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1 Introduction

Suppose one person, call him Sender, wishes to persuade another, call her Receiver, to change her

action. If Receiver is a rational Bayesian, can Sender persuade her to take an action he would

prefer over the action she was originally going to take? If Receiver understands that Sender chose

what information to convey with the intent of manipulating her action for his own benefit, can

Sender still gain from persuasion? If so, what is the optimal way to persuade?

These questions are of substantial economic importance. As McCloskey and Klamer (1995)

emphasize, attempts at persuasion command a sizeable share of our resources. Persuasion, as we

will define it below, plays an important role in advertising, courts, lobbying, financial disclosure,

and political campaigns, among many other economic activities.

Consider the example of a prosecutor trying to convince a judge that a defendant is guilty. When

the defendant is indeed guilty, revealing the facts of the case will tend to help the prosecutor’s case.

When the defendant is innocent, revealing facts will tend to hurt the prosecutor’s case. Can the

prosecutor structure his arguments, selection of evidence, etc. so as to increase the probability of

conviction by a rational judge on average? Perhaps surprisingly, the answer to this question is

yes. Bayes’ Law restricts the expectation of posterior beliefs but puts no other constraints on their

distribution. Therefore, so long as the judge’s action is not linear in her beliefs, the prosecutor may

benefit from persuasion.

To make this concrete, suppose the judge (Receiver) must choose one of two actions: to acquit

or convict a defendant. There are two states of the world: the defendant is either guilty or innocent.

The judge gets utility 1 for choosing the just action (convict when guilty and acquit when innocent)

and utility 0 for choosing the unjust action (convict when innocent and acquit when guilty). The

prosecutor (Sender) gets utility 1 if the judge convicts and utility 0 if the judge acquits, regardless

of the state. The prosecutor and the judge share a prior belief Pr (guilty) = 0.3.

The prosecutor conducts an investigation and is required by law to report its full outcome. We

can think of the choice of the investigation as consisting of the decisions on whom to subpoena, what

forensic tests to conduct, what question to ask an expert witness, etc. We formalize an investigation

as distributions π (·|guilty) and π (·|innocent) on some set of signal realizations. The prosecutor

chooses π and must honestly report the signal realization to the judge. Importantly, we assume
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that the prosecutor can choose any π whatsoever, i.e., that the space of possible investigations is

arbitrarily rich.

If there is no communication (or equivalently, if π is completely uninformative), the judge always

acquits because guilt is less likely than innocence under her prior. If the prosecutor chooses a fully

informative investigation, one that leaves no uncertainty about the state, the judge convicts 30

percent of the time. The prosecutor can do better, however. His uniquely optimal investigation

is a binary signal

π (i|innocent) = 4
7 π (i|guilty) = 0

π (g|innocent) = 3
7 π (g|guilty) = 1.

(1)

This leads the judge to convict with probability 60 percent. Note that the judge knows 70 percent

of defendants are innocent, yet she convicts 60 percent of them! She does so even though she is

fully aware that the investigation was designed to maximize the probability of conviction.

In this paper, we study the general problem of persuading a rational agent. Our approach

follows the literature on mechanism design. We consider a setting with an arbitrary state space

and action space, and with arbitrary state-dependent preferences for both Sender and Receiver.

We introduce a broad class of “persuasion mechanisms” that encompasses cheap talk games (e.g.,

Crawford and Sobel 1982), persuasion games (e.g., Milgrom and Roberts 1986), and signalling

games (e.g., Spence 1973), among many others. The key distinguishing feature of a persuasion

mechanism is that Sender can affect Receiver’s action only by changing Receiver’s beliefs. We do

not allow Sender to make transfers or affect Receiver’s payoffs in any way. In contrast to most

other papers on strategic communication, we allow for mechanisms where Sender can fully commit

on two counts: to fully disclose all he knows and to limit the extent of his private information.

Given this definition, we focus on two questions: (i) when does there exist a persuasion mechanism

that strictly benefits Sender, and (ii) what is an optimal mechanism from Sender’s perspective?

We begin by establishing some results that simplify our analysis. We show that, without loss

of generality, we can restrict attention to mechanisms where Sender learns a recommended action

for Receiver, reports it truthfully, and then Receiver chooses the recommended action. In the

example above, we can think of i as a recommendation to acquit and g as a recommendation to

convict. We then show that we can re-express the problem of choosing such a mechanism as a
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search over distributions of posteriors subject to the constraint that the expected posterior is equal

to the prior.

When does there exist a persuasion mechanism that strictly benefits Sender? Consider why the

prosecutor in the example benefits from the opportunity to provide information to the judge. Since

the judge is rational, providing information must sometimes make her more convinced and some-

times less convinced that the defendant is guilty. The former will strictly improve the prosecutor’s

payoff if the information is strong enough to induce conviction. The latter, however, will not reduce

the prosecutor’s payoff, since the judge already acquits the defendant by default. The net effect is

to increase the prosecutor’s payoff in expectation. We show that in general Sender benefits from

persuasion whenever (i) Receiver does not take Sender’s preferred action by default (in a sense we

make precise below) and (ii) Receiver’s action is constant in some neighborhood of beliefs around

the prior. When these conditions hold, Sender can benefit by sending a signal that induces a better

action with positive probability and balances this with a worse belief that leaves Receiver’s action

unchanged. We also show that whether Sender benefits from persuasion depends in a natural way

on the concavity or convexity of Sender’s payoff as a function of Receiver’s beliefs.

We next turn to studying optimal mechanisms. We use tools from convex analysis to show

that an optimal mechanism exists and to characterize it for any given set of preferences and initial

beliefs. We show that no disclosure of information is optimal when Sender’s payoff is concave in

Receiver’s beliefs, and full disclosure is optimal when Sender’s payoff is convex in Receiver’s beliefs.

We also establish that an optimal mechanism need never induce more actions in equilibrium than

there are states.

We then generalize three important properties of the optimal mechanism in the example above.

Notice, first, that when the judge chooses the prosecutor’s least-preferred action (acquit), she

is certain of the state. That is, she never acquits guilty defendants. Otherwise, we would have

π (i|guilty) > 0. But then the prosecutor could increase his payoff by decreasing π (i|guilty) and

increasing π (g|guilty); this would strictly increase the probability of g and would only increase

the willingness of the judge to convict when she sees g. We establish that, in general, whenever

Receiver takes Sender’s least-preferred action, she knows with certainty that the state is one where

this action is optimal.
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Second, notice that when the judge convicts, she is exactly indifferent between convicting and

acquitting. If she strictly preferred to convict upon seeing g, the prosecutor could increase his

payoff by slightly decreasing π (i|innocent) and increasing π (g|innocent); this would increase the

probability of g and leave the judge’s optimal action given the message unchanged, thus increasing

the probability of conviction. We show that, in general, whenever Receiver has an interior posterior,

she is effectively indifferent among two actions.

Finally, notice that because the prosecutor’s payoff is (weakly) increasing in the judge’s posterior

belief that the state is guilty, it is meaningful to talk about beliefs that place more weight on

innocent as being “worse” from the prosecutor’s perspective. A different way to look at the last

two results is that the prosecutor chooses an investigation that induces the worst possible belief

consistent with a given action by the judge—certainty of innocence when the action is acquit,

and indifference when the action is convict. We show that in general when Sender’s payoffs are

monotonic in Receiver’s beliefs, Sender typically induces the worst belief consistent with a given

action.

We next apply our results to three examples. These examples illustrate both the breadth of situ-

ations captured by our model and the practical applicability of our propositions. Finally, we discuss

extensions of our results to dynamic mechanisms, incomplete information on the part of Receiver,

multiple Receivers, multiple Senders, limited messaging technologies, and limited commitment.

The observation that Bayesian updating only restricts the expectation of posteriors has been

made before and has been utilized in a variety of contexts.1 The work most closely related to our

paper is Brocas and Carrillo (2007). They analyze the gain to Sender from controlling the flow of

public information in a setting with a binary state space and information that consists of a sequence

of symmetric binary signals. Lewis and Sappington (1994) and Johnson and Myatt (2006) consider

how much information a monopolist would want to provide to his potential customers. Carillo and

Mariotti (2000), Bodner and Prelec (2003), and Bénabou and Tirole (2002, 2003, 2004) employ
1The formal methods employed in our analysis are very close to Aumann and Maschler’s (1995) analysis of repeated

games of incomplete information. They study the value to a player of knowing which game is being played when the
other player lacks this knowledge, a fixed zero-sum game is repeated ad infinitum, players maximize their long-run
non-discounted average payoffs, and payoffs are not observed. The fact that the informed player’s initial actions
have no impact on his long-run average payoffs (and can thus be treated as just a signal) combined with a focus
on Nash equilibria (which implicitly allow for commitment) makes Aumann and Maschler’s problem mathematically
analogous to ours.
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a form of Bayesian persuasion to study self-signaling and self-regulation. Caillaud and Tirole

(2007) rely on a similar mechanism to study persuasion in group settings. Lazear (2006) applies

a closely-related intuition to examine when providing information about a test increases learning.

In contrast to these papers, we derive results that apply to arbitrary state spaces, information

structures, preferences and initial beliefs.

This paper also relates to a broader literature on optimal information structures. Prendergast

(1992) studies the assignment of individuals into groups (and the resulting information about their

types) when individuals are risk-averse over the realization of their type. Ostrovsky and Schwarz

(2008) examine the equilibrium design of grade transcripts (and the resulting information about

quality of students) when schools compete to place their students in good jobs. Rayo and Segal’s

(2008) concurrent work characterizes the optimal disclosure policy under specific assumptions about

preferences and about Receiver’s outside option.

Our results also contribute to the literature on contract theory. An important aspect of our

setting is that Receiver’s action is not contractible. Most work in contract theory examines two

remedies for such non-contractibility: payment for outcomes correlated with the action (e.g., Holm-

strom 1979, Grossman and Hart 1983) and suitable allocation of property rights (e.g., Grossman

and Hart 1986, Hart and Moore 1990). Our results highlight another instrument for implementing

a second-best outcome, namely the control of the agent’s informational environment.2 To illustrate

this interpretation of our results, one of our examples analyzes how to optimally structure midterm

review of tenure-track faculty so as to induce second-best effort.

Finally, past work has studied related questions in contexts where Receivers are not perfect

Bayesians (Mullainathan, Schwartzstein, and Shleifer 2008). While persuasive activities may reflect

such failures of rationality, assessing the relevant evidence requires a more complete understanding

of when and how persuading a fully rational Bayesian is possible.

2 A model of persuasion

Receiver has a continuous utility function u (a, ω) that depends on her action a ∈ A and the state

of the world ω ∈ Ω. Sender has a continuous utility function v (a, ω) that depends on Receiver’s
2Taub (1997) analyzes the impact of information provision on incentives in a dynamic framework.
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action and the state of the world. Sender and Receiver share a prior µ0 ∈ int (∆ (Ω)).3 Let

a∗ (µ) to be the set of actions that maximize Receiver’s expected utility given her belief is µ. We

assume that that there are at least two actions in A and that for any action a there exists a µ s.t.

a∗ (µ) = {a}. The action space A is compact and the state space Ω is finite. The latter assumption

is mainly for ease of exposition: Appendix B demonstrates that our central characterization result

extends to the case where Ω is any compact metric space.

A special case of particular interest is where ω is a real-valued random variable, Receiver’s

action depends only on the expectation Eµ [ω], rather than the entire distribution µ, and Sender’s

preferences over Receiver’s actions do not depend on ω. This holds, for example, if u (a, ω) =

− (a− ω)2 and v (a, ω) = a. When these conditions are satisfied, we will say that payoffs depend

only on the expected state.

We define a persuasion mechanism (π, c) to be a combination of a signal and a message technol-

ogy. Sender’s private signal π consists of a finite realization space S and a family of distributions

{π (·|ω)}ω∈Ω over S. A message technology c consists of a finite message space M and a family of

functions c (·|s) : M → R+ ; c (m|s) denotes the cost to Sender of sending message m after receiving

signal realization s.4 The assumptions that S and M are finite are without loss of generality (cf.

Proposition 9) and are used solely for notational convenience.

A persuasion mechanism defines a game. The timing is as follows. First, nature selects ω from

Ω according to µ0. Neither Sender nor Receiver observe nature’s move. Then, Sender privately

observes a realization s ∈ S from π (·|ω) and chooses a message m ∈M . Finally, Receiver observes

m and chooses an action a ∈ A. Sender’s payoff is v (a, ω)−c (m|s) and Receiver’s payoff is u (a, ω).

We represent the Sender’s and Receiver’s (possibly stochastic) strategies by σ and ρ, respectively.

We use µ (ω|m) to denote Receiver’s posterior belief that the state is ω after observing m.

A perfect Bayesian equilibrium of a persuasion mechanism is a triplet (σ∗, ρ∗, µ∗) satisfying the

usual conditions. We also apply an additional equilibrium selection criterion: we focus on Sender-

preferred equilibria, i.e., equilibria where the expectation of v (a, ω)− c (m|s) is the greatest. The

focus on Sender-preferred equilibria provides a consistent comparison across mechanisms which
3int (X) denotes the interior of set X and ∆ (X) the set of all probability distributions on X.
4R+ denotes the affinely extended non-negative real numbers: R+ = R+ ∪ {∞}. Allowing c to take on the value

of∞ is useful for characterizing the cases where Sender cannot lie and cases where he must reveal all his information.
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prevents us from generating benefits of persuasion simply through equilibrium selection. Moreover,

this particular comparison, unlike say comparing equilibria worst for Sender, ensures the existence

of an optimal mechanism (cf. proof of Proposition 7). In the remainder of the paper, we use the term

“equilibrium” to mean a Sender-preferred perfect Bayesian equilibrium of a persuasion mechanism.

Motivated by this definition of equilibria, we let â (µ) denote an element of a∗ (µ) that maximizes

Sender’s expected utility at belief µ. If there is more than one such action, we let â (µ) be an

arbitrary element from this set.5 We refer to â (µ0), as the default action.

We define the value of a mechanism to be the equilibrium expectation of v (a, ω) − c (m|s).

The gain from a mechanism is the difference between its value and the equilibrium expectation

of v (a, ω) when Receiver obtains no information. Sender benefits from persuasion if there is a

mechanism with a strictly positive gain. A mechanism is optimal if no other mechanism has higher

value.

2.1 Varieties of Persuasion Mechanisms

A few examples help clarify the varieties of games that are captured by the definition of a persuasion

mechanism. If π is perfectly informative and c is constant, the mechanism is a cheap talk game

as in Crawford and Sobel (1982). If π is arbitrary and c is constant, the mechanism coincides

with the information-transmission game of Green and Stokey (2007). If π is perfectly informative

and c (m|s) = − (m− s)2, the mechanism is a communication game with lying costs developed

in Kartik (forthcoming). If π is perfectly informative, M = P (Ω), and c (m|s) =
{

0 if s∈m
∞ if s/∈m , the

mechanism is a persuasion game as in Grossman (1981) and Milgrom (1981).6 If π is perfectly

informative, M = R+, and c (m|s) = m/s, the mechanism is Spence’s (1973) education signalling

game. The model can also be easily re-interpreted to allow for multiple receivers (as in Lewis

and Sappington 1994), for Receiver to be uncertain about what information Sender has (as in Shin

2003), or for Seller to have discretion over which costly information to acquire (as in Jovanovic

1982). We consider extensions to our model in Section 7 below, where we also discuss in more

detail what types of games our definition rules out.
5This allows us to use convenient notation such as v (â (µ) , ω).
6P (X) denotes the set of all subsets of X.
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2.2 Honest Mechanisms

A particularly important type of a persuasion mechanism is one where M = S and c (m|s) ={
k if s=m
∞ if s 6=m for some k ∈ R+. We call such mechanisms honest. In contrast to Grossman (1981)

and Milgrom (1981), where Sender is simply not allowed to tell an explicit lie, under an honest

mechanism Sender must tell the truth, the whole truth, and nothing but the truth. In other words,

he has committed to fully disclose all his private information. Much of our analysis depends on

allowing for the possibility that Sender can commit in this way.

Note that an honest mechanism can be interpreted as either (i) a choice of a signal π on S given

an honest messaging technology c (m|s) =
{
k if s=m
∞ if s 6=m , or (ii) a disclosure rule π : Ω → ∆ (S), as in

Rayo and Segal (2008). While these two interpretations are formally equivalent, one or the other

may be more natural in particular settings.

Examples where the first interpretation makes sense include a prosecutor requesting a forensic

test or a firm conducting a public celebrity taste test against a rival product. In these settings,

Sender has an ability to commit on two counts: he can choose to remain imperfectly informed

and he can commit to fully disclose anything he learns. The latter commitment may arise either

because Receiver directly observes the revelation of the information (as in the taste test example)

or through an institutional structure that requires Sender to always report all the tests he has

conducted and what their outcomes were (as in the prosecutor example).

Examples where the second interpretation is more natural include a school or a rating agency

choosing a coarse grading policy. Here, Sender might be unable to avoid learning the full information

about the state but can plausibly commit to an ex ante, potentially stochastic, disclosure rule that

is not fully revealing.

3 Simplifying the Problem

The class of persuasion mechanisms defined above is large, including cases where Sender’s strategy

might involve complex messages, signaling, lying, and so on. In this section, we show that to

determine whether Sender benefits from persuasion and what an optimal mechanism is, it suffices

to consider a much simpler problem.
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The key intuition is the following. An equilibrium of any persuasion mechanism induces

a particular distribution of Receiver’s beliefs. This distribution of beliefs in turn determines a

distribution over Receiver’s actions. From Sender’s perspective, any equilibrium that induces the

same distribution of actions conditional on states must have the same value. To determine whether

there exists a persuasion mechanism with some given value, therefore, it is sufficient to ask whether

there exists a distribution of Receiver’s beliefs that is compatible with Bayes’ rule and generates

expected utility for Sender equal to that value.

Let a distribution of posteriors τ be a distribution on ∆ (Ω). A persuasion mechanism induces

τ if there exists an equilibrium of the mechanism such that Supp (τ) = {µm}m∈M and

(i) µm (·) = µ∗ (·|m)

(ii) τ (µm) =
∑
ω∈Ω

∑
s∈S

σ∗ (m|s)π (s|ω)µ0 (ω) .

A belief µ is induced by a mechanism if τ is induced by the mechanism and τ (µ) > 0. A distribution

of posteriors is Bayes-plausible if the expected posterior probability of each state equals its prior

probability: ∫
µdτ (µ) = µ0.

Bayesian rationality requires that any equilibrium distribution of Receiver’s beliefs be Bayes-

plausible. Our first Proposition below shows that this is the only restriction imposed by Bayesian

rationality. That is, for any Bayes-plausible distribution of posteriors there is a persuasion mecha-

nism that induces this distribution in equilibrium.

Now, let

v̂ (µ) ≡
∑
ω∈Ω

v (â (µ) , ω)µ (ω) .

This denotes Sender’s expected utility when both he and Receiver hold belief µ.

Sender’s utility (gross of messaging costs) in any mechanism which induces τ is simply the

expectation of v̂ under τ , Eτ v̂ (µ). At terminal nodes of the game, Sender and Receiver may hold

different beliefs, say µS and µR. For example, Sender may have observed a highly informative signal

but chosen to send a message that reveals no information. Sender’s payoff at such a node is neither
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v̂ (µS) nor v̂ (µR), but rather
∑

ω∈Ω v (â (µR) , ω)µS (ω). A more obvious statement, then, would

have been that the Sender’s utility in a mechanism is the expectation of
∑

ω∈Ω v (â (µR) , ω)µS (ω)

over the joint distribution of Sender’s and Receiver’s beliefs. What allows us to collapse this

potentially complicated expression to Eτ v̂ (µ) is the following observation. Because Receiver’s

beliefs satisfy the equilibrium condition, it must be the case that from the ex ante perspective,

before he has obtained any private information, Sender’s belief conditional on learning that Receiver

will have belief µ must also be µ. Hence, his ex ante expected utility from inducing µ is v̂ (µ).

Another reason why we do not need to worry about the joint distribution of Sender’s and Re-

ceiver’s beliefs is that we can restrict our attention, without loss of generality, to honest mechanisms

where Sender’s and Receiver’s beliefs always coincide. In fact, we can restrict our attention even

further, to a particular type of honest mechanisms. Say that a mechanism is straightforward if it is

honest, S ⊂ A, and Receiver’s equilibrium action equals the message. In other words, in straight-

forward mechanisms, the signal produces a “recommended action” for Receiver, Sender reports the

recommendation honestly, and Receiver takes the action recommended. Given a distribution of

actions induced by any mechanism, there exists a straightforward mechanism that induces the same

distribution of actions. This result is closely analogous to the revelation principle (e.g., Myerson

1979). Of course, the revelation principle applies to problems where players’ information is a given,

while our problem is that of designing the informational environment.

This leads us to the proposition that greatly simplifies our problem.

Proposition 1 The following are equivalent:

1. There exists a persuasion mechanism with value v∗;

2. There exists a straightforward mechanism with value v∗;

3. There exists a Bayes-plausible distribution of posteriors τ such that Eτ v̂ (µ) = v∗.

Detailed proofs of all propositions are in Appendix A. We sketch the basic argument here.

That (2) implies (1) and (3) is immediate. To see that (1) implies (2), let % (·|ω) be the distribution

of actions in an equilibrium of any mechanism. Consider the honest mechanism with S = A

and π (a|ω) = % (a|ω). We need to show that in an equilibrium of this mechanism ρ∗ (a|m) =
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{
1 if a=m
0 if a6=m . This follows from two observations: (i) the belief induced by sending message a is a

convex combination of beliefs that induced a in the original equilibrium; (ii) if an action is optimal

for a set of beliefs, it is optimal for a belief that is in the convex hull of that set. Finally, that

(3) implies (1) is equivalent to the claim that Bayes-plausability is the only restriction on the

equilibrium distribution of posteriors. This part of our argument is closely related to Shmaya

and Yariv’s (2009) concurrent work that identifies which sequences of distributions of posteriors

are consistent with Bayesian rationality. Given any Bayes-plausible τ , let S index Supp (τ) and

consider a signal π (s|ω) = µs(ω)τ(µs)
µ0(ω) . The honest mechanism with signal π induces τ .

The key implication of Proposition 1 is that to evaluate whether Sender benefits from persuasion

and to determine the value of an optimal mechanism we need only ask how Eτ v̂ (µ) varies over the

space of Bayes-plausible distributions of posteriors.

Corollary 1 Sender benefits from persuasion if and only if there exists a Bayes-plausible distribu-

tion of posteriors such that

Eτ v̂ (µ) > v̂ (µ0) .

The value of an optimal mechanism is

max
τ

Eτ v̂ (µ)

s.t.
∫
µdτ (µ) = µ0.

Note that Corollary 1 does not by itself tell us that an optimal mechanism exists. As we will

show later, however, this is indeed always the case.

Proposition 1 implies that we can restrict our attention to mechanisms where Sender is com-

pelled to report all he knows truthfully. Consequently, none of our results depend on the inter-

pretation of v as Sender’s utility. We could let v denote a social welfare function, for example.

Our results would then identify socially-optimal rather than Sender-optimal mechanisms. Or, we

could let v denote a weighted combination of Sender’s and Receiver’s utilities resulting from ex

ante bargaining over which mechanism to use. Throughout the paper we will refer to v as Sender’s

utility, but one should keep in mind that our results apply for any objective function over Receiver’s
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Figure 1: an illustration of concave closure

action and the state.

We introduce a final definition that will be useful in the analysis that follows. Let V be the

concave closure of v̂:

V (µ) ≡ sup {z| (µ, z) ∈ co (v̂)} ,

where co (v̂) denotes the convex hull of the graph of v̂. Note that V is concave by construction.

In fact, it is the smallest concave function which is everywhere weakly greater than v̂.7 Figure 1

shows an example of the construction of V . To see why V is a useful construct, observe that if

(µ′, z) ∈ co (v̂), then there exists a distribution of posteriors τ such that Eτµ = µ′ and Eτ v̂ (µ) = z.

Thus, by Proposition 1, co (v̂) is the set of (µ, z) such that if the prior is µ, there exists a mechanism

with value z. Hence, V (µ) is the largest payoff Sender can achieve with any mechanism when the

prior is µ.

7Our definition of concave closure is closely related to the notion of a biconjugate function in convex analysis
(Hiriart-Urruty and Lemaréchal 2004). Note that we can alternatively express V as

V (µ) = inf
s,r

{
〈s, µ〉 − r|〈s, µ′〉 − r ≥ v̂

(
µ′
)
∀µ′
}

where 〈·, ·〉 denotes inner product. Hence, V is a “concave version” of the (convex) biconjugate function defined by

v̂∗∗ (µ) ≡ sup
s,r

{
〈s, µ〉 − r|〈s, µ′〉 − r ≤ v̂

(
µ′
)
∀µ′
}
.

Specifically, V = − ((−v̂)∗∗). Aumann and Maschler (1995) refer to V as the concavification of v̂.
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Figure 2: the motivating example

Corollary 2 The value of an optimal mechanism is V (µ0). Sender benefits from persuasion if

and only if V (µ0) > v̂ (µ0).

Figure 2 shows the function v̂, the optimal mechanism, and the concave closure V in the

motivating example from the introduction. As panel (a) shows, v̂ is a step function: the prosecutor’s

expected payoff is 0 whenever the judge’s belief µ that the state is guilty is less than 0.5 (since

the judge will choose acquit) and 1 whenever µ is greater than or equal to .5 (since the judge

will choose convict). As panel (b) shows, the optimal signal induces two posterior beliefs. When

the judge observes i, her posterior belief is µ = 0 and v̂ (0) = 0. When the judge observes g, her

posterior belief is µ = .5 and v̂ (.5) = 1. The distribution τ over these beliefs places probability .4

on µ = 0 and probability .6 on µ = .5. Hence, the prosecutor’s expected utility is Eτ v̂ (µ) = .6.

The distribution τ is Bayes plausible since µ0 = .3 = .4 (0) + .6 (.5). As panel (c) shows, the

concave closure V is equal to 2µ when µ ≤ 0.5 and constant at 1 when µ > 0.5. It is clear that

V (µ0) > v̂ (µ0) and that the value of the optimal mechanism is V (µ0).

4 When does Sender benefit from persuasion?

Corollary 2 provides a necessary and sufficient condition for Sender to benefit from persuasion

in terms of the concave closure V . In any problem where we can graph the function v̂, it is
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Figure 3: an illustration with an arbitrary v̂

straightforward to construct V and determine the prior beliefs, if any, at which V (µ0) > v̂ (µ0). In

Figure 3, for example Sender benefits from persuasion for any µ0 ∈ (µl, µh), and does not benefit

from persuasion for any µ0 ≤ µl or µ0 ≥ µh. In Figure 2, Sender benefits from persuasion for any

µ0 ∈ (0, .5)—i.e. at any prior belief at which the judge does not convict by default. In this section,

we characterize the conditions when V (µ0) > v̂ (µ0) holds, first in terms of the properties of v̂, and

then in terms of the primitives of our model, namely Sender and Receiver’s preferences and initial

beliefs.

Corollaries 1 and 2 tell us that Sender benefits from persuasion if and only if there exists a τ

such that Eτ (v̂ (µ)) > v̂ (Eτ (µ)) . Whether this is the case is naturally tied to the concavity or

convexity of v̂. Note that since v̂ is not necessarily differentiable, we cannot speak of its convexity

or concavity “at a point.” The analogue for a potentially non-differentiable function to being

weakly convex everywhere and strictly convex somewhere is that it be convex and not concave.

Proposition 2 If v̂ is concave, Sender does not benefit from persuasion. If v̂ is convex and not

concave, Sender benefits from persuasion.

Observe that in the simple case where Sender’s payoff does not depend on the state, v̂ (µ) =

v (â (µ)). The concavity or convexity of v̂ then depends on just two things: whether Receiver’s

action â (µ) is concave or convex in µ, and whether Sender’s payoff v (a) is concave or convex in a.
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If both â and v are concave, Sender does not benefit from persuasion. If both â and v are convex

and at least one of them is not concave, Sender benefits from persuasion.

Consider a simple example where u (a , ω) = − (a− ω)2 and v (a, ω) = a. In this case, both

â and v are linear, and hence concave, so Sender does not benefit from persuasion. Moreover,

since v̂ (µ) = Eµ [ω] is linear in µ, Sender is completely indifferent about the information Receiver

obtains. This is not because he does not care about Receiver’s belief: his utility is strictly increasing

in the expectation of µ. Rather, it is because he knows that in any informational environment,

Receiver’s beliefs will on average equal the prior, so his expected utility from Receiver’s action is

fixed at Eµ0
[ω].8

There is also a sense in which the concavity or convexity of v̂ depends on the extent to which

Sender and Receiver’s preferences are aligned. At one extreme, if Sender and Receiver’s preferences

are perfectly aligned (v = u), we have v̂ (µ) ≡ maxa
∑

ω u (a, ω)µ (ω) . Since the maximand is linear

in µ, v̂ is convex. Moreover, since â (µ) is not constant, v̂ is not concave. Hence, Sender benefits

from persuasion. By the same logic, if Sender and Receiver’s preferences are perfectly misaligned

(v = −u), v̂ is concave and Sender can never benefit from persuasion. In Subsection 6.2, we explore

alignment of preferences in more detail.

Often, v̂ will be neither convex nor concave. This is true, for example, in our motivating example

as shown in Figure 2. As we discussed earlier, the fact that Sender benefits from persuasion in

that example hinges on (i) the fact that Receiver does not take Sender’s preferred action by default,

and (ii) the fact that Receiver’s action is constant in a neighborhood around the prior. We now

show that these two conditions, suitably generalized, play a crucial role more broadly. Specifically,

the generalization of (i) is necessary, while generalizations of (i) and (ii) are jointly sufficient, for

Sender to benefit from persuasion.

To generalize (i), say there is information Sender would share if ∃µ s.t.

v̂ (µ) >
∑
ω

v (â (µ0) , ω)µ (ω) . (2)

In other words, there must exist a µ such that, if Sender had private information that led him to
8This does not mean Sender is indifferent across all mechanisms. Some mechanisms, such as a signalling game,

would induce messaging costs in equilibrium and thus lead to a lower overall utility.
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believe µ, he would prefer to share this information with Receiver rather than have Receiver act

based on µ0. Note that when v does not depend on ω, there is information Sender would share as

long the default action is not dominant, i.e., v (â (µ0)) < v (a) for some a ∈ A. This is the sense in

which equation (2) generalizes condition (i).

When there is no information Sender would share, Sender cannot benefit from persuasion since

there is no informative message he would ever wish Receiver to see.

Proposition 3 If there is no information Sender would share, Sender does not benefit from per-

suasion.

Now, to generalize (ii), we say Receiver’s preference is discrete at belief µ if Receiver’s expected

utility from her preferred action â (µ) is bounded away from her expected utility from any other

action, i.e., if there is an ε > 0 s.t. s.t. ∀a 6= â (µ),

∑
u (â (µ) , ω)µ (ω) >

∑
u (a, ω)µ (ω) + ε.

The following Proposition is the main result of this section; it demonstrates that the general-

izations of (i) and (ii) are sufficient for Sender to benefit from persuasion.

Proposition 4 If there is information Sender would share and Receiver’s preference is discrete at

the prior, Sender benefits from persuasion.

The intuition for the proof is as follows. First, because there is information that Sender would

share we can find a belief µh such that v̂ (µh) >
∑
ω
v (â (µ0) , ω)µh (ω). Second, the discreteness of

Receiver’s preference implies that there is a belief near the prior, say µl, such that â (µl) is equal to

Receiver’s default action and µ0 is on the segment between µl and µh. That mixing point µl and

µh produces a strictly positive gain is obvious in a case like the motivating example where Sender’s

payoff v does not depend on the state. The argument is more subtle when v does depend on the

state. The key observation is that for any given action by Receiver, Sender’s utility is linear in

µ. In particular,
∑
ω
v (â (µ0) , ω)µ (ω) is linear in µ. This implies that mixing µl with µh yields a

strictly positive gain.
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Proposition 4 is particularly useful when the action space is finite. In that case, Receiver’s

preference is generically discrete at the prior in the sense that the set of beliefs at which Receiver’s

preference is discrete is Lebesgue measure-zero in ∆ (Ω). To see why this is the case, note that

with a finite action space, Receiver’s preference can be non-discrete at µ only if Receiver is exactly

indifferent between two distinct actions at µ. Such indifference is a knife-edge case that generically

does not hold at the prior.

Proposition 5 If A is finite, Receiver’s preference is discrete at the prior generically.

The key implication of Proposition 5 is that when the action space is finite, we should expect

Sender to benefit from persuasion if and only if there is information Sender would share. Note,

however, that this result is not meant to suggest that there is some form of discontinuity in Sender’s

benefit from persuasion as we move from large finite choice sets to infinite ones. As the action space

becomes large, the gain from persuasion may become arbitrarily small.

We now turn to the case where payoffs depend only on the expected state. We have shown

that when v̂ can be graphed, inspection of the graph can show directly whether Sender benefits

from persuasion. Remember, however, that the domain of v̂ is ∆ (Ω). This means that it is only

possible to easily depict v̂ when there are two or three states. When there are more states, our

Propositions still apply, but one cannot approach the problem by simply studying the graph of v̂.

When payoffs depend only on the expected state, however, a natural conjecture is that we could

learn about Sender’s gain from persuasion by graphing Sender’s expected payoff as a function of

the expected state Eµ [ω] rather than as a function of µ directly. If so, we would have a simple

two-dimensional representation of this subclass of problems regardless of the size of the state space.

When payoffs depend only on the expected state, there exists a ṽ : R→ R such that ṽ (Eµ [ω]) =

v̂ (µ). Let Ṽ be the concave closure of ṽ. The following proposition shows that the conjecture above

is correct: we can determine whether Sender benefits from persuasion simply by inspecting Ṽ and

ṽ. In Section 6 below, we provide an example of how this result can greatly simplify the analysis

of problems with a large state space.

Proposition 6 Sender benefits from persuasion if and only if Ṽ
(
Eµ0

[ω]
)
> ṽ

(
Eµ0

[ω]
)
.
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To see that Ṽ
(
Eµ0

[ω]
)
≤ ṽ

(
Eµ0

[ω]
)

implies Sender cannot benefit from persuasion, we need

only note that for any Bayes-plausible τ ,

Eτ [v̂ (µ)] = Eτ [ṽ (Eµ [ω])] ≤ Ṽ (Eτ [Eµ [ω]]) = Ṽ
(
Eµ0

[ω]
)

.

The proof of the converse is more involved. If Ṽ
(
Eµ0

[ω]
)
> ṽ

(
Eµ0

[ω]
)
, we know there is a τ s.t.

Eτ [Eµ [ω]] = Eµ0
[ω] and Eτ [v̂ (µ)] > v̂ (µ0). If this τ were Bayes-plausible, we could construct an

honest mechanism that induces it and we would be done. The trouble is that Eτ [Eµ [ω]] = Eµ0
[ω]

does not guarantee that τ is Bayes-plausible. To construct a persuasion mechanism with a strictly

positive gain, we show that it is always possible to find a belief µ′ such that Eµ′ [ω] = Eµ0
[ω] and

a Bayes-plausible τ ′ that is a mixture of τ and µ′. Since Eτ [v̂ (µ)] > v̂ (µ0) and v̂ (µ′) = v̂ (µ0), we

know that Eτ ′ [v̂ (µ)] > v̂ (µ0).9

5 Optimal mechanisms

Corollary 2 shows that the value of an optimal mechanism is V (µ0). When the problem is simple

enough that it is possible to graph v̂ and V , we can read V (µ0) and the gain V (µ0) − v̂ (µ0) off

the graph directly. Figure 3 illustrates this for the arbitrary v̂ shown earlier in Figure 1. Similarly,

in Figure 2, we can easily see that the value of the optimal mechanism in our motivating example

must be V (µ0) = .6, and the gain is V (µ0)− v̂ (µ0) = .6− 0 = .6.

The graph of v̂ and V also identifies the beliefs induced by the optimal mechanism—these are

the points on v̂ whose convex combination yields value V (µ0). In Figure 3, we see that the optimal

mechanism induces beliefs µl and µh. It is clear from this figure that the optimal mechanism is

unique, since there are no beliefs other than µl and µh that could be combined to produce value

V (µ0). Similarly, we can easily see in Figure 2 that the optimal mechanism must induce beliefs

µ = 0 and µ = .5.

From here, it is straightforward to construct the optimal mechanism. The condition that∫
µdτ (µ) = µ0 allows us to compute the distribution τ . For the motivating example in Fig-
9As the detailed proof in Appendix A shows, we can also establish a result somewhat stronger than Proposition

6. Suppose there exists a linear T : ∆ (Ω)→ Rk and a ṽ : Rk → R s.t. v̂ (µ) = ṽ (Tµ). Then, Sender benefits from
persuasion if and only if ṽ is below its concave closure at Tµ0. We focus on the case where Tµ = Eµ [ω] only so we
can simplify the exposition of the result.
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ure 2, we must have 0τ (0) + .5τ (.5) = .3, so τ (0) = .4 and τ (.5) = .6. Following the proof of

Proposition 1, we then set:

π (s|ω) =
µs (ω) τ (µs)

µ0 (ω)

c (m|s) =
{

0 if s = m

∞ if s 6= m
.

For the motivating example, this yields the π in Equation 1.

These steps rely on being able to visualize the graphs of v̂ and V , which is only possible when

the number of states is small. More generally, because v̂ is upper semicontinuous, we know that any

element of the graph of V can be expressed as a convex combination of elements of the graph of v̂.10

In particular, there exists a Bayes-plausible distribution of posteriors τ such that Eτ v̂ (µ) = V (µ0).

From τ and the prior µ0, we can construct π (s|ω) and c (m|s) from the expressions above. Then,

(π, c) is an optimal mechanism.

Thus:

Proposition 7 An optimal mechanism exists.

We first characterize the optimal mechanism in terms of the convexity or concavity of v̂. Say

that no disclosure is optimal if µ∗ (·|m) = µ0 for allm sent in equilibrium of an optimal mechanism.11

If, at the other extreme, µ∗ (·|m) is degenerate for allm sent in equilibrium of an optimal mechanism,

say that full disclosure is optimal.12 Finally, if µ∗ (·|m) is at the boundary of ∆ (Ω) for all m sent

in equilibrium of an optimal mechanism, we say that strong disclosure is optimal.

Proposition 8 If v̂ is (strictly) concave, no disclosure is (uniquely) optimal. If v̂ is (strictly)

convex, full disclosure is (uniquely) optimal. If v̂ is convex and not concave, strong disclosure is

uniquely optimal.

The first two parts of Proposition 8 follow directly from definition of convexity and concavity.

To see why the third part holds, first note that for any µ induced by an optimal mechanism, it
10That v̂ is upper semicontinuous is a consequence of our focus on Sender-preferred equilibria.
11Note that in contrast to Sender, who can be hurt by revelation of information, Receiver is always made weakly

better off by any mechanism.
12We say µ is degenerate if there is an ω s.t. µ (ω) = 1.
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must be the case that V (µ) = v̂ (µ). This observation will also be quite useful for several other

Propositions. Now, if v̂ is not concave, there is some belief µl s.t. V (µl) > v̂ (µl). If an optimal

mechanism induces an interior belief, this belief can be expressed as a convex combination of µl

and some other belief. But then, V (µ) = v̂ (µ) and V (µl) > v̂ (µl) coupled with concavity of V

imply that v̂ cannot be convex.

Next, we show that in an optimal mechanism, the number of actions Sender needs to induce in

equilibrium is limited by the number of states.13

Proposition 9 There exists an optimal straightforward mechanism in which the number of actions

Receiver takes with positive probability in equilibrium is at most |Ω| .

Note, first, that this proposition is clearly true for our motivating example, where there are two

states and the optimal mechanism induces exactly two actions. It is also true for the example of

Figure 3, where there are also two states and the optimal signal induces two beliefs µl and µh; since

we have assumed no belief induces more than one action in equilibrium, the optimal mechanism

induces no more than two actions.

Formally, the proof of Proposition 9 hinges on showing that any point on the graph of V can

be written as a convex combination of at most |Ω| points on the graph of v̂. This is closely related

to Caratheodory’s theorem, which shows that if a point p is in the convex hull of a set of points P

in RN , it is possible to write p as a convex combination of N + 1 or fewer of the points in P . This

would be sufficient to prove a version of Proposition 9 where the bound is |Ω|+ 1 rather than |Ω|.

To prove that only |Ω| points are required, we rely on a related result from convex analysis.14

The intuition for Proposition 9 is best seen graphically. Referring back to Figure 3, it is easy

to see that when there are two states, V will always be made up of points on v̂ and line segments

whose endpoints are on v̂. This means we can write any point on the graph of V as a convex

combination of at most two points of the graph of v̂. More generally, V will always be made up of

points on v̂ and the (|Ω| − 1)-dimensional faces whose vertices are on v̂. Any point on such a face

can be written as a convex combination of at most |Ω| points of v̂.
13In fact, as the proof of the proposition shows, we establish a somewhat stronger result: there exists an optimal

straightforward mechanism that induces a τ whose support has cardinality no greater than that of Ω.
14Caratheodory’s Theorem guarantees that given any mechanism with value v∗ (optimal or otherwise), there is a

mechanism that induces no more than |Ω| + 1 actions which also yields v∗. Fenchel and Bunt’s strengthening of
Caratheodory’s theorem implies that given an optimal mechanism, we need no more than |Ω| actions to be induced.
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The bound provided by Proposition 9 is tight - one can easily construct examples where the

optimal mechanism cannot be achieved with a signal that has fewer than |Ω| possible realizations.

For instance, whenever full disclosure is uniquely optimal, no mechanism with |S| < |Ω| can be

optimal. It is also worthwhile to note that this is a property specifically of optimal mechanisms.

One can construct an example in which there exists a mechanism with value v∗ but there is no

mechanism with |Ω| or fewer actions induced in equilibrium that also gives value v∗. Proposition

9, however, implies that such a v∗ must be strictly less than the value of an optimal mechanism.

We now turn to generalizing three features of the optimal mechanism in our motivating example:

(i) whenever the judge chooses the prosecutor’s least-preferred action (acquit), the judge is certain

of the state; (ii) whenever the judge chooses an action that is not the prosecutor’s least-preferred

(convict), she is indifferent between convicting and acquitting; (iii) the prosecutor always induces

the worst belief consistent with a given action by the judge.

To generalize (i), we show that if there exists an action a which is Sender’s least-preferred

regardless of the state, then at any µ induced by an optimal mechanism that leads Receiver to

choose a, Receiver is certain that a is her optimal action.

Proposition 10 Suppose that v (a, ω) < v (a, ω) for all ω and all a 6= a. Suppose that µ is

induced by an optimal mechanism and â (µ) = a. Then, for any ω s.t. {a} 6= maxu (a, ω), we have

µ (ω) = 0.

Intuitively, suppose that in a straightforward mechanism there is a belief which induces a but

puts positive probability on a state ω where a is not optimal. For this to be true, Sender must

report message a with positive probability in state ω. Sender’s payoff would be strictly higher in

a mechanism that simply revealed that the true state is ω in all such cases, because this would

induce Receiver to choose an action Sender likes strictly better than a and would leave Receiver’s

actions given all other messages unchanged.

To generalize (ii), we show that at any interior µ induced by an optimal mechanism, Receiver

must either be exactly indifferent between â (µ) and another action, or prefer â (µ) by an arbitrarily

small amount. That is, her preference for â (µ) cannot be discrete.

To show this result, it is necessary to rule out a pathological case where there can be a default
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action such that there is no information Sender would share, yet there is some other action which

yields exactly the same utility to Sender as the default action.

Assumption 1 There exits no action a s.t. (i) ∀µ, v̂ (µ) ≤
∑
ω
v (a, ω)µ (ω) and (ii) ∃µ s.t.

a 6= â (µ) and v̂ (µ) =
∑
ω
v (a, ω)µ (ω) .

We conjecture the set of Sender’s and Receiver’s preferences that lead to this case has Lebesgue

measure zero. With Assumption 1 we have::

Proposition 11 Suppose Assumption 1 holds. If Sender benefits from persuasion, Receiver’s

preference is not discrete at any interior µ induced by an optimal mechanism.

For an intuition for this result, note that if Receiver’s preference at µ were discrete, then if µ

were the prior Sender could benefit from persuasion unless there was no information Sender would

share (by Proposition 4). So, since we know V (µ) = v̂ (µ), it must be the case that if µ were

the prior, there would be no information Sender would share. That would mean that â (µ) is an

extremely desirable action for Sender, so he would want to maximize the chance of inducing it.

But, if µ were discrete, there would be another belief, close to µ, which would yield the same action

and which Sender could induce more often than µ. Hence the Proposition above must hold.

The fact that Receiver’s preference at µ is not discrete means that, in at least one direction,

Receiver’s action changes at µ. Note that Sender must weakly dislike at least one such change;

otherwise he would be better off providing more information. Moreover, when the action space is

finite, Proposition 11 implies that at any interior belief induced by an optimal mechanism, Receiver

is indifferent between two actions. Hence, in that case, the optimal mechanism necessarily brings

Receiver as close as possible to taking some action less desirable than the equilibrium one.

To generalize (iii), say that v̂ is monotonic if for any µ, µ′, v̂ (αµ+ (1− α)µ′) is monotonic in

α. When v̂ is monotonic in µ, it is meaningful to think about beliefs that are better or worse from

Sender’s perspective. The simplest definition would be that µ is worse than µ′ if v̂ (µ) ≤ v̂ (µ′).

Note, however, that because v (a, ω) depends on ω directly, whether µ is worse in this sense depends

both on how Receiver’s action changes at µ and how µ affects Sender’s expected utility directly.

It turns out that for our result we need a definition of worse that isolates the way beliefs affect

Receiver’s actions.
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When v̂ is monotonic, there is a rational relation on A defined by a % a′ if v̂ (µ) ≥ v̂ (µ′)

whenever a = â (µ) and a′ = â (µ′). This relation on A implies a partial order on ∆ (Ω): say that

µ B µ′ if

Eµu(a, ω)− Eµu
(
a′, ω

)
> Eµ′u (a, ω)− Eµ′u

(
a′, ω

)
for any a % a′. In other words, a belief is higher in this partial order if it makes better actions

(from Sender’s perspective) more desirable for Receiver. The order is partial since a belief might

make both a better and a worse action more desirable for Receiver. We say that µ is a worst belief

inducing â (µ) if there is no µ′ C µ s.t. â (µ) = â (µ′). We then have the following:

Proposition 12 Suppose Assumption 1 holds. If v̂ is monotonic, A is finite, and Sender benefits

from persuasion, then for any interior belief µ induced by an optimal mechanism either: (i) µ is a

worst belief inducing â (µ), or (ii) both Sender and Receiver are indifferent between two actions at

µ.

We have already discussed the basic intuition behind this Proposition: the expected posterior

must equal the prior; hence more undesirable beliefs that induce a given action increase the prob-

ability of beliefs that induce a more desirable action. Proposition 12 is the reason why, in our

initial example, when the judge convicts she is barely willing to do so. Proposition 12 shows that

the force behind this result applies more broadly.

Case (ii) is necessary to deal with the possibility of a belief which could be interpreted both as

a worst or a best belief inducing â (µ): if both Sender and Receiver are indifferent between, say a

and a′ at µ, the choice of â (µ) from {a, a′} is entirely arbitrary. However, for generic preferences,

there will be no belief where both Sender and Receiver are indifferent between two actions at a

same belief.

Finally, we consider the case where payoffs depend only on the expected state. Recall that

we established earlier that in this case there is a function ṽ s.t. ṽ (Eµ [ω]) = v̂ (µ), and that

Sender benefits from persuasion if and only if Ṽ
(
Eµ0

[ω]
)
> ṽ

(
Eµ0

[ω]
)
. We might conjecture

that the value of an optimal mechanism is Ṽ
(
Eµ0

[ω]
)
. This conjecture turns out to be false.

Recall from the discussion of Proposition 6 that even though we know there is always a τ s.t.

Eτ [Eµ [ω]] = Eµ0
[ω] and Eτ [v̂ (µ)] = Ṽ

(
Eµ0

[ω]
)
, such τ need not be Bayes-plausible. In order
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to show that Sender could benefit from persuasion, we had to mix the beliefs in the support of τ

with another belief µ′ such that Eµ′ [ω] = Eµ0
[ω]. This reduces the value of the mechanism strictly

below Ṽ
(
Eµ0

[ω]
)
.

For a concrete example, suppose that A = [0, 1], Ω = {−1, 0, 1}, u (a, ω) = − (a− ω)2, and

v (a, ω) = a2. In this case, v̂ (µ) = ṽ
(
Eµ0

[ω]
)

= (Eµ [ω])2. Hence, Ṽ is constant at 1 and in

particular Ṽ
(
Eµ0

[ω]
)

= 1. Yet, whenever the prior puts any weight on ω = 0, the value of any

mechanism is strictly less than 1. Specifically, suppose that the prior µ0 is (ε/2, 1− ε, ε/2). In

that case, when ε is close to 0, the value of an optimal mechanism is close to 0. Hence, when

payoffs depend only on the expected state, we can use ṽ to determine whether Sender benefits from

persuasion, but not to determine an optimal mechanism or its value. To do that, we need to

analyze v̂ directly or derive the properties of an optimal mechanism from Propositions 11, 12, and

10.

6 Examples

In this section we develop several examples that are meant to demonstrate the breadth of settings

captured by our model and illustrate the ways in which the results developed in the previous two

sections can be applied.

6.1 Tenure-track midterm review

We begin with an example that illustrates the applicability of our results to problems from contract

theory. We examine what type of information a university should provide to an assistant professor

whose willingness to exert effort depends on her likelihood of getting tenure. This setting is one

where structuring information provision may be a particularly useful way to induce effort because

other instruments are less potent than usually. Paying the professor based on the quality of

her research may be infeasible as this quality is likely to be non-verifiable, while the institutional

structure of universities makes it difficult to motivate untenured faculty by suitably allocating

property rights.

An assistant professor chooses an effort level a ∈ [0, 1] to exert before coming up for tenure.

There are two types of individuals denoted by ω ∈ {1, 2}. The university and the professor share

25



a prior µ0 over the professor’s type. The quality of research produced by an individual of type ω

who exerts effort a is aω. At the end of the tenure clock, the individual is tenured if the quality

of her research is above some cutoff level, say 3/2.15 If she is tenured, she receives utility aω− a2,

receiving the recognition for the quality of her research (aω), but suffering a disutility a2 from her

effort. If she is not tenured, she leaves academia and receives no recognition for her research but

still suffers the sunk cost of effort, i.e. her utility is −a2. The university wants to maximize the

expected quality of the research produced by the professor. It conducts a midterm review which

results in a signal π : {1, 2} → ∆ (S). What type of a midterm review process maximizes the

university’s objective?

We begin by computing v̂, denoting Pr (ω = 2) by µ. Simple algebra reveals that the professor’s

optimal effort is:

â (µ) =


0 if µ < 3/8

3/4 if 3/8 ≤ µ < 3/4

µ if µ ≥ 3/4.

Hence, the university’s expected utility given the professor’s belief is:

v̂ (µ) =


0 if µ < 3/8

3/4 (1 + µ) if 3/8 ≤ µ < 3/4

µ+ µ2 if µ ≥ 3/4.

What do our Propositions tell us about this example? Propositions 2 and 8 do not apply

since v̂ is neither convex nor concave. Also, since there is information the university would share,

Proposition 3 does not rule out the possibility that the university might benefit from persuasion.

In fact, Proposition 4 directly tells us that, at least if µ0 < 3/8, the university will benefit from

persuasion. Proposition 9 tells us that the optimal midterm review need not induce more than

two distinct effort levels. Finally, Proposition 10 implies that whenever the professor exerts no

effort, she is completely certain that she is a low type. The reason for this feature of the optimal

review is that any posterior weight on the high type is “wasted” when the posterior is below 3/8
15Note that such a rule is feasible even if quality of research is non-verifiable if the university wants to give tenure

when the quality exceeds this threshold.
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Figure 4: optimal midterm review

since that weight is still insufficient to lift effort below zero and yet it reduces the probability of a

more favorable, effort-inducing, opinion the professor can have about herself.

Because of the simplicity of the state space in this example, we can also easily depict v̂ and its

concave closure (Figure 4). The figure makes it clear that the university generically benefits from

persuasion.16 Moreover, it shows that the optimal structure of the performance review depends on

the prior. When the initial probability that the professor is a high type is below 3/8, the optimal

review induces posteriors µ = 0 and µ = 3/8. When the prior is above 3/8, then the optimal

review induces µ = 3/8 and µ = 1. Note that regardless of what the prior is, it is never optimal to

fully reveal the type. When the prior is below 3/8, revealing that the type is high with certainty is

very costly because this realization happens too rarely relative to the effort it induces. When the

prior is above 3/8, revealing that the type is low with certainty is very costly because effort drops

discontinuously when prospect of tenure becomes too dim (i.e., when µ falls below 3/8).

This simple model illustrates the way in which the tools developed in this paper can be used

to study optimal feedback when actions are not fully contractible. Moreover, as we mentioned
16No disclosure is optimal only when the prior is exactly 3/8.

27



earlier, by redefining v we can use the same approach to find mechanisms that maximize social

welfare rather than the university’s preferences.

6.2 Preference disagreement

Here we consider the question of how certain types of preference disagreement between Sender and

Receiver affect the amount of information transmitted under the optimal persuasion mechanism.

Let u = − (a− ω)2, v = − (a− (b1 + b2ω))2, and A = Ω = [0, 1].17 Parameters b1 and b2 capture

two types of preference disagreement: values of b1 away from 0 indicate that Sender and Receiver

disagree about the best average level of a while values of b2 away from 1 indicates that they disagree

about how the action should vary with the state.

In order to determine how information transmission depends on b1 and b2 it will suffice to

compute v̂. Since u = − (a− ω)2 we know that

â (µ) = Eµ [ω] .

Given this â, simple algebra reveals that

v̂ (µ) = −b21 + 2b1 (1− b2)Eµ [ω]− b22Eµ
[
ω2
]

+ (2b2 − 1) (Eµ [ω])2 .

Hence, by Corollary 1, Sender solves

max
τ

Eτ

[
−b21 + 2b1 (1− b2)Eµ [ω]− b22Eµ

[
ω2
]

+ (2b2 − 1) (Eµ [ω])2
]

s.t.
∫
µdτ (µ) = µ0.

Since the −b21 + 2b1 (1− b2)Eµ [ω]− b22Eµ
[
ω2
]

term is constant across all Bayes-plausible τ ’s, this

maximization problem simplifies to

max
τ

Eτ

[
(2b2 − 1) (Eµ [ω])2

]
s.t.

∫
µdτ (µ) = µ0.

17Recall that Appendix B shows our approach extends to compact metric state spaces.
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Figure 5: shape of v̂ depends on b2

Hence, b1 does not affect Sender’s problem. Moreover, v̂ is linear when b2 = 1
2 , strictly convex

when b2 >
1
2 , and strictly concave when b2 <

1
2 . Therefore, by Proposition 8, no disclosure is

uniquely optimal when b2 <
1
2 and full disclosure is uniquely optimal when b2 >

1
2 . When b2 = 1

2

all mechanisms yield the same value.

If we consider a simpler state space, we can develop a geometric intuition for this example.

Keeping utility functions and the action space the same, suppose that Ω =
{

0, 1
2 , 1
}

.18 Figure 5

depicts v̂ for a few values of b2. Recall that, for the reasons we just discussed, the shape of v̂ does

not depend on b1; this parameter only affects the vertical location v̂. Figure 5 clearly demonstrates

that the b2 changes the concavity of v̂. While these graphs provide some geometric intuition, it

is worthwhile to note that the algebra above provides an illustration of the practical usefulness of

formulating Sender’s problem in terms of v̂ even when the state space is too rich for this function

to be depicted.

Now, what do the results above tell us about the impact of preference disagreement on infor-

mation transmitted in an optimal mechanism? First, note that b1 has no impact on the relative

value of any two mechanisms. This stands in sharp contrast to the results from cheap talk games.

Crawford and Sobel’s (1982) main example considers preferences of the form u = − (a− ω)2,

v = − (a− ω − b1)2, which are equivalent to our example when b2 = 1. They show that as soon

as |b1| > 1
4 , no communication is possible in any equilibrium of the cheap talk game. By compari-

son, the optimal persuasion mechanism induces full disclosure for any value of b1. The reason for

this difference is that Sender’s commitment frees him from the temptation to try to increase the

average level of Receiver’s action, the temptation which is so costly both for him and for Receiver
18Note that the expression for v̂ above still applies with this simplified state space.
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in the equilibrium of the cheap talk game. Under any mechanism, Receiver’s expected action is a

given. Moreover, conditional on Receiver’s expected action, Sender and Receiver completely agree

on which actions are more desirable in which state. Hence, providing Receiver with anything short

of a fully informative signal only induces an additional cost to Sender.

The other parameter, b2, measures disagreement over how the action should vary with the

state. When b2 = 1, Sender and Receiver completely agree on how action should vary with

the state. Hence, full disclosure is uniquely optimal. When b2 > 1, Receiver’s actions are

insufficiently sensitive to the state from Sender’s perspective. Because Receiver under -reacts to

information, however, Sender still strictly prefers to fully disclose everything, even if preference

disagreement is very large, because anything short of that would only exacerbate the problem of

under-reaction. When 0 < b2 < 1, Receiver’s actions are overly sensitive to the state, though

the action always moves in the right direction. When the level of disagreement is sufficiently small(
b2 >

1
2

)
, Sender still prefers to reveal all information, but when Receiver’s over-reaction becomes

too severe
(
b2 <

1
2

)
, Sender cuts all information flow to Receiver. Finally, when b2 < 0, Receiver

reacts to any information in a way opposite to the one Sender wishes, so he reduces her information

as much as possible.

6.3 Informative advertisements with unit demand

Now consider an example where a firm faces a continuum of consumers, each of whom decides

whether to buy one unit of the firm’s product or not. The firm’s product has quality ω ∈ [0, 1] and

the consumers’ utility from purchasing the product is ω− p, where p is an exogenous price, also in

the unit interval. The consumers and the firm share the prior µ0 on the quality of the product.

The assumption of symmetric information is most palatable if we conceptualize quality as driven by

the match between consumers’ uncertain tastes and the products’ uncertain characteristics. Since

consumers are risk-neutral, each will buy the product if and only if Eµ [ω] ≥ p where µ is their

posterior belief about the quality of the product. To make things interesting, we suppose that

consumers’s default action is not to buy, i.e., Eµ0
[ω] < p.

The firm chooses an advertising campaign which provides a signal about quality π : [0, 1] →

∆ (S). All consumers see the advertisement. We assume that the firm is risk-neutral and only
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cares about the expected revenue, so it does not matter whether each consumer gets an independent

realization of the signal or all consumers get the same realization. Note that because the consumers

are ex ante homogeneous, our results apply directly to this example even though we have multiple

Receivers.19

We again begin by computing v̂. Denoting the decision to buy with 1 and the alternative with

0, we have

â (µ) =

 0 if Eµ [ω] < p

1 Eµ [ω] ≥ p

v̂ (µ) =

 0 if Eµ [ω] < p

1 Eµ [ω] ≥ p
.

Moreover, since payoffs depend only on the expected state, we can define ṽ (Eµ [ω]) = v̂ (µ).

What do our Propositions tell us about this example? Propositions 2 and 8 do not apply

since v̂ is neither convex nor concave. Because Eµ0
[ω] < p, there is information firm would share.

Hence, Proposition 3 does not exclude the possibility that the firm might benefit from persuasion.

In fact, since consumers’ preference for not buying is discrete at the prior, Proposition 4 implies

that the firm does benefit from persuasion. Moreover, we know that any consumer who buys the

product will have the posterior µ s.t. Eµ [ω] = p (Proposition 12), while any consumer who does

not buy will have a posterior that puts zero weight on the possibility that ω ≥ p (Proposition 10).

This tells us that the optimal advertising campaign induces two types of reactions in consumers:

some consumers become completely convinced that the product is not worth its price, while others

buy the product, albeit reluctantly. The basic intuition for this stems from the fact that worsening

the opinion of the product by those who are already not buying it is costless to the firm, and yet

it increases the probability of more favorable reactions by others (because of Bayes-plausibility).

Hence, those who do not buy the product are driven to complete certainty that it is not worth

buying. On the other hand, improving the opinion of the product by those who are already willing

to buy it does not generate further sales, and yet it decreases the likelihood of such favorable

impressions. Hence, the optimal advertising campaign makes all buyers marginal.
19We discuss the issue of heterogeneous multiple Receivers in Section 7.
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Figure 6: advertising to increase sales

In this example, v̂ is difficult to visualize but since payoffs depend only on the expected state,

we can depict ṽ and Ṽ (Figure 6). Since Ṽ
(
Eµ0

[ω]
)
> ṽ

(
Eµ0

[ω]
)
, Proposition 6 tells us there

exists an advertising campaign that increases firm’s revenue. Also, as we discussed at the end of

Section 5, while cannot determine the optimal campaign by examining ṽ, we know that Ṽ
(
Eµ0

[ω]
)

is an upper bound on the market share that can be achieved by any advertising campaign.

7 Extensions and Limitations

7.1 Dynamic Mechanisms

We have restricted our attention to a class of persuasion mechanisms where there is a single stage

of communication. Sender sees only one draw of private information, and sends only one message

to Receiver. In reality, however, persuasion often happens over multiple periods. Firms may send

multiple ads, a prosecutor may go through successive rounds of gathering and reporting information,

and so forth.

Our framework can easily accommodate one class of dynamic mechanisms. Consider an ex-

tended definition of a persuasion mechanism that has T periods with possibly different signals and
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messaging technologies (πt, ct) at each stage. Sender privately observes realization s1 ∈ S1 from

π1 (·|ω) and chooses a message m1 ∈ M1 which Receiver observes. Sender then privately observes

realization s2 ∈ S2, sends message m2 ∈ M2, observes realization s3 ∈ S3 and so on up to period

T . After Receiver observes the final message mT , she chooses her action a ∈ A. We define an

equilibrium of such a mechanism exactly as before.

Any equilibrium of such a dynamic mechanism must still induce a distribution of posteriors τ

at the point that Receiver chooses her action, and the expected value of v will still be equal across

all mechanisms that induce the same distribution τ . Therefore, the argument that was used to

prove Proposition 1 implies that if there exists some dynamic mechanism with value v∗ there also

exists a straightforward static mechanism with value v∗. This means that all our core results on

optimal mechanisms and the situations where Sender benefits from persuasion apply directly to

this dynamic case as well.

A different class of dynamic mechanisms is one where Receiver chooses an action in each period.

Suppose, for example, that we modify the definition of a dynamic mechanism above and assume

that after observing m1 Receiver chooses action a1 ∈ A; after observing m2 Receiver chooses

action a2 ∈ A; and so on. Sender’s and Receiver’s payoffs are v (a1, ..., aT , ω) and u (a1, ..., aT , ω),

respectively.

This case is much more complicated. Sender’s expected payoff now depends not only on the

distribution of Receiver’s beliefs at time T , but also on the distribution of her beliefs at each

stage along the way. In fact, it depends on the joint distribution of beliefs in each period, τ ∈

∆
(
ΩT
)
. We conjecture that we can still express Sender’s expected utility as Eτ v̂ (µ1, ..., µT ), and

moreover, that it is still possible to restrict attention to something analogous to honest mechanisms,

provided that Sender’s private signals can be conditioned on Receiver’s past actions. However, the

construction of v̂ for any given problem is now more complex, and the Bayes-plausibility constraint

for sequences of beliefs is more complicated than for a single distribution of beliefs. We have not

attempted to extend either our geometric intuitions or our analytical results to this case.
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7.2 Receiver’s Private Information

Extending our analysis to situations where Receiver has private information is straightforward.

Given a mechanism (π, c), suppose that the timing of the game is as follows. First, nature selects

ω from Ω according to µ0. Neither Sender nor Receiver observe nature’s move. Then, Sender

privately observes a realization s ∈ S from π (·|ω) and chooses a message m ∈M . Then, Receiver

privately observes a realization r ∈ R from some signal χ (·|ω). Finally, Receiver observes m and

chooses an action a ∈ A. Note that if Receiver instead observes her private information before

Sender observes his signal or before he sends his message, the game can be re-formulated with the

timing above without loss of generality because Sender’s action is independent of Receiver’s private

information (since he does not observe it) and Receiver always chooses her action after observing

m. We still assume that Sender and Receiver share a prior µ0 at the outset of the game.

The only way in which Receiver’s private information changes our analysis is that we can no

longer construct a deterministic function â (µ) which gives Receiver’s action at any belief. Rather,

for any µ, Receiver’s optimal action â (µ, r) depends on the realization of her private signal and

so is stochastic from Sender’s perspective. When his posterior is µ , Sender assigns probability

χ (r|ω)µ (ω) to the event that Receiver’s signal is r and the state is ω. Hence, Sender’s expected

utility when he induces belief µ is:

v̂ (µ) =
∑
ω∈Ω

∑
r∈R

v (â (µ, r) , ω)χ (r|ω)µ (ω) .

Once we reformulate v̂ this way, our approach applies directly. In particular, our key simplifying

results—Proposition 1, Corollary 1, Corollary 2—still hold. Aside from the fact that constructing

v̂ is slightly more complicated, the analysis of the problem in terms of the properties of v̂ and its

concave closure V proceeds exactly as before. That said, some of our characterization results, such

as that Receiver’s preference is never discrete at any interior µ induced by an optimal mechanism,

will no longer hold.

A different type of situation that involves private information is when Receiver’s preferences

depend on some parameter θ ∈ Θ which is unrelated to ω. This distinction matters because we still

assume that Sender’s private signal is informative only about ω. Hence, no mechanism provides
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any additional information to Sender about θ. For example, in our motivating example, the judge

might have unobservable, idiosyncratic aversion toward convicting an innocent defendant, which

would affect the posterior cutoff at which she is willing to convict.20 The prosecutor’s investigation,

however, would not provide any information about the judge’s preferences.

Despite this distinction, we can handle this situation in the same way as the one before. Again,

the only impact of private information is that Receiver’s optimal action â (µ, θ) is stochastic from

Sender’s perspective. Letting φ denote the distribution of θ, Sender’s expected utility when he

induces belief µ is:

v̂ (µ) =
∑
ω∈Ω

∫
Θ
v (â (µ, θ) , ω) dφ (θ)µ (ω) .

Here again, once we thus reformulate v̂, we can analyze the problem in terms of v̂ and V in

exactly the same way as before.

7.3 Multiple Receivers

In many settings of interest—politicians persuading voters, firms advertising to consumers, auctions—

our assumption that there is a single Receiver is unrealistic. Suppose there are n receivers. For ease

of exposition we maintain our common prior assumption, which in this setting means that Sender

and all receivers share a prior µ0 over Ω.21 Sender’s utility is now a function of each receiver’s

action: v (a1, ..., an, ω). There are two classes of multiple-receiver models where our results can be

extended quite easily.

The first class is one where Sender sends separate (possibly correlated) messages to each receiver,

Sender’s utility is separable across receivers’ actions,22 and each receiver cares only about her own

action. In this case, we can simply apply our approach separately to Sender’s problem vis-à-vis

each receiver. Since Sender’s utility is separable, each receiver sees only her own message, and

no receiver cares about what other receivers are doing, we basically have n copies of our standard
20Another example of this type of private information is the value of Receiver’s outside option in Rayo and Segal

(2008).
21There are no additional complications from having both multiple receivers and private information on their part.

The approach from the previous Subsection for dealing with private information applies equally well to the case with
multiple receivers.

22When v is not separable across the ai’s the problem is similar to that of dynamic mechanisms where Receiver
chooses an action in each period.
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problem with a single Receiver. In the special case where all receivers have the same utility function,

the optimal mechanism will of course be the same for each receiver, so the analysis collapses to a

single problem identical to the one we have analyzed before, as in the example of section 6.3.

The second class of models is where Sender can only persuade by revealing public information.

That is, any message from Sender is observed by all receivers. In this case, our approach applies

no matter whether receivers then choose their individual actions simultaneously, in sequence, or

according to some other game. Moreover, Sender’s utility need not be separable across receivers’

actions, receivers might care about each other’s actions, and they might have heterogeneous util-

ity functions. An example of a setting like this is Milgrom and Weber’s (1982) model of public

information revelation in auctions with a common-value component.23

For simplicity, consider the case where the equilibrium of the post-message game is in pure

strategies.24 If the post-message game does not have a unique equilibrium, we focus on an equi-

librium which yields the highest payoff to Sender, analogously to our earlier equilibrium selection

rule. Let âi (µ) represent the ith receiver’s equilibrium action when she has belief µ. We can then

define v̂ as a function of receivers’ shared posterior µ:

v̂ (µ) ≡
∑
ω∈Ω

v (â1 (µ) , ..., ân (µ) , ω)µ (ω) .

With this reformulation of v̂, our basic approach again applies. Proposition 1, Corollary 1, and

Corollary 2 all still hold. Constructing v̂ is potentially much more complicated here since it involves

solving for the equilibria of the post-message game, but the analysis of the problem in terms of the

properties of v̂ and V is exactly the same as before. Of course, characterization results which are

stated in terms of Receiver’s preferences, such as Proposition 4, would have to be reinterpreted.

There is an important third class of multiple-receiver models where our results do not extend

easily: those where the receivers care about each other’s actions and Sender can send private

signals to individual receivers. The crucial problem with this case is that for a given set of beliefs

that receivers hold after observing their messages, the receivers’ actions may vary as a function
23Milgrom and Weber (1982) allow for bidders to have private information. As we mentioned earlier, the previous

Subsection provides a way of incorporating that possibility.
24If the equilibrium is in mixed strategies, the only additional complication is that actions are stochastic for a given

belief, but we have already shown that this poses no problems for our approach.
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of the mechanism that produced those beliefs. In a private value auction for example, a bidder

with a given valuation will behave differently if she believes that other bidders are receiving highly

informative signals than if she believes they are receiving uninformative signals. This means that

the key simplifying step in our analysis—reducing the problem of finding an optimal mechanism to

one of maximizing over distributions of posterior beliefs—does not apply.

7.4 Multiple Senders

Our model can also be used to think about settings with multiple senders. Suppose there is a

single Receiver who receives messages from multiple senders. Receiver observes all the messages

and then takes a single action. All senders and Receiver share a common prior and each sender’s

utility depends on Receiver’s action and the state of the world.

If we simply wish to know whether there is a an informational environment that increases some

weighted function of senders’ utilities, our previous results apply directly since they do not depend

on any particular interpretation of the objective function v (a, ω). Hence, we could simply let v

be any weighted function of senders’ utilities. A more interesting question is what happens if

multiple senders play a non-cooperative game. Specifically, consider a game where each sender i

simultaneously25 chooses a πi : Ω→ ∆ (Si), Receiver then observes all si’s and takes her action.26

Taking other senders’ choices as given, each sender’s problem is identical to one in Subsection 7.2

where he is the only Sender and Receiver has some private information about ω. The private

information here is simply the set of signal realizations from all the other senders. Hence, our tools

for finding an optimal mechanism provide a way to compute the best-response functions. Unless

one can solve for an optimal mechanism analytically, however, solving for the equilibria of this game

might be challenging. Another issue is that we can no longer speak of Receiver taking a “Sender-

preferred” action from a∗ (µ). Consequently, an optimal mechanism, and hence a best-response

function, might not always exist. To guarantee the existence of an equilibrium of this game we

would need to assume there is a uniquely optimal action for Receiver at each belief.
25The analysis of games where senders move sequentially is very similar.
26For the same reason that we can restrict our attention to honest mechanisms in our main model, this game is

isomorphic to one where each sender chooses a (π, c) pair, observes a signal realization s from π, and then sends a
message m to Receiver.
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7.5 Limited set of signals

Throughout the paper we have assumed that the mechanism designer can choose any signal π

whatsoever. In many settings, this might be an unreasonable assumption. What can we say about

the case where only some subset of potential signals, say Π, is feasible? We can still formulate our

problem as a search over distributions of posteriors. The value of an optimal mechanism is

max
τ

Eτ v̂ (µ)

s.t.
∫
µdτ (µ) = µ0

and τ ∈ Γ

where Γ denotes distributions of posteriors induced by honest mechanisms with a signal in Π.

When this additional constraint binds, however, we will not necessarily be able to use our geometric

approach. Knowing that V (µ0) > v̂ (µ0) does not tell us whether there is a Bayes-plausible τ ∈ Γ

s.t. Eτ v̂ (µ) > v̂ (µ0).

There is one particular type of limitation on Π, however, which our approach handles easily.

Suppose that we can express the state space as Ω×Θ, denoting a particular state by (ω, θ). More-

over, suppose that the set of potential signals Π consists of all signals that provide no information

about θ. Then, the situation is closely analogous to one in Subsection 7.2 where the space of signals

is arbitrarily rich, but Receiver’s preferences depend on some parameter θ ∈ Θ which is unrelated

to ω. The only difference is that Receiver’s action no longer depends on θ, but Sender’s utility

v (a, (ω, θ)) now does. This poses no further complications. Sender’s utility when he induces a

belief µ on Ω is simply:

v̂ (µ) =
∑
ω∈Ω

∫
Θ
v (â (µ) , (ω, θ)) dφ (θ)µ (ω) ,

where φ denotes his prior on Θ. Again, with this reformulation of v̂, Proposition 1, Corollary 1,

and Corollary 2 all still hold.

Finally, the possibility that Γ might not always include all Bayes-plausible τ ’s has important

implications. Consider a modification of our initial example. Suppose there are two types of
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prosecutors: a high-ability prosecutor who can structure his investigation so as to generate any

signal π, and a low-ability prosecutor who has access to a limited set of signals. If this set does not

include the optimal signal, the high-ability prosecutor will convict a higher percentage of defendants

than the low-ability one even if the judge is fully aware of the difference in prosecutors’ abilities.

The rationality of the judge does not imply that she will somehow compensate for the prosecutor’s

type. More broadly, the benefit to Sender from expanding Γ might partly explain the observed

large expenditures on persuasive activities.

7.6 Limited Commitment

What can we say about settings where Sender is unable to commit to an honest mechanism?

The first thing to note is that our results provide an upper bound on gains from communication

in any persuasion mechanism. By Proposition 1, we know that the value to Sender from being

able to communicate with Receiver can only be weakly lower when he cannot commit to an honest

mechanism. This observation has important implications even in models without commitment.

Consider, for example, Spence’s (1973) signalling model. Since the worker’s wage in that model is

the expectation of his type, we know that v̂ is linear, so the worker (Sender) cannot benefit from

persuasion. Hence, even without solving for the equilibria of this signalling game, we know that

in any equilibrium the average worker would be weakly better off if a government policy outlawed

education.27

More broadly, in any game captured by our definition of a persuasion mechanism, Sender values

his ability to communicate with Receiver no more than V (µ0) − v̂ (µ0). However, this provides

only an upper bound to the value of communication in games without commitment. In some

settings, V (µ0)− v̂ (µ0) might be large and yet Sender might not benefit at all from an opportunity

to communicate with Receiver.

In the remainder of this section we analyze more directly what the gains from communication

are when Sender cannot commit to an honest messaging technology but retains his choice of what

information to gather. Specifically, we analyze the choice of an optimal signal when the message

technology c is constant. We call such mechanisms commitment-free. If there is a commitment-free
27In fact, in any equilibrium with positive signalling costs, he would be strictly better off under such policy.
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mechanism with a strictly positive gain, we will say that beneficial persuasion without commitment

is possible.

The analysis of commitment-free mechanisms is closely related to the questions in Green and

Stokey (2007). Assuming cheap talk messaging, they also consider the benefits that might arise

from reducing the informativeness of Sender’s signal.28 In contrast to their paper, which focuses on

local improvements in informativeness, we here derive bounds on the benefit from persuasion when

Sender has a choice over an arbitrary signal. The analysis here is also related to Ivanov (2008). He,

however, focuses on the question of when restricting Sender’s information benefits Receiver, while

we explore when Sender can be made better off by being less informed. Throughout the analysis

we assume that Receiver observes what information Sender has. In a different game, where Sender

chose his signal covertly, the only equilibrium would be for Sender to choose the fully informative

signal and the set of equilibria would be isomorphic to those of Crawford and Sobel (1982).

As in all cheap talk settings, incentive compatibility is the key obstacle to communication

in commitment-free mechanisms. Sender, however, can often choose to gather information which

mitigates the incentive compatibility problem: he can choose to learn information with the property

that ex post his utility is maximized by truthfully reporting what he learns. When the chosen

signal has this property, Receiver can accept Sender’s messages at face value.

Consider the case where Sender’s preferences are independent of the state. In this case, Sender

can credibly convey messages if and only if he is completely indifferent between the actions they

induce. For example, suppose Ω = {0, 1}, A = [0, 1], µ0 = 1
4 , u = − (a− ω)2, and v (a, ω) =(

a− 1
4

)2. Here, Sender’s optimal commitment-free mechanism is a signal π on {l, h} with

π (l|0) = 2
3 π (l|1) = 0

π (h|0) = 1
3 π (h|1) = 1.

This signal induces posteriors µl (1) = 0 and µh (1) = 1
2 , which yield exactly the same v̂. Hence,

Sender can truthfully reveal the signal realization. By contrast, if Sender were fully informed,
28Note that Crawford and Sobel (1982) implicitly assume that Sender receives a fully informative signal. They

assume that Sender observes the value of an arbitrary random variable, but since both Sender’s and Receiver’s utilities
are defined solely in terms of this random variable, the state space is effectively the set of realizations of the random
variable and Sender is thus perfectly informed of the state.
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Receiver would not believe his reports that µ (1) = 1 and thus Sender would not benefit from

persuasion.

This example is an instance of a more general result that the gain which Sender can obtain

when his utility is independent of the state is equal to the distance between v̂ (µ0) and the greatest

value of v̂ that is constant across beliefs whose convex hull includes the prior. Let

E = sup {v|∃M ⊂ ∆ (Ω) s.t. v̂ (µ) = v ∀µ ∈M and µ0 ∈ co (M)} − v̂ (µ0) .

Because v̂ is not necessarily continuous, the sup in the expression above may not be obtained, and

hence an optimal commitment-free mechanisms might not always exist. However, we can always

find a commitment-free mechanism whose value is arbitrarily close to E.

Proposition 13 Suppose v is independent of ω. The gain from any commitment-free mechanism

is weakly less than E. For any ε > 0, there exists a commitment-free mechanism whose gain

exceeds E − ε. Beneficial persuasion without commitment is possible if and only if E > 0.

Often, E will be equal to zero and beneficial persuasion without commitment will be possible

only if v depends on the state. When v varies with ω, Sender can mitigate the incentive compatibil-

ity constraint by choosing a signal that induces posteriors at which his preferences are aligned with

those of Receiver. Consider the following example. Let Ω = {ω1, ω2, ω3} and A = {a1, a2}. The

beliefs where an agent is indifferent between the two actions form a straight line in the probability

triangle. Suppose preferences are such that these lines are as in Figure 7. The line where Receiver

is indifferent between the actions is the darker, steeper one; she prefers a1 when her beliefs are in

the Southeast portion of the simplex. The line where Sender is indifferent is the one that is less

dark and less steep; he prefers a1 in the Northwest portion of the simplex.

For most beliefs, Sender and Receiver disagree on which action is preferable. The shaded areas

indicate the small regions of agreement. Let Z denote the union of these two areas. Because they

disagree on the appropriate action at the degenerate beliefs, no communication would be possible if

Sender were perfectly informed. If Receiver takes both a1 and a2 in equilibrium, Sender will always

send a message that induces his preferred action. But Receiver knows that, for any degenerate

belief that Sender has, she prefers the other action. Thus, an equilibrium where both actions are
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Figure 7: persuasion without committment

taken cannot exist.

If, however, Sender limits his information, both Receiver and Sender can benefit from commu-

nication. In particular whenever µ0 belongs to the convex hull of Z, but not to Z itself, beneficial

persuasion without commitment is possible. For instance, Figure 7 illustrates that if Sender selects

π which induces µ1 and µ2, he will have the incentive to truthfully reveal the signal realization.

Receiver will be aware of this and both will benefit from persuasion without commitment.

The gain that Sender can achieve from persuasion due to such alignment of preferences is

bounded by the extent to which his preferences vary with the state. Let

D = max
a∈A

(
max
ω

v (a, ω)−min
ω
v (a, ω)

)

denote a measure of the sensitivity of v to ω. When v̂ (µ) is monotonic,29 Sender can achieve incen-

tive compatibility only by selecting posteriors at which his preferences are aligned with Receiver’s,

and the gain from any commitment-free mechanism cannot exceed D.

Proposition 14 If v̂ is monotonic, the gain from any commitment-free mechanism is at most D.
29A condition weaker than monotonicity will also suffice. Say v̂ is without troughs if there do not exist µa, µb, µc

and γ ∈ (0, 1) s.t. µb = γµa + (1− γ)µc and min {v̂ (µa) , v̂ (µc)} > v̂ (µb). As the proof in Appendix A shows, the
subsequent Proposition and Corollary both hold if we assume v̂ is without troughs rather than monotonic.
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Since E is necessarily equal to zero when v̂ is monotonic, both Proposition 13 and Proposition

13 yield the following Corollary.

Corollary 3 If v̂ is monotonic and v is state-independent, beneficial persuasion without commit-

ment is not possible.

8 Conclusion

There are two ways to induce a person to do something. One is to incentivize her, whether by

increasing her reward from taking a particular action, or by increasing her punishment for doing

something else. Such incentive schemes can be blunt, as when you pay someone for performing

a task or coerce her into doing it, or more subtle, as when you increase the supply of goods

complementary to an activity. All such schemes, however, rely on changing the individual’s

marginal preferences. The other way to induce a person to do something is to change her beliefs.

Changes in beliefs can change the expected action for several reasons. One is that the person being

persuaded may fail to fully account for the motives of the persuader. Another is that overwhelming

an individual with information may make it too difficult to process all of it an appropriate way.

Yet another, which is the focus of this paper, is that even a perfectly rational Bayesian can often

be persuaded.

9 Appendix A: Proofs

9.1 Proof of Proposition 1

As we mentioned in the text, (2) immediately implies (1) and (3). We first show that (1) implies

(2).

Consider an equilibrium εo = (σo, ρo, µo) of some mechanism (πo, co) with value v∗. For any

a, let Ma be the set of messages which induce a: Ma = {m|â (µ) = m} in this equilibrium. Now,

consider a straightforward mechanism with S = A and

π (a|ω) =
∑
m∈Ma

∑
s∈S

σo (m|s)πo (s|ω) .
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In other words, in the proposed mechanism Sender “replaces” each message with a recommendation

of the action that the message induced. Since a was an optimal response to each m ∈ Ma in εo,

it must also be an optimal response to the message a in the proposed straightforward mechanism.

Hence, the distribution of Receiver’s actions conditional on the state is the same as in εo. Therefore,

if we set k equal to the messaging costs in εo, i.e., k =
∑

m

∑
s

∑
ω c (m|s)σo (m|s)πo (s|ω), the

value of the straightforward mechanism is exactly v∗. Hence, (1) implies (2).

It remains to show that (3) implies (1). In other words, we need to show that given any

Bayes-plausible distribution of posteriors, there exists a mechanism that induces it. We will show

a stronger claim that there exists an honest mechanism that induces it. An honest mechanism

with signal π induces τ if Supp (τ) = {µs}s∈S and

(i) µs (ω) =
π (s|ω)µ0 (ω)∑

ω′∈Ω π (s|ω′)µ0 (ω′)
for all s and ω

(ii) τ (µs) =
∑
ω∈Ω

π (s|ω)µ0 (ω) for all s.

Given a Bayes-plausible τ , let

π (s|ω) =
µs (ω) τ (µs)

µ0 (ω)
.

Now,

π (s|ω) =
µs (ω) τ (µs)

µ0 (ω)
⇒

π (s|ω)µ0 (ω) = µs (ω) τ (µs)⇒∑
ω

π (s|ω)µ0 (ω) =
∑
ω

µs (ω) τ (µs) ⇒∑
ω

π (s|ω)µ0 (ω) = τ (µs) .
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which establishes (ii). Moreover,

π (s|ω) =
µs (ω) τ (µs)

µ0 (ω)
⇒

µs (ω) =
π (s|ω)µ0 (ω)

τ (µs)
⇒

µs (ω) =
π (s|ω)µ0 (ω)∑

ω′∈Ω π (s|ω′)µ0 (ω′)
,

which establishes (i). Hence, π induces τ .

9.2 Proof of Proposition 2

Suppose that v̂ is concave. That means that for any τ , Eτ (v̂ (µ)) ≤ v̂ (Eτ (µ)). Hence, for

any Bayes-plausible τ , Eτ (v̂ (µ)) ≤ v̂ (µ0). Hence, by Corollary 1, Sender does not benefit from

persuasion. Now, suppose that v̂ is convex and not concave. The fact that it is not concave means

that there exists some µa and µb and λ ∈ (0, 1) s.t. v̂ (λµa + (1− λ)µb) < λv̂ (µa) + (1− λ) v̂ (µb).

Now, consider the belief µc = λµa + (1− λ)µb. Since µ0 is not on the boundary of ∆ (Ω), there

exists a belief µd and a γ ∈ (0, 1) s.t. µ0 = γµc + (1− γ)µd. Moreover, since v̂ is convex, we know

that

v̂ (µ0) = v̂ (γµc + (1− γ)µd)

≤ γv̂ (µc) + (1− γ) v̂ (µd)

= γv̂ (λµa + (1− λ)µb) + (1− γ) v̂ (µd)

< γ (λv̂ (µa) + (1− λ) v̂ (µb)) + (1− γ) v̂ (µd) .

Now, let τ be the distribution of posteriors that puts probability γλ on µa, γ (1− λ) on µb and

(1− γ) on µd. By construction, τ is Bayes-plausible and Eτ v̂ (µ) > v̂ (µ0).
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9.3 Proof of Proposition 3

Suppose that ∀µ, v̂ (µ) ≤
∑
ω
v (â (µ0) , ω)µ (ω). Given an equilibrium (σ∗, ρ∗, µ∗) of some mecha-

nism, let τm denote the probability of message m:

τm =
∑
ω

∑
s

σ∗ (m|s)π (s|ω)µ0 (ω) .

The value of the mechanism is at most:

∑
m∈M

τmv̂ (µ∗ (·|m))

≤
∑
m∈M

τm
∑
ω

v (â (µ0) , ω)µ∗ (ω|m)

=
∑
ω

v (â (µ0) , ω)
∑
m∈M

τmµ
∗ (ω|m)

=
∑
ω

v (â (µ0) , ω)µ0 (ω)

= v̂ (µ0) .

9.4 Proof of Proposition 4

Suppose there is information Sender would share and Receiver’s preference is discrete at the prior.

Since u is continuous in ω,
∑
u (â (µ0) , ω)µ (ω) is continuous in µ. Therefore, since Receiver’s pref-

erence is discrete at the prior, ∃δ > 0 s.t. for all µ in an δ-ball around µ0, â (µ) = â (µ0). Denote this

ball by Bδ. Since there is information Sender would share, ∃µh s.t. v̂ (µh) >
∑

ω v (â (µ0) , ω)µh (ω).

Consider a ray from µh through µ0. Since µ0 is not on the boundary of ∆ (Ω), there exists a belief on

that ray, µl s.t. µl ∈ Bδ and µ0 = γµl+(1− γ)µh for some γ ∈ (0, 1). Now, consider the distribu-

tion of posteriors τ (µl) = γ, τ (µh) = 1− γ. Since â (µ0) = â (µl), v̂ (µl) =
∑

ω v (â (µ0) , ω)µl (ω).
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Hence,

γv̂ (µl) + (1− γ) v̂ (µh)

> γ
∑
ω

v (â (µ0) , ω)µl (ω) + (1− γ)
∑
ω

v (â (µ0) , ω)µh (ω)

=
∑
ω

v (â (µ0) , ω) (γµl (ω) + (1− γ)µh (ω))

=
∑
ω

v (â (µ0) , ω)µ0 (ω)

= v̂ (µ0)

Since τ is Bayes-plausible, Sender benefits from persuasion.

9.5 Proof of Proposition 5

Suppose A is finite. We begin with the following Lemma:

Lemma 1 If Receiver’s preference at a belief µ is not discrete, there must be an action a 6= â (µ)

such that ∑
u (â (µ) , ω)µ (ω) =

∑
u (a, ω)µ (ω) .

Proof. Suppose there is no such action. Then, we can define an ε > 0 by

ε =
1
2

min
a6=â(µ)

{∑
u (â (µ) , ω)µ (ω)−

∑
u (a, ω)µ (ω)

}
.

Since A is finite, the minimum is obtained. But then,
∑
u (â (µ) , ω)µ (ω) >

∑
u (a, ω)µ (ω) + ε

∀a 6= â (µ), which means that Receiver’s preference is discrete at µ.

Given this Lemma, it will suffice to show that the set

{
µ|∃a 6= â (µ) s.t.

∑
u (â (µ) , ω)µ (ω) =

∑
u (a, ω)µ (ω)

}

has measure zero. Note that this set is a subset of

{
µ|∃a, a′ s.t. a 6= a′,

∑
u (a, ω)µ (ω) =

∑
u
(
a′, ω

)
µ (ω)

}
.
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Hence, it will suffice to show that the latter set has measure zero. In fact, since there are only

finitely many pairs of actions a, a′, and since the union of a finite number of measure-zero sets has

measure zero, it will suffice to show that given any distinct a and a′ the set

{
µ|
∑

u (a, ω)µ (ω) =
∑

u
(
a′, ω

)
µ (ω)

}

has measure zero.

Given any distinct a and a′, index states by i and let βi = u (a, ωi) − u (a′, ωi). Let β =

[β1, ..., βn] and µ = [µ (ω1) , ..., µ (ωn)]. We need to show that the set
{
µ|β′µ = 0

}
has measure

zero. Recall that for any action a there exits a µ s.t. a∗ (µ) = {a}. That means that there is

necessarily an ω s.t. u (a, ω) 6= u (a′, ω). Hence, there is at least one βi 6= 0. Therefore, β is

a linear transformation of rank 1. Hence, the kernel of β is a vector space of dimension n − 1.

Therefore,
{
µ|β′µ = 0

}
is measure zero with respect to the Lebesgue measure on Rn.

9.6 Proof of Proposition 6

As we mentioned in footnote 11, we will establish a somewhat stronger proposition which implies

Proposition 6. Suppose that there exists a linear transformation T : ∆ (Ω) → Rk s.t. v̂ (µ) =

ṽ (Tµ). Let Ṽ denote the concave closure of ṽ. Then,

Proposition 15 Sender benefits from persuasion if and only if Ṽ (Tµ0) > ṽ (Tµ0).

Proof. Suppose Ṽ (Tµ0) > ṽ (Tµ0). That implies there exists a z s.t. z > ṽ (Tµ0) and

(Tµ0, z) ∈ co (ṽ). Hence, there exists a set (ti)
k+1
i=1 w/ ti ∈ Image(T ) and weights γ ∈ ∆k+1 s.t.∑

i γiti = Tµ0 and
∑

i γiṽ (ti) > ṽ (Tµ0). For each i, select any µi from T−1ti. Let µa =
∑k+1

i=1 γiµi.

Note that since T is linear Tµa = T
∑

i γiµi =
∑

i γiTµi =
∑

i γiti = Tµ0. Since µ0 is not on

the boundary of ∆n, there exists a belief µb and a λ ∈ (0, 1) s.t. λµa + (1− λ)µb = µ0. Since

T is linear, Tµb = 1
1−λ (Tµ0 − λTµa). Therefore, since Tµa = Tµ0, we have Tµb = Tµ0. Hence,

ṽ (Tµ0) = ṽ (Tµb). Now, consider a mechanism that induces the distribution of posteriors

τ (µi) = λγi for i = 1, ..., k + 1

τ (µb) = 1− λ
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Since µa =
∑k+1

i=1 γiµi and λµa + (1− λ)µb = µ0, this τ is Bayes-plausible. The value of the

mechanism that induces this τ is

∑
i

λγiv̂ (µi) + (1− λ) v̂ (µb)

= λ
∑
i

γiṽ (Tµi) + (1− λ) ṽ (Tµb)

= λ
∑
i

γiṽ (ti) + (1− λ) ṽ (Tµ0)

> λṽ (Tµ0) + (1− λ) ṽ (Tµ0)

= ṽ (Tµ0)

= v̂ (µ0) .

Hence, Sender benefits from persuasion. Now suppose Ṽ (Tµ0) ≤ ṽ (Tµ0). For any Bayes-plausible

distribution of posteriors τ , Eτ [µ] = µ0 implies Eτ [Tµ] = Tµ0, so Eτ [v̂ (µ)] = Eτ [ṽ (Tµ)] ≤

Ṽ (Tµ0) ≤ ṽ (Tµ0) = v̂ (µ0). Hence, by Corollary 1 Sender does not benefit from persuasion.

9.7 Proof of Proposition 7

We begin the proof by showing that selection of Sender-preferred equilibria implies that v̂ is upper

semicontinuous.

Lemma 2 v̂ is upper semicontinuous.

Proof. Suppose that v̂ is discontinuous at some µ. Since v̂ (µ) =
∑

ω v (â (µ) , ω)µ (ω) and v is

continuous, it must be that â (µ) is discontinuous at µ. Since u is continuous, by Berge’s Maximum

Theorem this means that Receiver must be indifferent between a set of actions at µ, i.e., a∗ (µ) is

not a singleton. By definition, however, v̂ (µ) ≡ maxa∈a∗(µ)

∑
ω v (a, ω)µ (ω). Hence, v̂ is upper

semicontinuous.

Now, let hyp (v̂) denote the hypograph of v̂, i.e., the set of points lying on or below the graph.

Because, unlike the graph of v̂, hyp (v̂) is closed and connected, it will be easier construct to work

with.
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Lemma 3 Given µ and S ⊂ hyp (v̂), if (µ, V (µ)) is in the convex hull of S, it is also in the convex

hull of the intersection of S and graph of v̂.

Proof. Given µ and S = {(µi, zi)}i∈I ⊂ hyp (v̂), suppose (µ, V (µ)) =
∑

i∈I γi (µi, zi) with∑
i∈I γi = 1 and γi ∈ [0, 1] ∀i ∈ I. We need to show that for any γi > 0, it must be the

case that zi = v̂ (µi). Suppose to the contrary that ∃j ∈ I s.t. γj > 0 and zj < v̂
(
µj
)
.

Consider the set {(µi, zi)}i∈I\{j} ∪
{(
µj , v̂

(
µj
))}
⊂ hyp (v̂). Since γjµj+

∑
i∈I\{j} γiµi = µ and

γj v̂
(
µj
)

+
∑

i∈I\{j} γizi >
∑

i∈I γizi = V (µ), we have that V (µ) < sup {z| (µ, z) ∈ co (hyp (v̂))} =

sup {z| (µ, z) ∈ co (v̂)}. Hence, we’ve reached a contradiction.

Combining the two Lemmas above, we obtain the following:

Lemma 4 Any element of the graph of V can be expressed as a convex combination of elements

of the graph of v̂.

Proof. Since v̂ is upper semicontinuous, hyp v̂ is closed. LetH =
{

(µ, z) ∈ hyp v̂|z ≥ infµ′ v̂ (µ′)
}

.

Since v is continuous and A is compact, v̂ is bounded so H is bounded. Hence, since hyp v̂ is

closed, H is compact. Hence, co (H) is compact which implies co (hyp (v̂)) is closed. Hence,

hyp (V ) = co (hyp (v̂)). Hence, any element of the graph of V can be expressed a convex com-

bination of elements of hyp (v̂). But then, by Lemma 3, it can also be expressed as a convex

combination of elements of the graph of v̂.

The remainder of the proof of Proposition 7 is straightforward. By Corollary 2, there can be

no mechanism with value strictly greater than V (µ0). By Lemma 4, (µ0, V (µ0)) ∈ co (v̂). Hence,

there exists an optimal mechanism with value V (µ0) .

9.8 Proof of Proposition 8

It follows directly from definition of convexity and concavity that if v̂ is (strictly) concave, no

disclosure is (uniquely) optimal, and if it is (strictly) convex, full disclosure is (uniquely) optimal.

To establish the last part of Proposition 8, we begin with a key Lemma which will also be useful

for establishing several other Propositions.

Lemma 5 If µ′ is induced by an optimal mechanism, V (µ′) = v̂ (µ′).
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Proof. Suppose that an optimal mechanism induces τ and there is some µ′ s.t. τ (µ′) > 0 and

V (µ′) > v̂ (µ′). Since (µ′, V (µ′)) ∈ co (v̂), there exists a distribution of posteriors τ ′ such that

Eτ ′µ = µ′ and Eτ ′ v̂ (µ) = V (µ′). But then we can then take all the weight from µ′ and place it

on τ ′ which would yield higher value while preserving Bayes-plausability. Formally, consider the

distribution of posteriors

τ∗ (µ) =


τ (µ′) τ ′ (µ) if µ ∈ Supp (τ ′) \Supp (τ)

τ (µ) + τ (µ′) τ ′ (µ) if µ ∈ Supp (τ ′) ∩ Supp (τ)

τ (µ) if µ ∈ Supp (τ) \ (Supp (τ ′) ∪ {µ′}) .

By construction, τ∗ is plausible and yields a higher value than τ does.

Suppose v̂ is not concave and an optimal mechanism induces an interior µm. By Lemma 5,

we know V (µm) = v̂ (µm). Since v̂ is not concave, there is some belief µl s.t. V (µl) > v̂ (µl).

Because µm is interior, we know there is a µr and γ ∈ (0, 1) s.t. µm = γµl + (1− γ)µr. Now,

v̂ (µm) = V (µm) ≥ γV (µl) + (1− γ)V (µr) (by concavity of V )

≥ γV (µl) + (1− γ) v̂ (µr)

> γv̂ (µl) + (1− γ) v̂ (µr)

which means that v̂ is not convex.

9.9 Proof of Proposition 9

Since v̂ is bounded, hyp (v̂) is path-connected. Therefore, it is connected. The Fenchel-Bunt

Theorem (Hiriart-Urruty and Lemaréchal 2004, Thm 1.3.7) states that if S ⊂ Rn has no more than

n connected components (in particular, if S is connected), then any x ∈ co (S) can be expressed as

a convex combination of n elements of S. Hence, since hyp (v̂) ⊂ R|Ω|, any element of co (hyp (v̂))

can be expressed as a convex combination of |Ω| elements of hyp (v̂). In particular, (µ0, V (µ0)) ∈

co (hyp (v̂)) can be expressed a convex combination of |Ω| elements of hyp (v̂). But then, by Lemma

3 this further implies that (µ0, V (µ0)) can be expressed as a convex combination of |Ω| elements

of the graph of v̂. Hence, there exists an optimal straightforward mechanism which induces a
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distribution of posteriors whose support has no more than |Ω| elements. Since Receiver takes only

a single action at any of her beliefs, this implies there exists an optimal straightforward mechanism

in which the number of actions Receiver takes with positive probability is at most |Ω|.

9.10 Proof of Proposition 10

Suppose that v (a, ω) < v (a, ω) for all ω and all a 6= a. For any ω, let µω denote the distribution

s.t. µω (ω) = 1. Let Ω− be the set of states where a is the uniquely optimal action for Receiver,

i.e., Ω− = {ω|â (µω) = a}. Let Ω+ be the complement of Ω−.

Now, suppose contrary to Proposition 10 that an optimal mechanism induces τ and there is a

belief µ′ s.t. τ (µ′) > 0 , â (µ′) = a and ∃ω ∈ Ω+ s.t. µ′ (ω) > 0. Consider the following two beliefs

µ− (ω) =


µ′(ω)∑

ω′∈Ω− µ
′(ω′) if ω ∈ Ω−

0 if ω ∈ Ω+

µ+ (ω) =

 0 if ω ∈ Ω−

µ′(ω)∑
ω′∈Ω+ µ′(ω′) if ω ∈ Ω+.

It is easy to see that µ′ is a convex combination of µ− and µ+. Hence, we can “replace” µ′ with

µ− and µ+, and since â (µ−) = â (µ′) while µ+ induces an action Sender prefers over a, this will

yield a higher value. Formally, consider the following alternative distribution of beliefs:

τ∗
(
µ−
)

=

 ∑
ω′∈Ω−

µ′
(
ω′
) τ

(
µ′
)

+ τ
(
µ−
)

τ∗
(
µ+
)

=

 ∑
ω′∈Ω+

µ′
(
ω′
) τ

(
µ′
)

+ τ
(
µ+
)

τ∗ (µ) = τ (µ) if µ /∈
{
µ′, µ−, µ+

}
.

Simple algebra reveals that τ∗ is Bayes-plausible and yields a higher value than τ does.

9.11 Proof of Proposition 11

We first prove a preliminary lemma.
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Lemma 6 Suppose µl and µr are induced by an optimal mechanism and µm = γµl + (1− γ)µr for

some γ ∈ [0, 1]. Then, v̂ (µm) ≤ γv̂ (µl) + (1− γ) v̂ (µr).

Proof. Suppose to the contrary that τ is induced by an optimal mechanism, τ (µl), τ (µr) > 0,

and v̂ (µm) > γv̂ (µl) + (1− γ) v̂ (µr). Then we can take some weight from µl and µr and place

it on µm which would yield higher value while preserving Bayes-plausability. Formally, pick any

ε ∈ (0, 1). Let ε′ = ετ (µl) /τ (µr). Consider an alternative τ∗ defined by:

τ∗ (µl) = (1− γε) τ (µl)

τ∗ (µr) =
(
1− (1− γ) ε′

)
τ (µr)

τ∗ (µm) = τ (µm) + ετ (µl)

τ∗ (µ) = τ (µ) if µ /∈ {µl, µm, µr} .

Simple algebra reveals that τ∗ is Bayes-plausible and yields a higher value than τ does.

Say that action a is induced-dominant if ∀µ, v̂ (µ) ≤
∑
ω
v (a, ω)µ (ω). Say that a is strictly

induced-dominant if ∀µ s.t. a 6= â (µ), v̂ (µ) <
∑
ω
v (a, ω)µ (ω). Say that a is weakly but not strictly

dominant (wnsd) if it is induced-dominant and ∃µ s.t. a 6= â (µ) and v̂ (µ) =
∑
ω
v (a, ω)µ (ω) . Note

that there is information Sender would share if and only if â (µ0) is not induced-dominant, and

that Assumption 1 states that there are no wnsd actions.

We now prove the proposition in two steps.

Lemma 7 Suppose that Assumption 1 holds. Let µ be an interior belief induced by an optimal

mechanism. Then, either: (i) Receiver’s preference at µ is not discrete, or (ii) â (µ) is strictly

induced-dominant.

Proof. Suppose that Assumption 1 holds and µ is an interior belief induced by an optimal

mechanism. Now, suppose Receiver’s preference at µ is discrete. By Proposition 4, we know that

if µ were the prior either: (i) there would be no information Sender would want to share, i.e., â (µ)

is induced dominant; or (ii) Sender would benefit from persuasion. But, Sender would not benefit

from persuasion if µ were the prior because by Lemma 5 we know V (µ) = v̂ (µ). Thus, â (µ) is

induced-dominant so by Assumption 1 it is strictly induced-dominant.
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Lemma 8 Suppose Sender benefits from persuasion, µ is an interior belief induced by an optimal

mechanism, and â (µ) is strictly induced-dominant. Then, Receiver’s preference at µ is not discrete.

Proof. Suppose Sender benefits from persuasion, µ is an interior belief induced by an optimal

mechanism, and â (µ) is strictly induced-dominant. First note that the set of beliefs that induces any

particular action is necessarily convex. Hence, when Sender benefits from persuasion, any optimal

mechanism must induce at least two distinct actions. Therefore, there must be a µ′ induced by the

mechanism at which â (µ) 6= â (µ′). Now, suppose contrary to the Lemma that Receiver’s preference

at µ is discrete. Then, there is an ε > 0 s.t. â (εµ′ + (1− ε)µ) = â (µ). Let µm = εµ′ + (1− ε)µ.

Since both µ and µ′ are induced by an optimal mechanism, Lemma 6 tells us that

v̂ (µm) ≤ εv̂
(
µ′
)

+ (1− ε) v̂ (µ) . (3)

But,

v̂ (µm) =
∑
ω

v (â (µm) , ω)µm (ω)

=
∑
ω

v (â (µ) , ω)µm (ω)

= ε
∑
ω

v (â (µ) , ω)µ′ (ω) + (1− ε)
∑
ω

v (â (µ) , ω)µ (ω)

= ε
∑
ω

v (â (µ) , ω)µ′ (ω) + (1− ε) v̂ (µ)

Hence, Equation (3) is equivalent to

∑
ω

v (â (µ) , ω)µ′ (ω) ≤ v̂
(
µ′
)

,

which means â (µ) is not strictly induced-dominant.

Combining these two lemmata, we know that if Assumption 1 holds, Sender benefits from

persuasion, and µ is an interior belief induced by an optimal mechanism, Receiver’s preference at

µ is not discrete.
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9.12 Proof of Proposition 12

Suppose Assumption 1 holds, v̂ is monotonic, A is finite, and Sender benefits from persuasion.

Now, suppose µ is an interior belief induced by an optimal mechanism. Since Assumption 1 holds

and Sender benefits from persuasion, Receiver’s preference at µ is not discrete by Proposition 11.

Therefore, Lemma 1 tells us ∃a such that Eµu(â (µ) , ω) = Eµu (a, ω) . If (ii) does not hold, we

know Eµv(â (µ) , ω) > Eµv(a, ω). Therefore, â (µ) % a. Hence, given any µ′ C µ,

0 = Eµu(â (µ) , ω)− Eµu (a, ω) > Eµ′u (â (µ) , ω)− Eµ′u (a, ω) .

Since Eµ′u (a, ω) > Eµ′u (â (µ) , ω), we know that â (µ) is not Receiver’s optimal action when her

beliefs are µ. Hence, for any µ′ C µ, â (µ′) 6= â (µ), which means that µ is a worst belief inducing

â (µ).

9.13 Proof of Proposition 13

We first show that no commitment-free mechanism can have a gain greater than E. Suppose the

contrary. That means that in equilibrium of a mechanism, Sender conveys two messages with

positive probability m and m′ s.t. v̂ (µ∗ (·|m)) > v̂ (µ∗ (·|m′)). But then, since v is independent of

ω, it must be the case that Sender would profit by a deviation that always sends m instead of m′.

Next, we show that for any ε > 0, there is a commitment-free mechanism whose gain exceeds

E−ε. Given ε, choose v > E−ε+ v̂ (µ0) s.t. ∃M ⊂ ∆ (Ω) s.t. v̂ (µ) = v ∀µ ∈M and µ0 ∈ co (M).

By definition of E, such a v exists. Now, since µ0 ∈ co (M), there exists a Bayes-plausible τ s.t.

supp (τ) ⊂ M . Consider a commitment-free mechanism with the signal π that induces this τ .

Since v̂ (µ) = v and v is independent of ω, incentive compatibility does not bind. Hence, the value

of this mechanism is v so its gain is strictly greater than E − ε.

9.14 Proof of Proposition 14

Even though it is not feasible for Sender to commit to an honest mechanism, he still may tell

truth in equilibrium. We say an equilibrium of a commitment-free mechanism is truthful if

σ∗ (m|s) =
{

1 if m=s
0 if m 6=s . Given any equilibrium of any commitment-free mechanism, there exists
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a truthful equilibrium of some commitment-free mechanism that generates the same distribution

of actions and beliefs. To see this, note that if some commitment-free mechanism πo has an

equilibrium with a message strategy σo, then σ (m|s) =
{

1 if m=s
0 if m 6=s is an equilibrium strategy if

π (m|ω) =
∑

s σ
o (m|s)πo (s|ω). Moreover, this π and σ generate the same conditional distribu-

tion of messages, and thus of actions and beliefs, as πo and σo. Hence, we can restrict our attention

to truthful equilibria without loss of generality.

With that observation, we establish the following Lemma:

Lemma 9 Consider any equilibrium of a commitment-free mechanism (σ∗, ρ∗, µ∗). For any two

messages m and m′ sent with positive probability:

vm − vm′ ≤ max
ω

∫
A
v (a, ω) dρ∗ (a|m)−min

ω

∫
A
v (a, ω) dρ∗ (a|m)

Proof. Supposing, w.l.o.g. that the equilibrium is truthful, for any two messages m and m′

sent with positive probability it must be the case that

vm′ ≥
∑
ω

∫
A
v (a, ω) dρ∗ (a|m)µ∗

(
ω|m′

)
This implies

vm − vm′ ≤ vm −
∑
ω

∫
A
v (a, ω) dρ∗ (a|m)µ∗

(
ω|m′

)
=

∑
ω

∫
A
v (a, ω) dρ∗ (a|m)µ∗ (ω|m)−

∑
ω

∫
A
v (a, ω) dρ∗ (a|m)µ∗

(
ω|m′

)
=

∑
ω

∫
A
v (a, ω) dρ∗ (a|m)

[
µ∗ (ω|m)− µ∗

(
ω|m′

)]
.

Now, note that ∑
ω

[
µ∗ (ω|m)− µ∗

(
ω|m′

)]
= 0

Let Ω+ = {ω ∈ Ω|µ∗ (ω|m) > µ∗ (ω|m′)} and Ω− = {ω ∈ Ω|µ∗ (ω|m) < µ∗ (ω|m′)} . Then

0 <
∑
ω∈Ω+

µ∗ (ω|m)− µ∗
(
ω|m′

)
=
∑
ω∈Ω−

µ∗
(
ω|m′

)
− µ∗ (ω|m) ≤ 1.
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Hence,

vm − vm′ ≤
∑
ω

∫
A
v (a, ω) dρ∗ (a|m)

[
µ∗ (ω|m)− µ∗

(
ω|m′

)]
=

∑
ω∈Ω+

∫
A
v (a, ω) dρ∗ (a|m)

[
µ∗ (ω|m)− µ∗

(
ω|m′

)]
+
∑
ω∈Ω−

∫
A
v (a, ω) dρ∗ (a|m)

[
µ∗ (ω|m)− µ∗

(
ω|m′

)]
=

∑
ω∈Ω+

∫
A
v (a, ω) dρ∗ (a|m)

[
µ∗ (ω|m)− µ∗

(
ω|m′

)]
−
∑
ω∈Ω−

∫
A
v (a, ω) dρ∗ (a|m)

[
µ∗
(
ω|m′

)
− µ∗ (ω|m)

]
≤

∑
ω∈Ω+

(
max
ω′

∫
A
v
(
a, ω′

)
dρ∗ (a|m)

)[
µ∗ (ω|m)− µ∗

(
ω|m′

)]
−
∑
ω∈Ω−

(
min
ω′

∫
A
v
(
a, ω′

)
dρ∗ (a|m)

)[
µ∗
(
ω|m′

)
− µ∗ (ω|m)

]
=

[
max
ω′

∫
A
v
(
a, ω′

)
dρ∗ (a|m)−min

ω′

∫
A
v
(
a, ω′

)
dρ∗ (a|m)

]
×
∑
ω∈Ω+

[
µ∗ (ω|m)− µ∗

(
ω|m′

)]
≤ max

ω′

∫
A
v
(
a, ω′

)
dρ∗ (a|m)−min

ω′

∫
A
v
(
a, ω′

)
dρ∗ (a|m)

The key implication of Lemma 9 is the following. Given an equilibrium of a commitment-free

mechanism, let M be the set of all messages sent with a positive probability in that equilibrium.

Then,

Lemma 10 If in equilibrium of a mechanism ∃m ∈ M s.t. vm ≤ v̂ (µ0), then the gain from that

mechanism is at most D.

Proof. Consider an equilibrium of a commitment-free mechanism (σ∗, ρ∗, µ∗). Suppose ∃m ∈
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M s.t. vm ≤ v̂ (µ0). Then, by Lemma 9

vm′ − v̂ (µ0) ≤ vm′ − vm

≤ max
ω

∫
A
v (a, ω) dρ∗ (a|m)−min

ω

∫
A
v (a, ω) dρ∗ (a|m)

≤
∫
A

max
ω

v (a, ω) dρ∗ (a|m)−
∫
A

min
ω
v (a, ω) dρ∗ (a|m)

=
∫
A

(
max
ω

v (a, ω)−min
ω
v (a, ω)

)
dρ∗ (a|m)

≤ max
a∈A

(
max
ω

v (a, ω)−min
ω
v (a, ω)

)
= D.

Now, say v̂ is without troughs if there do not exist µa, µb, µc and γ ∈ (0, 1) s.t. µb = γµa +

(1− γ)µc and min {v̂ (µa) , v̂ (µc)} > v̂ (µb).

Lemma 11 Consider any belief µ′ and any distribution of beliefs τ with finite support s.t. Eτ [µ] =

µ′. If v̂ is without troughs, then ∃µ ∈ Supp (τ) s.t. v̂ (µ) ≤ v̂ (µ′).

Proof. Suppose v̂ is without troughs. Given any belief µ′ and any distribution of beliefs τ

with finite support s.t. Eτ [µ] = µ′, let k = |Supp (τ)|. We prove the Lemma by induction on k.

If k = 2, the desired conclusion is immediate. Now, suppose the Lemma holds for k = l. We need

to show it holds for k = l + 1. Pick any µ̃ in Supp (τ). Then,

µ′ =
∑

µ∈Supp(τ)

τ (µ)µ = τ (µ̃) µ̃+ (1− τ (µ̃))
∑

µ∈Supp(τ)\{µ̃}

τ (µ)
1− τ (µ̃)

µ.

Now, suppose v̂ (µ̃) > v̂ (µ′). Then, since v̂ is without troughs, we know v̂
(∑

µ∈Supp(τ)\{µ̃}
τ(µ)

1−τ(µ̃)µ
)
≤

v̂ (µ′). But, since the Lemma holds for k = l = |Supp (τ) \ {µ̃}|, we know there exists µ̃′ ∈

Supp (τ) \ {µ̃} s.t. v̂
(
µ̃′
)
≤ v̂

(∑
µ∈Supp(τ)\{µ̃}

τ(µ)
1−τ(µ̃)µ

)
≤ v̂ (µ′).

Lemma 11 leads to the following result:

Proposition 16 If v̂ is without troughs, the gain from any commitment-free mechanism is at most

D.
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Proof. Suppose v̂ is without troughs and consider an equilibrium (σ∗, ρ∗, µ∗) of any commitment-

free mechanism. Let τm denote the equilibrium probability of message m:

τm =
∑
ω

∑
s

σ∗ (m|s)π (s|ω)µ0 (ω) .

We know that µ0 (·) =
∑

m τmµ
∗ (·|m). Therefore, by Lemma 11, ∃m ∈ M s.t. vm ≤ v̂ (µ0).

Hence, by Lemma 10, the gain from the mechanism is at most D.

Since v̂ is necessarily monotonic if it is without troughs, Proposition 14 is a corollary of Propo-

sition 16.

10 Appendix B: Extension to infinite state spaces

In the main body of the paper, we assumed that Ω is finite. We also claimed this assumption was

made primarily for expositional convenience. In this appendix, we show that the approach used

in the paper extends to the case when Ω is a compact metric space.30

As before, Receiver has a continuous utility function u (a, ω) that depends on her action a ∈ A

and the state of the world ω ∈ Ω. Sender has a continuous utility function v (a, ω) that depends

on Receiver’s action and the state of the world. The action space A is assumed to be compact

and the state space Ω is assumed to be a compact metric space. Let ∆ (Ω) denote the set of Borel

probabilities on Ω, a compact metric space in the weak* topology. Sender and Receiver share a

prior µ0 ∈ ∆ (Ω).

A persuasion mechanism is a combination of a signal and a message technology. A signal (π, S)

consists of a compact metric realization space S and a measurable function π : [0, 1]→ Ω×S, x 7→

(π1 (x) , π2 (x)). Note that we define π to be a measurable function whose second component (i.e.,

the signal realization) is correlated with ω. We assume that x is uniformly distributed on [0, 1] and

that Sender observes π2 (x). We denote a realization of π2 (x) by s. Note that since S is a compact

metric space (hence, complete and separable), there exists a regular conditional probability (i.e.,

a posterior probability) obtained by conditioning on π2 (x) = s (Shiryaev 1996, p.230). A message

technology c consists of a message space M and a family of functions
{
c (·|s) : M → R+

}
s∈S . As

30We are very grateful to Max Stinchcombe for help with this extension.
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before, a mechanism is honest if M = S and c (m|s) =
{
k if s=m
∞ if s6=m for some k ∈ R+. A persuasion

mechanism defines a game just as before. Perfect Bayesian equilibrium is still the solution concept

and we still select Sender-preferred equilibria. Definitions of value and gain are same as before.

Let a∗ (µ) denote the set of actions optimal for Receiver given her beliefs are µ ∈ ∆ (Ω):

a∗ (µ) ≡ arg max
a

∫
u (a, ω) dµ (ω) .

Note that a∗ (·) is an upper hemicontinuous, non-empty valued, compact valued, correspondence

from ∆ (Ω) to A.

Let v̂ (µ) denote the maximum expected value of v if Receiver takes an action in a∗ (µ):

v̂ (µ) ≡ max
a∈a∗(µ)

∫
v (a, ω) dµ (ω) .

Since a∗ (µ) is non-empty and compact and
∫
v (a, ω) dµ (ω) is continuous in a, v̂ is well defined.

We first show that the main ingredient for the existence of an optimal mechanism, namely the

upper semicontinuity of v̂, remains true in this setting.

Lemma 12 v̂ is upper semicontinuous.

Proof. Given any a, the random variable v (a, ω) is dominated by the constant random variable

maxω v (a, ω) (since v is continuous in ω and Ω is compact, the maximum is attained). Hence, by

the Lebesgue’s Dominated Convergence Theorem,
∫
v (a, ω) dµ (ω) is continuous in µ for any given

a. Now, suppose that v̂ is discontinuous at some µ. Since u is continuous, by Berge’s Maximum

Theorem this means that Receiver must be indifferent between a set of actions at µ, i.e., a∗ (µ) is

not a singleton. By definition, however, v̂ (µ) ≡ maxa∈a∗(µ)

∫
v (a, ω) dµ (ω). Hence, v̂ is upper

semicontinuous.

Now, a distribution of posteriors, denoted by τ , is an element of the set ∆ (∆ (Ω)), the set of

Borel probabilities on the compact metric space ∆ (Ω). We say a distribution of posteriors τ is

Bayes-plausible if
∫

∆(Ω) µdτ (µ) = µ0. We say that π induces τ if conditioning on π2 (x) = s gives

posterior κs and the distribution of κπ2(x) is τ given that x is uniformly distributed. Since Ω is
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a compact metric space, for any Bayes-plausible τ there exists a π that induces it.31 Hence, the

problem of finding an optimal mechanism is equivalent to solving

max
τ∈∆(∆(Ω))

∫
∆(Ω)

v̂ (µ) dτ (µ)

s.t.
∫

∆(Ω)
µdτ (µ) = µ0.

Now, let

V ≡ sup {z| (µ, z) ∈ co (hyp (v̂))} ,

where co (·) denotes the convex hull and hyp (·) denotes the hypograph. Recall that given a subset

K of an arbitrary vector space, co (K) is defined as ∩{C|K ⊂ C, C convex}. Let g (µ0) denote

the subset of ∆ (∆ (Ω)) that generate the point (µ0, V (µ0)), i.e.,

g (µ0) ≡

{
τ ∈ ∆ (∆ (Ω)) |

∫
∆(Ω)

µdτ (µ) = µ0,

∫
∆(Ω)

v̂(µ)dτ (µ) = V (µ0)

}
.

Note that we still have not established that g (µ0) is non-empty. That is the primary task of the

proof of our main proposition.

Proposition 17 Optimal mechanism exists. Value of an optimal mechanism is V (µ0). Sender

benefits from persuasion iff V (µ0) > v̂ (µ0). An honest mechanism with a signal that induces an

element of g (µ0) is optimal.

Proof. By construction of V , there can be no mechanism with value strictly greater than

V (µ0). We need to show there exists a mechanism with value equal to V (µ0), or equivalently,

that g (µ0) is not empty. Without loss of generality, suppose the range of v is [0, 1]. Consider the set

H = {(µ, z) ∈ hyp (V ) |z ≥ 0}. Since v̂ is upper semicontinuous, H is compact. By construction

of V , H is convex. Therefore, by Choquet’s Theorem (e.g., Phelps 2001), for any (µ′, z′) ∈ H,

there exists a probability measure η s.t. (µ′, z′) =
∫
H (µ, z) dη (µ, z) with η supported by extreme

points of H. In particular, there exists η s.t. (µ0, V (µ0)) =
∫
H (µ, z) dη (µ, z) with η supported

by extreme points of H. Now, note that if (µ, z) is an extreme point of H, then V (µ) = v̂ (µ);
31Personal communication with Max Stinchcombe. Detailed proof available upon request.
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moreover, if z > 0, z = V (µ) = v̂ (µ). Hence, we can find an η s.t. (µ0, V (µ0)) =
∫
H (µ, z) dη (µ, z)

with support of η entirely within {(µ, v̂ (µ)) |µ ∈ ∆ (Ω)}. Therefore, there exists a τ ∈ g (µ0).
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