) = 0.
Notice that y < 1/11 implies y < 3y/(2y + 1) < 3/13, and hence we can also pick an z in
between 3y/(2y+1) and 3/13 such that u(b = x) = 0. Consider the modified auction I'(z, y)
as depicted in Figure 5.

1)1:5 2)1:10
a<y a=1t=5t=—2z1—-y/llz—y) |a=1t=5t=2(1—z)1—-y)/(z—y)
a>y a=2,t1 =0,t, =2 a=1,t1 =10,t,, =0
b<uz a=1t=5t=="2ex(1-y/lz—y) |a=1Lt=5t=21—-2)1—-y)/(z—y)
bZ.’IZ‘ a:2,t1:0,t2=2 a=1,t1:10,t2:0

Figure 5: The modified auction I'(z, y).

To see that I'(x,y) continues to be interim IC, notice that (¢) truth-telling continues to
be a dominant strategy of bidder 1, (i) low-valuation types of bidder 2 would have strict
incentive to announce the (newly added) message “b < z” if and only if the resulting rent of
2z(1-y)/(z —y)](1-b) = [2(1 - z)(1 —y)/(z — y)lb = 2(1 — y)(z — b)/(« — y) is positive,
or equivalently if and only if b < z, and (¢ii) high-valuation types of bidder 2 would have

12



strict incentive to announce the (newly added) message “a < y” if and only if the resulting

rent of 2z(1 —y)/(z —y)|(1 —a) - 21 —z)(L - y)/(z — y)la = 2(1 — y)(z — a)/(z — y) is
strictly higher than the truth-telling rent of 2(1 — a), or equivalently if and only if a < y.

Since the event of b < z is a pu-null event by Lemma 2, the only real difference between
['(z,y) and I is in the (u-non-null) event of a < y, in which case I'(z, y) generates u-expected
revenue of

5-2z(1-y)/(x—y)
= 5-22z-y+y)(1-y)/(z—y)
= 5-2(1-y)—2y(1-y)/(z —y)
> 5-2(1-y)—2y(1-y)(2y+1)
= 5-2(1-y)—2y(1 —y)(2y+1)
= 2

/[3y — y(2y + 1)]
/[2y(1 - y)]

whereas I' only generates u-expected revenue of 2, contradicting the assumption that
rationalizes I'. ]

Finally, the fourth lemma says that, if @ > 1/11, then for any high-valuation type of
bidder 2 that the auctioneer perceives as possible, his belief would be too “wrong,” so
much so that the auctioneer can improve upon I' by betting against him, contradicting the
assumption that p rationalizes I'. This would complete the proof of the proposition.

Lemma 4 Ifa > 1/11, then p does not rationalize T.

Proof: Suppose a > 1/11. Consider the modified auction I'" as depicted in Figure 6.

v =5 v; = 10
a>1/12 |a=2t; =0,t, =123/61 | a = 2,t; = 0,1, = 233/61
a<1/12 a=2,t; =0,t =2 a=1,t,=10,t, =0
bel0,1] a=2,t; =0,t =2 a=1,t,=10,t, =0

Figure 6: The modified auction I".

To see that I continues to be interim IC, notice that (i) truth-telling continues to be
a dominant strategy of bidder 1, (i¢) low-valuation types of bidder 2 would not announce
the (newly added) message “a > 1/12” as that gives them strictly negative rent regardless
of what bidder 1 announces, and (7i¢) high-valuation types of bidder 2 would have weak
incentive to announce the (newly added) message “a > 1/12” if and only if the resulting
rent of (4—123/61)(1—a)+(4—233/61)a is weakly higher than their original rent of 2(1—a),
or equivalently if and only if @ > 1/12.
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Since the event a < 1/12 < 1/11 is a u-null event by assumption, the only real difference
between I' and T is in the (u-non-null) event of a > 1/12, in which case I generates u-
expected revenue of 123/61 > 2, whereas I' only generates u-expected revenue of 2. This
proves that p does not rationalize I'. [ |

4 On the Role of “Wrong” Beliefs

The negative result in Section 3 notwithstanding, when one imposes enough restrictions
on the environments, dominant strategy mechanisms can still be proved to be rationalizable.
This section hence seeks to shed some insights on the qualitative features of those beliefs that
rationalize dominant strategy mechanisms. In particular, we are interested in whether or not
dominant strategy mechanisms, if they can ever be rationalized, can always be rationalized
by some common-prior beliefs. This question is especially interesting given the prevalence
of the common-prior assumption in the theory of mechanism design.

We first describe a particular special case where dominant strategy mechanisms can be
proved to be always rationalizable. (Notice how the example in Section 3 violates one of the
conditions in Proposition 3.)

Proposition 3 In the two-bidder two-valuation special case of the optimal auction design
problem, if no bidder is known for sure to have a higher valuation (i.e., min{o;, T2} >
max{vy, va}), then, for any given distribution v over bidders’ valuations, there exists a belief
W consistent with v against which an optimal interim IC auction is dominant strategy IC.

We leave the proof to Appendix B, as our main interest here is in the qualitative features
of those rationalizing beliefs. In the proof of Proposition 3, all the rationalizing beliefs involve
the auctioneer believing that bidders hold “wrong” beliefs. However, this by itself does not
prove that dominant strategy mechanisms cannot be rationalized by any common-prior belief.
Therefore, we shall present an example where this is indeed the case.

In the example below, the optimal dominant strategy mechanism, although rationalizable
according to Proposition 3, can never be rationalized by any common-prior belief. As the
proof should make it clear, this necessity of “wrong” beliefs is a robust phenomenon.

Consider an example that satisfies the conditions in Proposition 3 (and hence the op-
timal dominant strategy mechanism is rationalizable), with bidders’ valuations correlated
according to the distribution v (Figure 7).

The optimal dominant strategy IC auction is depicted in Figure 8.8

8We follow the convention introduced in Section 3, and use “a = i” as a shorthand for “allocating the
object to bidder ¢.”
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’1)1:4 ’Ul=9
3/10 [ 1/10
3/10 | 3/10

’1)2:11
?)2:5

Figure 7: The distribution v of bidders’ valuations.

’01:4 ’U1:9
’02:11 O[—2,t120,t2 11 a:2,t1:O,t2:11
1)2:5 O[_O,tl_o,tzzo azl,t1:9,t220

Figure 8: The optimal dominant strategy auction I

Proposition 4 Although the optimal dominant strateqy IC auction I' depicted in Figure 8
s rationalizable, it can never be rationalized by any common-prior belief that is consistent
with the distribution v depicted in Figure 7.

Proof: Fix any common-prior belief 4 € M(v) that rationalizes the optimal dominant
strategy IC auction I', we shall prove that there exists another interim IC auction that
generates higher p-expected revenue that I' does. This would contradict the assumption
that u rationalizes I'.

Once again, it suffices to work only with bidder 2’s first order beliefs in order to arrive at
a contradiction. So, following the convention in Section 3, we shall continue to use a (b) to
denote the first-order belief of a high-valuation (low-valuation) type of bidder 2 that bidder
1 has high valuation. Define b similarly as in Lemma 2.

First, observe that b > 4/9. Suppose, on the contrary, b < 4/9. Then pick any number
z in between b and 4/9, and consider the modified auction I'(z) as depicted in Figure 9.

v =4 v1=9
ac(0,1] |la=2t;,=0,ta=11 | a=2,t; =0,t, =11
b>z | a=0,t;=0,to =0 | a=1,t; =9,t, =0
b<z a=1t; =4,t, =0 a=1,t1 =4, =0

Figure 9: The modified auction I'(2).

It is obvious that I'(z) continues to be interim IC. The only difference between I'(z) and
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T is in the (u-non-null) event of b < z, in which case I'(z) generates u-expected revenue of 4,
whereas T only generates u-expected revenue of 9u(v; = 9|b < z) < 9z < 9(4/9) = 4, where
the first inequality comes from the fact that p is a common-prior belief. Since this would
have contradicted the assumption that u rationalizes I', we must have b > 4/9.

Then, consider the modified auction I' as depicted in Figure 10.

’1)1:4 1)1:9
a € [0,1] a:2,t1:0,t2:11 Oé:1,t1:9,t2:—15/2
b24/9 a:2,t1:0,t2:11 o = ,t1: ,t2:—15/2
b<4/9 a=0,t1=0,t5 =0 a=0,t1 =0, =0

Figure 10: The modified auction I'.

To see that I'" continues to be interim IC, it suffices to observe that, for low-valuation
types of bidder 2 with b > 4/9, truth-telling gives them a non-negative rent of (5 — 11)(1 —
b) + (15/2)b > (—6)(5/9) + (15/2)(4/9) = 0.

Since b < 4/9 is a p-null event, I generates u-expected revenue of 9(4/10) +11(6/10) —

(15/2)(4/10) = 72/10, whereas T only generates p-expected revenue of 9(3/10)+11(4/10) =
71/10. This proves that p does not rationalize T |

However, according to Proposition 3, the optimal dominant strategy auction I' can be
rationalized by a belief u that involves the auctioneer believing that bidders hold “wrong”
beliefs. To construct one such belief, we extend the convention in Section 3 and use a; (b;) to
denote the first-order belief of a high-valuation (low-valuation) type of bidder 7 that bidder
—1 has high valuation.

Consider a belief y of the auctioneer such that its marginal distribution over bidders’
valuations and first-order beliefs is as depicted in Figure 11.

by =2/5 a;=1/4
ax=1/4 [ 3/10 1/10
by =2/5 | 3/10 3/10

Figure 11: The auctioneer’s belief p.

The auctioneer’s belief y has a 4-point suppport: for every bidder ¢, every payoff-relevant
type is associated with only one possilbe belief type. The construction of bidders’ higher-
order beliefs is by induction. Specifically, for a low-valuation type of bidder 1, his second-
order belief assigns probability 2/5 (3/5) to bidder 2 having high (low) valuation and holding
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first-order belief ay = 1/4 (b, = 2/5), and a high-valuation (low-valuation) type of bidder 2
has a third-order belief that assigns probability 3/4 (3/5) to bidder 1 having low valuation
and having such a second-order belief, and so on.

It is obvious that this belief p of the auctioneer is consistent with the distribution v.
However, conditional on the event that bidder ¢ has low valuation, the auctioneer and bidder
1 assign different probabilities on bidder —¢ having high valuation: while the auctioneer
assigns probability 1/2, bidder ¢ only assigns probability 2/5. In other words, the auctioneer
believes that bidder ¢’s first-order belief is “wrong.”

While a full-blown proof that the above belief i rationalizes the optimal dominant strat-
egy auction I' in Figure 8 is contained in Appendix B, we shall provide some intuition here
on why it is able to achieve something that a common-prior belief cannot.

Given the above belief p, there are two obvious candidate routes to improve upon the
optimal dominant strategy auction I' in Figure 8. First, since the auctioneer believes that
the low-valuation type of bidder ¢ holds “wrong” belief, the auctioneer may profit from
betting against him on bidder —i’s types. Second, since high- and low-valuation types of
bidder ¢ hold different beliefs, the auctioneer may profit from separating these two types by
Crémer-McLean-kind of bets and relaxing incentive compatibility constraints. We shall see
that either route is fruitless.

First, consider introducing any bet (z,y) on bidder 2’s type, where z and y are the
amount bidder 1 pays the auctioneer in the events bidder 2 has low and high valuations
respectively. If the bet is acceptable to both the auctioneer and the low-valuation type of
bidder 1, we must have

(1/2)z+(1/2)y > 0, and
(3/5)(—=) +(2/5)(-y) =

with at least one inequality strict unless £ = y = 0. But then the high-valuation type of
bidder 1 would find the bet acceptable as well, as

(3/4)(=z) + (1/4)(=y) = (5/2)[(3/5) (=) + (2/5)(=y)] + (3/2)[(1/2)= + (1/2)y],

which is strictly bigger the zero rent for the high-valuation type of bidder 1 under the auction
I'. With both high- and low-valuation types of bidder 1 accepting such a bet, such a bet
turns sour for the auctioneer, as

(3/5)(—=) + (2/5)(-y) <0,

and this explains why the first route is fruitless.

Y

Second, consider introducing any Crémer-McLean-kind of bet to separate the high- and
low-valuation types of bidder 1 and relax the downward incentive compatibility constraint.
Once again, let (z,y) be such a bet on bidder 2’s type. Suppose the bet is successful in
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the sense that the auctioneer can now sell to the low-valuation type of bidder 1 without the
need to leave extra rent for the high-valuation type of bidder 1 (as she needed to before the
introduction of such a bet that relaxes the downward incentive compatibility constraint),
then we must have

(3/5)(4 — ) + (2/5)(—y)
(3/4)(9 — ) + (1/4)(-y)

where the first (second) inequality follows from the individual rationality (incentive com-
patibility) constraint of the low-valuation (high-valuation) type of bidder 1. However, these
together imply that any bet like this is too good to be profitable for the auctioneer, as

(1/2)z + (1/2)y = (2/3)[(3/4)(—z) + (1/4)(=y)] = (5/3)[(3/5)(—=) + (2/5)(—-y)] < —1,

and this explains why the second route is fruitless as well.

>0, and
<0,

Of course we still have not fully exhausted all possible ways to improve upon the optimal
dominant strategy auction I'. But the proof in Appendix B will show that we actually have
not left out anything, and the belief 1 in Figure 11 indeed rationalizes I'.

5 Conclusion

In this paper, we treated the mechanism designer as a Bayesian decision maker and
challenged the informal argument that a mechanism designer who does not know agents’
beliefs may as well use dominant strategy mechanisms. Although this Bayesian approach is
more in line with the literature of optimal mechanism design, this is definitely not the only
way one can model the auctioneer’s decision making problem under uncertainty. For example,
one can model auctioneer as choosing among mechanisms using a max-min criterion. That
is, one can think of her as choosing an interim IC mechanism that has the best worst-case
performance:

. max min R, (T),
T is interim IC peM(v)
given any distribution v over agents’ payoff-relevant types. It is our future research agenda
to examine any possible max-min foundations for dominant strategy mechanisms.

Appendix A: Proof of Proposition 2
We first establish two lemmata.

Lemma 5 Suppose K is a compact topological space and that F is a family of real-valued
functions on K such that, for each x € K, there is some f, € F which is continuous at x
and satisfies fo(z) > 0. Then we have infyck sup;cq f(2) > 0.
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Proof: For each x € K, there exists an open neighborhood U, such that, for each y € U,,
we have f,(y) > fz(x)/2. The collection {U, : + € K} forms an open covering of the

compact space K, and hence there exists a finite subcovering. Let {U,,,...,U,, } be a finite
subcovering and let ¢ = min{f;, (z1), ..., fz, ()} > 0. For each z € K, we have z € U,, for
some [ = 1,...,n so that sup;cs f(z) > fo,(2) > fo,(71)/2 > /2 > 0. [ |

Lemma 6 Suppose O1,...,0, are disjoint open subsets of Q* such that u(UQ;) = 1, and
t: Q* — R is a bounded real function that is constant on each O;. Then the mapping

p— | tp'(dw)
Q*

1§ continuous at the point L.

Proof: Fix any ¢ > 0. Let £ > 0 be an upper bound for |t|. The function p' — u'(0O;) is
lower semi-continuous (see Aliprantis and Border (1999)), hence we can set

_ &
 tn?
and find a neighborhood U of u such that, for all p' € U, p'(0;) > u(0;) —d forl=1,...,n.

Since pu(UO;) = 1, it follows that p'(O;) < pu(0;) + (n—1)é and p'(2*\UO;) < p(2*\UO;) +
nd = nd.

We can write

[t =S w00+ [ tw)dn,

*\UO;
so that

S H(OHO) ~ (@ \UONE S [ t(dw) < 3 (OO + (2 \ LODE
= ) [(®)) - 8](0y) — nét < /Q tp(dw) < > [1(0) + (n — 1)814(0y) + ndt
e 53 °4(0) — not < / ! (dw) — / aldw) < (n— 1083 (00 + nF

I=1 =1
= —2nit< / t u'(dw) —/ t p(dw) < n?ét.
This proves that | [,. ¢ #/(dw) — [,,. t p(dw)| < max {2nét, n?6t} =e. |

Proof of Proposition 2 Notice that, for each of the mechanisms used in the proof of
Proposition 1, the total transfer (¢;+%3)(w) satisfies the conditions of Lemma 6. For example,
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consider the mechanism I'(z) in Lemma 1. For any (vq, v2), the set of universal type profiles
in which the valuation pair is (v, v2) is open in the product topology with p-null boundary.
Moreover, since u(b = x) = 0, the event b < z is also open in the product topology with
p-null boundary. Therefore, we can take Oy, ..., Qg to be the interiors of the sets represented
by the cells of the table in Figure 3. These open sets are disjoint, have u-null boundaries,
and have total u-measure equal to 1 as required.

Thus, for any auctioneer’s belief x4 that is consistent with the distribution v, there exists
an interim IC auction I'(x) such that R,I'(p) — VP (v) > 0, and the mapping p' — R, T'(u) —
VP(v) is continuous at the point y' = u. We can hence apply Lemma 5, taking K = M(v)
and F = {R ' — VP(v) : T is interim IC}. [

Appendix B: Proof of Proposition 3

Assume the conditions of Proposition 3 are satisfied. Fix any distribution v over bidders’
valuations. We shall construct a belief u € M(v) of the auctioneer against which an optimal
interim IC auction is dominant strategy IC.

For ¢ =1, 2, define
a; =v(0_;|5;), andb] := v(v_;|v;).
Consider a belief i of the auctioneer that has the following 4-point suppport: each bidder
i has only two types, @; = (7;,7;) and w; = (v;, ;). Both belief types of bidder i have the
2-point support of {w ;,w_;}, with their respective distributions as follows.

(1= @) = gi(T) (W) = v(vilwm) = (1 - ),
a; = gi(Te) (W) = v(04|0:) = o]

(1= b)) := gi(Te)(w4) = v(vs) = v(v )(1—a ) +v(v)(1 = b7),
bi := gi(7:) (@) = v(v-:) = v(¥;)a; + v(vi)b;.-

For each of these four type profiles, (wy,ws), let p(wy,ws) = v(vy,vy). This makes the
belief i1 consistent with the distribution v.

Notice that, if v is a product measure, then y = v*, and we are back to the classical
setting of naive type space with independent distribution. It is well known that, in this
classical setting, an optimal interim IC auction is dominant strategy IC. Therefore, in the
rest of this proof, we shall without loss of generality assume that v is not a product measure.

For expositional simplicity, let’s redefine the allocation rule p and the transfer rule ¢t as
mappings from this smaller type space {w;, w1} X {ws, @2} to probabilities and payments,
respectively. We say that an allocation rule p is ilC-implementable if there exists a transfer
rule ¢ such that the auction (p,t) is interim IC.

Notice that, if v is not a product measure, then each bidder 7 will have his two different
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types holding two different beliefs. By simple application of Crémer and McLean (1988),
any allocation rule p is iIC-implementable.

We shall break the proof into two steps. In step one, we shall fix an arbitrary (iIC-
implementable) allocation rule p, and ask which auction (p,t) would maximize the auction-
eer’s p-expected revenue. This step of the proof will give us a function (equation (1)) that
assigns to every (iIC-implementable) allocation rule p the auctioneer’s maximum p-expected
revenue. In step two, we shall maximize the auctioneer’s maximum p-expected revenue over
all (iIC-implementable) allocation rule p, and show that the optimal allocation rule p is
monotonic (Figure 14). To complete the proof, we shall observe that if an optimal allocation
rule is monotonic, then there exists a dominant strategy IC auction that implements the
same allocation rule and generates the same p-expected revenue.

Fix any (iIC-implementable) allocation rule p, and consider the following optimization
problem:

max Z Z wl, Wa [tl (wl, wz) + tz(wl, (UQ)] (Pl)

1=1,2 w; =W, ,w;

subject to, for 1=1,2,

(1 = ai) [pi(@i, w_i)0; — ti(@i, w )] + aa[pi(@s, W) V; — ti(@i, —4)] > 0, (IR;)
(1 — ;) [ps(wi, w_s)v; — ti(ws, w_3)] + bi[ps(ws, @) vs — ti(ws, 0_)] > 0, (IR,
(1 — ai)[pi(@i, w_i)¥; — ti@i, w )] + ai[ps(@i, ©0-i)V; — ti(@i, W—4)]

> (1 = ai)[pi(wi, w—i) i — ti(wi, wy)] + as[ps(wi, ©—;)T; — ti(wi, w—)], (IC)
(1 - bi)[pi(‘;‘}',@—z)l)z - tz(wzaw )] + b; [pz(wzaa) )l)z ti(@iawfi)]
> (1= bi)[pi(@i, w—¢)vi — ti(@i, w—3)] + ba[pi (@i, @—i)vi — ti(@s, @4)]. (1C;)

Notice that (IC;) never binds. Indeed, if b} > b; > a; = a} (respectively bf < b; <
a; = af), then by increasing (respectively decreasing) ¢;(w;, @_;) by the amount (1 — a;)e and
decreasing (respectively increasing) ¢;(@;,w_;) by the amount a;e, the auctioneer can relax
(IC;) without affecting other constraints and the p-expected revenue.

It is also without loss of generality to focus on transfer rules where (IC;) holds with exact
equality. Indeed, if (IC;) holds with strict inequality, then by reversing the adjustments
described in the above paragraph, we can arrive at a transfer rule where (IC;) holds with
exact equality without affecting other constraints and the p-expected revenue.

Since (IC;) never binds, (IR;) must bind.

Notice that (IC;) must bind. Suppose, on the contrary, (IC;) holds with strict inequality.
If b} > b; > a; = a} (respectively bf < b; < a; = a}), then by increasing (respectively decreas-
ing) i(wi, W_;) by the amount (1 —b;)e and decreasing (respectively increasing) ¢;(w;, w_;) by
the amount b;e, the auctioneer can increase the u-expected revenue without affecting other
constraints.
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It is also without loss of generality to focus on transfer rules where (IR;) holds with
exact equality. Indeed, if (I R;) holds with strict inequality, then by increasing ¢;(@;, -) by the
amount €, increasing t; (wz, ;) by the amount [(1 —b;)/(a; — b;)]e, and increasing ¢;(w;, w_;)
by the amount [b;/(b; — a;)]e, we can arrive at a transfer rule where (TR;) holds with exact
equality without affecting other constraints. Moreover, throughout these adjustments, the
change of the u-expected revenue

v(vi)e + v(g)[(1 = )b/ (b — ai) + b (1 — b) /(a: — bi)]e
= v(@)e+v(w:)[(bi — b7)/(bi — ai)le
= v(U)e+v(v)(w(vi)ai + v(vi)bi — b7)/(v(B:)ai + v(vi)b; — ai)le
= (@) +v(w)[(v(0:)(ai — b))/ (w(w:) (6] — ai))]e
= v(U)e+v(w)[-v(@)/v(vi)e

is zero as well.

Using the results that, without loss of generality, both (IC;) and (TR;) holds with ex-
act equality, we can solve for the ¢;(@;,-) part of the optimal transfer rule. In particular,
conditional on bidder ¢ having type @;, the auctioneer collects from bidder ¢ an u-expected
amount of

(1 — a;)pi(@i, w—i)T; + Gipz'(wz’, w—z‘)Uz',

which depends only on p(@;, -).
Similarly, using the results that both (IR;) and (IC;) are binding, we can solve for the
ti(v;, -) part of the optimal transfer rule. Rewrite (I R;) and (IC}) as
(1 = bi)ti(wi, w—i) + bits (wi, @) = [(1 = bi)pi(wi, w—i) + bipi(wi, ©-i)]vs =: Ts,  (LR;)
(1 - az)t (wz; ) + azt (Qdi; w—i) = [(1 - ai)pz(@z,(é} z) + azpz(wz; )]’D T’z (mz)

Then the optimal p-expected revenue the auctioneer collects from a w;-type of bidder ¢ is

v(i)[(1 — b7)ti(ws, w—s) + b; ti(wi, ©-3)]
= [v(vi)(1 = b)) + () (1 — ai) — v(0:) (1 — ai)Jti(wi, w—i) + [v(vi)b] + v(Vi)ai — v(T;)ai]ts(wi, @)
= [(1=bi) = v(:)(1 = a;)]ts(ws, w—s) + [b; — v(v)alti(wi, @)
= T —v(m)T,
which depends only on p(w;, -).

These two results together give us the maximum p-expected revenue given any fixed
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(iIC-implementable) allocation rule p:

Z V() [(1 — ai)pi(@i, w i) ¥ + aips(@i, @) 0] + T — v(:)T;
= Z Z (@i, w—i) [p(@i, w_s) — plws, w_3)]0; + p(w_i)p(Wi, w—i)v;. (1)

1=1,2 w—i:g}—hw—i

It remains to maximize the u-expected revenue over all (iIC-implementable) allocation
rule. Since any allocation rule is iIC-implementable when v is not a product measure, to
maximize the auctioneer’s pu-expected revenue over all ilC-implementable allocation rules, all
we need is to do pointwise optimization. Differentiating the p-expected revenue with respect
to pi(w;,w_;) for every type profile (w;,w_;), we will obtain the counterparts of “virtual
utilities” of bidder ¢ as in the classical theory of mechanism design, which are summarized

in Figure 12.

Wi Wi
W_; bil)i — I/(’l_)i)ai’l_)i I/(’l_)i)ai’l_)i
W_; (1 — b,)y, — I/(’l_)z)(l — ai)ﬁi I/(’l_),)(l - ai)z_)i

Figure 12: Derivatives of the u-expected revenue with respect to p;(w;, w_;)-

Using the relation between p and v, we can rewrite Figure 12 as Figure 13.

|‘€ €|
=
€ [

Figure 13: Derivatives of the u-expected revenue with respect to p;(w;, w_;).

Using the condition #; > v_; > 0 in Proposition 3, an optimal allocation rule p must
have the property depicted in Figure 14, which essentially says that prob; is monotonically

non-decreasing in bidder ¢’s valuation.
Now consider the auction (p,t), where p is an optimal allocation rule, and each t; is as
depicted in Figure 15.

When the allocation rule p satisfies the monotonicity property depicted in Figure 14, the
auction (p,t) depicted in Figure 15 will be dominant strategy IC. It suffices to prove that
the dominant strategy IC auction (p,t) depicted in Figure 15 generates the same p-expected
revenue as an optimal interim IC auction does.
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W1 W1
Wy | p1=0,pp=1
wa pr=1,p=0

Figure 14: Monotonicity of an optimal allocation rule p.

Wi Wi
(D—z Di (Q)z; ‘D—z)yz Di (‘Dza ‘D—z)"_)z — D (wza w—z)(i_)z _z)
W pi(@wQsz)yz pz(wza‘é}ﬂ)"_}z _pi(wzawfz)(vz _1)1)

Figure 15: The transfer rule ¢; in the auction (p, ).

Taking u-expectation of the revenue generated by the auction (p,t) depicted in Figure
15, we have

Z Z (Wi, w—i)Pi(Wi, w—s) V(@i w—3) [Di (@3, w—i) Vs — pi(wi, w—s) (Vi — ;)]

i=12w_i=W_;,&_;

= Z Z (@i, w—3)[p(@, w—;) — p(wi, w-i)]V; + plw-i)p(wi, w-i)vi,

=12w_;=W_;,&_;

which is the same as (1). This proves that the dominant strategy IC auction (p,t) depicted
in Figure 15 is an optimal interim IC auction.
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