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Abstract

An uninformed principal or planner appoints a committee of experts to vote on a
multi-attribute alternative, such as an interdisciplinary project. Each expert can evalu-
ate only one attribute and is biased toward it (specialty bias). The principal values all
attributes of the alternative equally but has a status quo bias, reflecting the organizational
cost of a change. We study whether the principal would compose the committee of more
or less specialty-biased experts. We show that her optimal composition is nonmonotonic
in the majority rule, with the most biased experts appointed under intermediate rules. We
then show that the principal would be less concerned about the committee composition if
its members can be uninformed, as they induce the informed to vote less strategically. Sur-
prisingly, although uninformed members lower the quality of the committee’s decision,
the principal may prefer to have some when its composition is suboptimal and the ma-
jority rule is sufficiently extreme, such as the unanimity. By the same logic, the principal
may exclude some informed experts from the committee.

JEL Classifications: C7, D7
Keywords: bias; partisanship; majority rule; committee composition

1 Introduction

Decision-making by committee is commonplace. Its advantage is, perhaps, most apparent

when the alternative in question has multiple attributes, each of which requires evaluation by

∗We thank Arjada Bardhi, Navin Kartik, and seminar participants at ASSET (Florence), Cincinnati, Duke, Lis-
bon, SEA Meetings (2019) and SMU for helpful comments. Financial supports from the Spanish Ministry for
Science and Innovation, grant #ECO2016/000455/001, (Name-Correa) and the Dean’s Research Fund at Duke
University (Yildirim) are greatly appreciated. Any remaining errors are ours.
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an expert. Examples include interdisciplinary projects, company decisions involving various

business units, and legislative bills affecting several states. To the extent that expert evalu-

ations are aggregated, the committee will make a better decision. There are, however, two

potential problems: first, an expert, such as a scientist, often knows his evaluation privately,

and second, he is likely to be “biased” or “partisan” toward his field of specialty and put more

weight on his evaluation.1

In this paper, we investigate the optimal partisanship in the committee, given the voting

procedure.2 Specifically, given the majority rule for the alternative’s approval, we ask whether

a status quo biased principal would appoint more or less partisan experts to the committee.

We then ask how the optimal committee composition would change when some members

might be uninformed, as they may have lacked the time or access for a thorough evaluation

of the alternative before the vote. Last, we explore whether or not the principal prefers a fully

informed committee.

To address these questions, we draw upon the recent literature (discussed below) and em-

ploy a model of collective decision with payoff interdependencies. An uninformed principal,

e.g., a university administrator, forms a panel of experts who vote between a multi-attribute

alternative, e.g., an interdisciplinary project, and status quo according to a fixed majority rule.

Prior to the vote, each expert receives private information about the “quality” of one attribute

(his specialty), but he may also value others. The expert’s weight on his information cap-

tures his specialty bias or partisanship. We study how this bias affects equilibrium voting,

and, in turn, the expected payoff of the principal who cares about the alternative’s average

quality. Unlike experts, the principal is assumed to possess a status quo bias, reflecting the

organizational cost of a change that is mostly ignored by the committee.3

It is intuitive that a status quo biased principal would, in general, appoint partisan experts.

Our first contribution is to show that their optimal partisanship depends crucially on the

majority rule and does so nonmonotonically. If the majority requirement for the alternative

is weak, the principal wants the least partisan experts in the committee. In contrast, if the

1Such partisanship may also be due to having different cultural and cognitive backgrounds that distort one’s
processing of others’ information. This argument is frequently used for explaining why agents may “agree to
disagree”; e.g., Morris (1995).

2In the United States, the meetings and voting procedures of organizations, clubs, legislative bodies, and other
deliberative assemblies are generally governed by Robert’s Rules of Order introduced in 1876 (for the latest edition,
see Robert et al. 2011).

3Such a preference conflict between a decision-maker and informed agents toward the status quo is commonly
assumed in the literature on cheap talk and voting games, e.g., Che and Kartik (2009), Battaglini (2017), and
Gradwohl and Feddersen (2018).
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majority requirement is moderate, she wants the most partisan. For the remaining majority

rules, those close to unanimity, the principal prefers modestly partisan experts.

To understand why, note that the principal would not care about the committee compo-

sition if she could control how its members vote, i.e., if she could contract on their approval

standards. In practice, though, such control is infeasible since members hold private informa-

tion. Instead, the principal may try to influence their equilibrium voting by their composition.

We show that less partisan experts, those who place a greater weight on others’ information,

vote more strategically: conditional on the information gleaned from the pivotal event, they

are more willing to ignore their own. When the alternative requires few affirmative votes for

approval, the pivotal event carries negative news, leading a less partisan expert to raise his

approval standard and do so toward the principal’s desired level. In contrast, when the alter-

native requires an intermediate number of affirmative votes, the pivotal event carries positive

news, leading a less partisan expert to lower his approval standard. To prevent such diver-

gence from her desired standard, the principal appoints more partisan experts who place less

weight on the pivotal event. Finally, when the alternative requires a strong consensus, includ-

ing the unanimity, the principal strikes a balance between the two cases and appoints mod-

erately partisan experts. Overall, given the majority rule, the principal manages the amount

of strategic voting in the committee by its composition and uses it to her advantage to bring

members’ approval standards closer to her preferred level.

Next, we extend our model to include uninformed experts in the committee. We discover

that by making their votes the least pivotal, the uninformed members delegate the decision to

the informed in equilibrium since their payoffs are interdependent. In particular, the unin-

formed reject the alternative when the majority requirement for its approval is weak, accept

when it is strong, and strictly mix in-between. The strict mixing by the uninformed occurs

because the pivotal event conveys no news in equilibrium, which also induces the informed

to vote sincerely or nonstrategically independent of their partisanship. Hence, the presence

of uninformed members reduces the principal’s ability to influence informed voters by their

composition. Put differently, the committee’s composition is more instrumental for the prin-

cipal when experts are more likely to be informed.

Does the last observation, however, mean that the principal wants all experts to be in-

formed? Interestingly, not always. We show that when the principal cannot pick optimally

biased experts to the committee, because they may be unavailable in the population, she may

prefer some to be uninformed. Although uninformed experts decrease the quality of the de-

3



cision, they help bring the alternative’s approval rate closer to the optimum owing to their

delegation incentive mentioned above. This finding implies that the principal may some-

times raise – not lower – the cost of information for committee members, perhaps, by limiting

their access to information or by rushing the vote on the alternative. We also show that if

the principal cannot prevent experts from being informed, she may exclude some from the

committee; i.e., the principal may not consult an informed expert for each attribute of the

alternative.

Related Literature. As alluded to above, our paper builds on the recent literature on vot-

ing as a means of preference aggregation in committees. Committee members are assumed to

have conflicting interests, formalized as interdependent valuations, in that each is biased or

partisan toward his information.4 Using this specification, Yildirim (2012) identifies credible

majority rules if a social planner cannot commit to one ex ante. Focusing on ad-hoc commit-

tees, we fix the voting rule here as an institution but examine the optimal partisanship and

informed voting in the committee. Roesler (2016) introduces privately known partisanships

and shows that under the unanimity rule, each member relaxes his equilibrium approval stan-

dard as the rest of the group becomes stochastically more partisan. Unlike her (and keeping

up with most other studies in this literature), we assume symmetric and commonly known

partisanship to explore the planner’s preference for it depending on the majority rule. In

doing so, we also establish the important link between approval standards and the major-

ity rule.5 In a dynamic model, Moldovanu and Shi (2013) study collective search under a

unanimous agreement and compare equilibrium acceptance standards across specialist and

“generalist” members.6 Using different specifications with single-peaked preferences and

interdependent bliss points, Gruner and Kiel (2004) and Rosar (2015) compare social perfor-

mances of mean and median aggregation rules for (continuous) reports. They find that the

mean aggregation rule dominates if members are not too partisan or the committee is large

enough. Here, we restrict attention to binary reports, i.e., votes, but consider more general

aggregation rules.

4Hence, even if their information were public, partisan members would not necessarily agree on the alterna-
tive. There is, of course, an extensive literature on voting as a means of information aggregation in committees;
e.g., Austen-Smith and Banks (1996) and Feddersen and Pesendorfer (1996). This line of research typically as-
sumes common interest among committee members.

5It is worth noting that Roesler’s result for the unanimity rule is not at odds with our Proposition 1(c) below,
because, under symmetry, we find the total effect of partisanship on a player’s equilibrium strategy.

6Previous papers by Albrecht et al. (2010) and Compte and Jehiel (2010) allow for more general majority rules
in a collective search model but restrict attention to pure private values, i.e., to the most partisan members. Aside
from their different focus, none of these dynamic models reduces to our static analysis of equilibrium voting.
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In highlighting the need for biased experts to improve decision-making, our paper is also

related to those that emphasize their role in acquiring costly information; e.g., Dewatripont

and Tirole (1999), Cai (2009), Prendergast (2007), Gerardi and Yariv (2008), Che and Kartik

(2009), and Kartik et al. (2017). Unlike theirs, our model features costless information. As

such, our paper is more related to those that emphasize the role of biased experts in increasing

information transmission in persuasion and cheap-talk games with exogenous information;

e.g., Shin (1998), Krishna and Morgan (2001), and Battacharya and Mukherjee (2013). These

papers allow for more general communication between experts and the decision-maker than

simple votes, but they restrict attention to two-expert committees, in which majority rule is

not crucial. An exception in this regard is Li and Suen (2004), who consider simple votes

between two biased experts but do not explore the issue of the optimal composition, which

would result in appointing unbiased experts in their setting.7

Similar to ours, several papers also point to the optimality of having uninformed commit-

tee members. Among them, Caillaud and Tirole (2007) and Bardhi and Guo (2018) argue that

the sponsor of a proposal may best persuade a group by selectively informing some members

and relying on rubber-stamping by the uninformed. Although the uninformed also rubber-

stamp in equilibrium in our extended model, their presence is desired by a social-minded

principal who values every attribute of the alternative – not by a self-interested sponsor who

simply wants the alternative approved. Gershkov and Szentes (2009) show that a utilitarian

planner may optimally decide under imprecise information as it becomes harder to motivate

an additional expert to acquire costly information. Without the latter concern, however, the

planner would prefer to have all informed experts in their model. Battacharya and Mukher-

jee (2013) examine a persuasion game without commitment. They find that when experts are

moderately biased toward a policy, increasing their likelihood of being informed may lead to

worse outcomes as it affects decision-maker’s default policy and experts’ disclosure strate-

gies in equilibrium. In our model, the majority rule is fixed, so the lack of commitment is

not the source of having uninformed members. Last but not least, Name-Correa and Yildirim

(2018) conclude that when the committee is susceptible to outside influence, increasing its

size may help deter capture even though new members are expected to remain uninformed

and rubber-stamp.

The rest of the paper is organized as follows. In the next section, we lay out the model,

7We should point out that unlike this set of papers, each expert in our model is ex ante biased toward his own
information (or specialty) – not toward a specific alternative or policy, though this is inessential for our results.
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followed by the characterization of equilibrium voting in Section 3. In Section 4, we study

the principal’s preference for the committee composition. In Section 5, we extend the analysis

to committees with uninformed members and study the principal’s preference for a fully

informed committee. Section 6 concludes. All proofs and auxiliary results are relegated to an

appendix.

2 The Model

An uninformed principal must decide between the status quo and a multi-attribute alterna-

tive by appointing an ad-hoc committee of n > 1 interested experts. For instance, a university

administrator must decide whether or not to implement an interdisciplinary project by select-

ing a researcher from each discipline. Based on his specialty, expert i can evaluate the quality

of attribute i, which yields a private signal θi independently drawn from a twice continuously

differentiable distribution F, with mean 0 and a positive density f on the support θ < 0 < θ.

Besides his own, however, expert i may also value others’ signals about the alternative as we

formalize by the following interdependent payoff:

vA
i =

(
β+

1− β

n

)
θi + (1− β)

∑j 6=i θ j

n
. (1)

The interdependence parameter β ∈ [0, 1] is commonly known and captures the degree of

specialty bias or partisanship: the higher β is, the more an expert cares about his dimension

of the alternative, with β = 0 and β = 1 referring to the committees with the least and the

most partisan members, respectively.8 The status quo is assumed to yield a normalized payoff

of 0 to each expert. So, other than the specialty bias, expert i has no status quo bias: E[vA
i ] = 0,

where E[.] denotes the expectation operator.

Upon receiving their private signals, committee members simultaneously vote Yes/No,

and the alternative is accepted if it garners at least k ∈ {1, ..., n} affirmative votes, i.e., k-

majority. The principal’s payoff from the alternative is:

wA =
∑i θi

n
. (2)

8The payoff specification in (1) can be equally interpreted as other-regarding preferences: expert i’s material
payoff is his signal θi, but he cares about others’ payoffs, too (see Cooper and Kagel, 2016 for a recent survey).
Such (linearly) interdependent payoffs are also exploited in auction theory (see Krishna, 2009 for a review), where
β = 0 and β = 1 refer to pure common- and pure private-value auctions, respectively.
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The principal, representing the organization, cares about the average quality of the alterna-

tive, weighing its attributes equally.9 If the alternative is rejected, the principal obtains a fixed

payoff w0 > 0 from the status quo. Thus, unlike experts, the principal has a status quo bias;

perhaps, implementing the alternative involves an organizational cost that experts ignore.

Such a preference conflict between a decision-maker and informed agents toward the status

quo is commonly assumed in the literature on cheap talk and voting games, e.g., Che and

Kartik (2009), Battaglini (2017), and Gradwohl and Feddersen (2018). Moreover, our results

are robust to a negative status quo bias, w0 < 0, as established in Corollary 3 below.

As is standard in the literature, given ex ante symmetric players, we solve for symmetric

(Bayesian-Nash) equilibria of the voting game. To eliminate trivial equilibria associated with

nonunanimous rules, we also require them to be responsive or interior.10 We begin our analysis

by characterizing equilibrium voting and then proceed to the principal’s preference for the

committee’s composition, namely, for the parameter β.

3 Equilibrium voting

Since signals are independent and vA
i is strictly increasing in θi, it is readily verified that

expert i follows a cutoff strategy: approve the project if θi > θ∗i , and disapprove if θi < θ∗i .11

In a symmetric equilibrium, suppose that all but expert i adopt a cutoff θ∗. In determining

his, expert i needs to consider only the pivotal event in which there are k − 1 approval and

n − k disapproval votes except for his. Conditional on this event, (1) implies that expert i’s

expected payoff is:

vA(θi; θ∗, k, β) = (β+
1− β

n
)θi +

1− β

n
(
(k− 1)E+[θ∗] + (n− k)E−[θ∗]

)
, (3)

where E+[x] = E[θ|θ > x] and E−[x] = E[θ|θ < x]. The symmetric cutoff θ∗ = θ∗(k, β) consti-

tutes an (interior) equilibrium if and only if it satisfies the following indifference condition:

vA(θ∗; θ∗, k, β) = 0. (4)

Lemma 1 There is a unique symmetric equilibrium.

9This is equivalent to assuming a utilitarian principal for the alternative, wA =
(
∑i vA

i
)

/n, since, from (1),
∑i vA

i = ∑i θi, which is independent of β.
10For instance, under a nonunanimity rule, a symmetric equilibrium with all members’ voting Yes independent

of their private information always exists since each vote then becomes nonpivotal.
11His decision when indifferent is immaterial as it is a zero probability event.
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The equilibrium existence is by continuity. Its uniqueness follows from the fact that both

conditional means, E+[x] and E−[x], are strictly increasing in the cutoff, x.

To understand equilibrium strategies, we introduce the notion of sincere or nonstrategic

voting. Expert i is said to vote sincerely if he conditions his vote only on his private infor-

mation (Austen-Smith and Banks, 1996). Absent any status quo bias for the experts, sincere

voting corresponds to adopting a cutoff of 0 in our model.12 It is immediate from (4) that

voting is always sincere for the most partisan (pure private-value) experts, i.e., θ∗(k, 1) = 0

for all k. For the rest, Proposition 1 shows that equilibrium voting is generically strategic and

depends on the degree of partisanship.

Proposition 1 Let β < 1 and κ∗ = 1+ (n− 1)[1− F(0)]. In equilibrium,

(a) E−[θ∗(.)] < 0 < E+[θ∗(.)],

(b) θ∗(k, β) is strictly decreasing in k,

(c) sgn [∂θ∗(k, β)/∂β] = sgn [−θ∗(k, β)] = sgn [k− κ∗].

Refer to Figure 1. The threshold rule κ∗ ∈ (1, n) is the real solution to θ∗(k, β) = 0. If

an integer, it induces sincere voting for all β. Generically though, κ∗ is noninteger except

for special cases; for instance, κ∗ = n+1
2 (the simple majority) when n is odd, and the signal

distribution is symmetric so that F(0) = 1
2 . Part (a) confirms that a positive (resp. negative)

vote, on average, carries positive (resp. negative) news about the alternative. Given this, part

(b) says that when the majority rule requires more approval votes for the alternative, experts

relax their approval standards as they hold a more favorable view of others’ opinions in the

event of being pivotal. Part (c) reveals that for any k, an increase in β moves the equilibrium

cutoff closer to 0, sincere voting, because experts put less weight on the pivotal event. That is,

12Formally, since E[θ j] = 0, we have from (1) that sgn
(
E[vA

i |θi]
)
= sgn (θi).
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for any k, an increase in β causes a counterclockwise rotation in the equilibrium cutoff.

Part (c) of Proposition 1 can also inform us of how the approval probability of the alterna-

tive changes with partisanship. Note that for an arbitrary cutoff x ∈ [θ, θ], the alternative is

approved with the probability:

P(x; k) = ∑n
m=k p(x; m), (5)

where p(x; m) = (n
m)[1− F(x)]m[F(x)]n−m.

Corollary 1 Let β < 1. Then, sgn [∂P(θ∗(k, β); k)/∂β] = sgn [κ∗ − k].

Corollary 1 follows because ∂P(x; k)/∂x < 0, as expected. It says that the chances of the

alternative’s acceptance decrease (resp. increase) with partisanship if a sufficiently strong

(resp. weak) consensus is required.

Armed with experts’ voting behavior, we next examine the principal’s preference for their

composition, i.e., β.

4 Committee composition

Note that conditional on an arbitrary cutoff x and the vote profile with m Yes votes, the prin-

cipal’s ex post payoff from implementing the project is:

wA(x; m) =
mE+[x] + (n−m)E−[x]

n
, (6)
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and, in turn, using (5), her ex ante payoff before a committee vote is:

w(x; k, w0) = ∑n
m=k p(x; m)wA(x; m) +∑k−1

m=0 p(x; m)w0, (7)

where the first term on the right-hand side of (7) is her expected payoff from the alternative’s

acceptance and the second term is her expected payoff from its rejection.

To characterize the principal’s payoff under equilibrium voting, we first establish a bench-

mark of optimal voting. Suppose that the principal could dictate the cutoff x such that expert

i accepts the alternative whenever θi > x. Then, the principal would solve the following

program:

max
x∈[θ,θ]

w(x; k, w0). (8)

Lemma 2 There is a unique solution, θo(k, w0), to (8). Moreover, θo(.) ∈ (θ, θ) if w0 < k
n θ, and

θo(.) = θ if w0 ≥ k
n θ.

The existence of a maximum is immediate since w(x; .) is continuous. Its uniqueness is

due to the latter’s single-peakedness in x, as established in Lemma A2 and depicted in Figure

2.

Intuitively, a higher cutoff raises the average quality of the accepted alternative but lowers the

probability of acceptance. An interior cutoff means that the principal meaningfully delegates

the decision to the committee. And Lemma 2 shows that she will delegate if her status quo

bias is not too severe, which is more likely to be the case for a voting rule closer to unanimity.

Otherwise, it would be optimal for the principal to set the highest standard for a Yes vote,
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i.e., θo = θ, ensuring the rejection of the alternative. Building on Lemma 2, the next result

characterizes the optimal voting strategy, which is depicted in Figure 3.

Proposition 2 (Optimal voting) Suppose w0 < θ
n . Then,

(a) θo(k, w0) is strictly decreasing in k and strictly increasing in w0,

(b) sgn [θo(.)] = sgn
[
κo(w0)− k

]
, where

κo(w0) = κ∗ +
nw0

E+[0]− E−[0]
.

Part (a) of Proposition 2 indicates that the principal with a stronger status quo bias would

ask experts to raise their approval standards for the alternative. She would also ask them for

higher approval standards if the majority rule is less demanding for the alternative. Refining

these observations, part (b) identifies the critical rule which, if integer, would render sincere

voting optimal for the principal. Since, unlike the experts, the principal has a status quo

bias, her critical rule for sincere voting requires more approval votes than the experts’, i.e.,

κo(w0) ≥ κ∗. It is readily checked that κo(w0) is strictly increasing in w0.13

13Though not our focus here, we note that the voting rule, κo(w0), that induces sincere voting would, generally,
not be optimal if the principal could jointly choose the cutoff and the majority rule. That is, having a status quo
bias, the principal would desire some strategic voting in the committee.
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Note that the optimal voting strategy, θo(k, w0), is independent of the specialty bias, β.

That is, the principal would not be concerned about the committee’s composition if she could

control how its members vote. In practice, though, the principal lacks such control as expert

evaluations are private. Instead, the principal may try to influence the equilibrium voting by

appointing a committee with more or less partisan specialists. Combining the previous two,

the next proposition offers a sharp characterization of the principal’s preference for committee

composition.

Proposition 3 (Committee composition) Let w(θ∗(k, β); k, w0) be the principal’s ex ante payoff

in equilibrium. Then, her payoff is strictly decreasing in β for k ∈ [1, κ∗), and strictly increasing for

k ∈ (κ∗, κo(w0)]. Finally, for k ∈ (κo(w0), n], the principal’s payoff is strictly increasing in β for

β < β(k, w0), and strictly decreasing for β > β(k, w0), where the cutoff bias is given by

β(k, w0) =
w0

w0 − θo(k, w0)
∈ (0, 1).

Moreover, β(k, w0) is strictly decreasing in k and strictly increasing in w0.

Proposition 3 reveals that the principal’s preference for committee composition depends

critically on the majority rule. If the majority rule is relatively lenient toward the alternative,

i.e., k < κ∗, the principal wants less partisan specialists in the committee. Graphically, since

her expected payoff in (8) is single-peaked in the cutoff, x, the principal wants a clockwise

rotation of the equilibrium cutoff in Figure 3, which means lower partisanship, β, by Figure

1.14 In words, with only a few affirmative votes required for the approval of the alternative,

the principal desires a high approval standard, θo > 0. And by Proposition 1, less partisan

experts, gleaning negative news from the pivotal event and placing more weight on it, serve

this purpose by raising their equilibrium voting cutoffs toward the desired level. If, on the

other hand, the majority requirement is moderate, i.e., κ∗ < k ≤ κo, then the principal wants

more partisan specialists – a counterclockwise rotation of the equilibrium cutoff in Figure

3. Although the principal still aims for a high approval standard in this case, less partisan

experts, now gleaning positive news from the pivotal event, would lower their cutoffs, di-

verging from the optimal level. Finally, if the majority requirement is sufficiently stringent for

the alternative, i.e., k > κo(w0), both the principal and members would apply low approval

standards, i.e., θo < 0 and θ∗ < 0, and the two would coincide for some moderately partisan

14As shown in the proof of Proposition 3, θ∗(k, β) ≤ θo(k, w0) for k ∈ [1, κ∗) and all β ∈ [0, 1].
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experts. The monotonicity of the principal’s payoff is, again, due to the single-peakedness

identified in Lemma 2.

Overall, Proposition 3 reveals that by forming a committee with more or less partisan

members, the principal controls the amount of strategic voting, and in doing so, she brings

the equilibrium voting standard closer to her optimum. In fact, if, for each attribute of the

alternative, the principal has access to experts with any degree of partisanship, the following

result, which is immediate from Proposition 3 and depicted in Figure 4, shows her optimal

choice.

Corollary 2 (Optimal composition) Let βo(k, w0) = arg maxβ∈[0,1] w(θ
∗(k, β); k, w0). Then,

βo(k, w0)



= 0 if k < κ∗

∈ [0, 1] if k = κ∗

= 1 if κ∗ < k ≤ κo(w0)

= β(k, w0) ∈ [0, 1) if κo(w0) < k ≤ n.

Three observations are in order. First, the optimal committee composition is nonmonotonic

in the majority rule, k. While, for a low k, the principal would appoint a committee with the

least partisan and hence the most strategic specialists, she would do the opposite for an inter-

mediate k: appoint a committee with the most partisan specialists who would vote sincerely.

For a high k, she would strike a balance between the two cases, with the optimal bias, β(.),

decreasing in k.
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Second, given that both κo(w0) and β(k, w0) are increasing in w0, the optimal commit-

tee would involve (weakly) more partisan experts as the principal becomes more status quo

biased. Recall from Figure 3 that a principal with a stronger bias wants experts to apply a

higher approval standard so that their chances of approving a mediocre alternative is lower.

The observation then follows from Figure 1: equilibrium approval standard rotates counter-

clockwise as partisanship increases.

Third, the ability to compose the committee is most useful to the principal when the ma-

jority requirement is sufficiently strong; i.e., when k ≥ κo(w0), so that θ∗(k, β) = θo(k, w0).

That is, the principal can implement optimal voting by the committee composition when

k ≥ κo(w0), which includes the unanimity rule. Otherwise, the equilibrium approval stan-

dard remains too low for the principal.15 Example 1 illustrates Corollary 2.

Example 1 Let n = 11, w0 = 3/11, and θi ∼ U[−1, 1]. Then, κ∗ = 6 and κo = 9. Hence, βo = 0

for k < 6; βo = 1 for 6 < k ≤ 9; and βo = 18/(11k− 81) for 9 < k ≤ 11.

We close this section by noting that isomorphic results would obtain if the principal had a

negative status quo bias, i.e., w0 < 0. In particular, noticing from Proposition 2 that κo(w0) <

κ∗ in this case, the following corollary to Proposition B1 in the appendix is immediate for the

optimal committee composition.

Corollary 3 (Negative status quo bias) Suppose w0 < 0. Then,

βo(k, w0)



= β(k, w0) ∈ [0, 1) if k < κo(w0)

= 1 if κo(w0) ≤ k < κ∗

∈ [0, 1] if k = κ∗

= 0 if κ∗ < k ≤ n.

5 Imperfectly informed committees

Up to now, we have assumed that each expert learns about his dimension of the alterna-

tive before the vote. In reality, though, some experts may remain uninformed; perhaps, they

lacked the time or access for a thorough investigation. The presence of uninformed members

is likely to affect the equilibrium voting for all, and, in turn, the principal’s preference for

15Formally, θ∗(k, 0) = θo(k, 0) < θo(k, w0) for k ≤ κ∗, and θ∗(k, 1) = 0 < θo(k, w0) for κ∗ < k < κo(w0).
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biased experts. In the next subsection, we characterize equilibrium voting for both types of

experts and determine the optimal composition of an imperfectly informed committee. We

then investigate whether or not the principal wants a fully informed committee.

5.1 Committee composition with uninformed members

Let expert i privately learn his signal θi with an exogenous and independent probability

λ ∈ (0, 1), and remain uninformed with probability 1− λ. To determine the symmetric equi-

librium, also let an uninformed committee member approve the alternative with probability

π ∈ [0, 1] while an informed member continues to follow a cutoff strategy x ∈ [θ, θ] as in the

baseline. Then, the ex ante probability that a member approves the alternative is:

φ(x, π; λ) = λ[1− F(x)] + (1− λ)π. (9)

From (9) and the fact that E[θ] = 0, the expected signal values of Yes and No votes are,

respectively,

E+[x, π; λ] =
λ
∫ θ

x θdF(θ)
φ(x, π; λ)

and E−[x, π; λ] =
λ
∫ x

θ θdF(θ)

1− φ(x, π; λ)
. (10)

As a result, the total expected value of others’ signals in the pivotal event can be written:

h(x, π; k, λ) = (k− 1)E+[x, π; λ] + (n− k)E−[x, π; λ]. (11)

Let x = θ∗ and π = π∗ denote the equilibrium voting strategies for the informed and

uninformed experts, respectively. As in (4), given π∗, the (interior) cutoff signal θ∗ must leave

an informed expert indifferent between accepting and rejecting the alternative in the pivotal

event, namely

(β+
1− β

n
)θ∗ +

1− β

n
h(θ∗, π∗; k, λ) = 0. (12)

As for the uninformed, they also condition their strategies on the pivotal event. Since E[θ] =

0, an uninformed expert’s payoff from the alternative in the pivotal event is:

1− β

n
h(θ∗, π∗; k, λ). (13)

Let β < 1. Then, π∗, the equilibrium probability of a Yes vote for an uninformed expert, must

satisfy the following best response to θ∗:

π∗ =



1 if h(θ∗, 1; k, λ) > 0

k−1
n−1−λ(1−F(0))

1−λ if h(θ∗, π∗; k, λ) = 0

0 if h(θ∗, 0; k, λ) < 0.

(14)
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In words, an uninformed member approves the alternative if the pivotal event carries positive

news, and disapproves if it carries negative news. It is, however, possible that the pivotal

event carries no news in equilibrium, i.e., h(.) = 0. In this case, (12) implies sincere voting by

the informed experts, and solving h(0, π∗; k, λ) = 0 for π∗, we find the randomized strategy

for the uninformed.16 It is readily verified that the randomized strategy is feasible, i.e., π∗ ∈
[0, 1], if and only if κl(λ) ≤ k ≤ κh(λ) where

κl(λ) = 1+ (n− 1)λ[1− F(0)] and κh(λ) = 1+ (n− 1)[1− λF(0)]. (15)

Lemma 3 κl(λ) is increasing and κh(λ) is decreasing in λ, with κl(1) = κh(1) = κ∗, κl(0) = 1,

and κh(0) = n.

The characterization of the equilibrium voting is then obtained from (12), (14), and (15).

Proposition 4 (Equilibrium voting) Let β < 1. There is a unique symmetric equilibrium, and it

has these properties:

θ∗ > 0 and π∗ = 0 if k < κl(λ)

θ∗ = 0 and π∗ =
k−1
n−1−λ(1−F(0))

1−λ if κl(λ) ≤ k ≤ κh(λ)

θ∗ < 0 and π∗ = 1 if κh(λ) < k.

Moreover,

(a) π∗ is independent of β,

(b) sgn [∂θ∗/∂β] = sgn [−θ∗] .

The existence of a symmetric equilibrium follows from the fact that h(x, π; k, λ) is continu-

ous in x. Unlike in the base model (λ = 1), however, its uniqueness is not immediate because

for λ < 1, the conditional expectations E+[x, π; λ] and E−[x, π; λ], and, in turn, h(x, π; k, λ)

can be nonmonotonic in x.17 Nevertheless, we establish their monotonicity on the equilib-

rium path, leading us to the equilibrium uniqueness for β < 1. For β = 1, there is a trivial

16In solving h(0, π∗; k, λ) = 0, note that
∫ θ

0 θdF(θ) = −
∫ 0

θ θdF(θ) in (10) given E[θ] = 0.
17Lemma C1 in the appendix shows that ∂

∂x E+[x, π; λ] =
λ f (x)

φ(x,π;λ) (E
+[x, π; λ] − x). Thus,

limx→θ
∂

∂x E+[x, π; λ] = − λ f (θ)θ
λ+(1−λ)π

> 0 and limx→θ
∂

∂x E+[x, π; λ] = − λ f (θ)θ
(1−λ)π

< 0 for λ ∈ (0, 1) and
π > 0. Intuitively, all else equal, an informed expert’s raising his already high approval standard reduces the
expected value of a Yes vote. The reason is that the Yes vote is more likely to have come from an uninformed
expert in this case.
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multiplicity of equilibrium since, from (13), uninformed members receive a zero payoff in the

pivotal event regardless of its news content. By continuity, we assume that the equilibrium

for β→ 1− applies to β = 1.

Inspecting Proposition 4, it is interesting to observe that uninformed members delegate

the decision to the informed in equilibrium. To understand, consider k = 1 and k = n,

under which the alternative is either accepted by one Yes vote or rejected by one No vote,

respectively. In each case, the uninformed make their votes nonpivotal by always rejecting

the alternative for k = 1 and always accepting it for k = n. This equilibrium strategy is also

consistent for an intermediate k since π∗ is strictly increasing in k; that is, the uninformed are

more likely to cast Yes votes as the majority requirement becomes stronger.18,19

Next, we observe that unlike in the base model, the presence of uninformed members in-

duces sincere voting by the informed for a nontrivial region of majority rules, i.e., θ∗ = 0 for

κl(λ) ≤ k ≤ κh(λ). In fact, given the properties of κl(λ) and κh(λ) in Lemma 3, sincere voting

by the informed becomes more prevalent as the fraction of the uninformed grows. As men-

tioned above, the reason is that with a significant fraction of the uninformed, the pivotal event

carries no significant news in equilibrium to compel an informed expert to ignore his signal.

Last but not least, while the committee composition, β, does not affect the voting behavior of

the uninformed experts, it affects that of the informed as in the base model whenever they

vote strategically, i.e., whenever θ∗ 6= 0. Hence, when forming the committee, the principal

targets the informed members.

To characterize the optimal committee composition, we modify the baseline analysis, and

note that conditional on the vote profile with m Yes votes, the principal’s ex post welfare is

given by:

wA(x, π; m, λ) =
mE+[x, π; λ] + (n−m)E−[x, π; λ]

n
,

18The fact that the uninformed members vote to delegate the decision to the informed suggests that the
former could simply abstain, which we do not allow here. Our restriction is, however, without loss of gen-
erality, because in our model, the affirmative vote of at least k members in the committee is required for
the alternative, implying that abstentions would count as No votes. Such treatment of abstentions is con-
sistent with Robert’s Rules of Order for committee conduct alluded to in the Introduction and widely adopted
by organizations, clubs, legislative bodies, and other deliberative assemblies in the United States. For more
on this point, see <http://mrsc.org/Home/Stay-Informed/MRSC-Insight/April-2013/How-Are-Abstentions-
Handled-When-Counting-Votes.aspx>.

19Though our model is very different, the uninformed members’ incentive to delegate the decision to the in-
formed is reminiscent of Feddersen and Pesendorfer’s (1996) swing voter. In elections, the uninformed achieve
such delegation by abstaining, since only those who vote at the polls decide the outcome. As mentioned in the
previous footnote, however, small assemblies may treat abstentions as No votes or even disallow them.
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and, in turn, her ex ante welfare before the vote is:

w(x, π; w0, λ) = ∑n
m=k p(x, π; m, λ)wA(x, π; m, λ) +∑k−1

m=0 p(x, π; m, λ)w0,

where p(x, π; m, λ) = (n
m)[φ(.)]

m[1− φ(.)]n−m.

As a result, the principal’s ex ante payoff under the equilibrium strategies is:

w∗(k, β, w0, λ) = w(θ∗(k, β, λ), π∗(k, λ); w0, λ). (16)

Clearly, w∗(.) is independent of β for κl(λ) ≤ k ≤ κh(λ). That is, the principal is neutral to

the committee composition for moderately strong majority rules, since gleaning no significant

news from the pivotal event, the informed members always vote sincerely in this region. To

determine how w∗(.) changes with β for the remaining, more extreme majority rules, we

consider an auxiliary problem, much like (8), in which given π∗(.), the principal optimally

sets the cutoff for the informed experts:20

θ̃
o
(k, w0, λ) = arg max

x∈[θ,θ]
w(x, π∗(k, λ); w0, λ). (17)

Lemma 4 Let κ̃o(w0, λ) = κh(λ) + nw0

E+[0,1;λ]−E−[0,1;λ] . Then,

sgn
[
θ̃

o
(k, w0, λ)

]
= sgn

[
κ̃o(w0, λ)− k

]
.

Moreover,

(a) κ̃o(.) is strictly increasing in w0 and strictly decreasing in λ,

(b) κ̃o(w0, λ) ≥ κh(λ),

(c) κ̃o(w0, 1) = κo(w0).

Lemma 4 mimics Lemma 2. Unlike the optimal cutoff θo for an all informed committee,

however, θ̃
o

need not be unique since, as alluded to above, E+[x, π; λ] and E−[x, π; λ] need

not be monotonic in x. Nevertheless, from Proposition 4 and Lemma 4, we prove Proposition

C1 in the appendix. The following characterization of the optimal composition, which is

depicted in Figure 5, is then immediate.

20Note that in (17), the principal does not choose π in the auxiliary problem, but this is not needed to establish
the optimal composition given that π∗ does not depend on β.
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Proposition 5 (Optimal composition) Let β̃
o
(k, w0, λ) = arg maxβ∈[0,1] w

∗(k, β, w0, λ). Then,

β̃
o
(k, w0, λ)



= 0 if k < κl(λ)

∈ [0, 1] if κl(λ) ≤ k ≤ κh(λ)

= 1 if κh(λ) < k ≤ κ̃o(w0, λ)

= β̃(k, w0, λ) ∈ [0, 1) if κ̃o(w0, λ) < k ≤ n

.

where β̃(.) = w0

w0−θ̃
o
(k,w0,λ)

uniquely solves: θ̃
o
(k, w0, λ) = θ∗(k, β, λ). Moreover, β̃(.) is strictly

decreasing in k and λ, and strictly increasing in w0.

Proposition 5 extends Corollary 1. The key difference is that when the committee is imper-

fectly informed, the principal is neutral to its composition for a nontrivial set of majority rules:

κl(λ) ≤ k ≤ κh(λ). In other words, the composition of an imperfectly informed committee is

important to the principal only for extreme voting rules such as the unanimity.

5.2 Optimally informed committee

In light of Lemma 3, Proposition 5 further implies that the principal has less influence over

a less informed committee through its composition: as λ decreases, the dark region between

κl(λ) and κh(λ) in Figure 5 grows. This observation raises the following question: does the

principal prefer a fully informed committee, i.e., λ = 1? Interestingly, not always. The next

proposition shows that the principal may prefer some uninformed members in the committee

when its composition is suboptimal and the majority requirement is extreme.
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Proposition 6 (Optimal information) Let β = 1 and λo ∈ arg maxλ∈[0,1] w∗(k, 1, w0, λ). Also,

let κ∗ be an integer. Then,

λo


= 1, if κ∗ ≤ k ≤ κo(w0) + 1− F(0)

6= 1, otherwise.

In particular, λo 6= 1 for k = n if and only if w0 <
(

1− 1
nF(0)

)
E+[0].

To understand Proposition 6, recall that informed experts vote sincerely, θ∗ = 0, when

they are the most partisan, β = 1. Such nonstrategic voting is suboptimal for the principal

except for the knife-edge voting rule k = κo(w0). Refer to Figure 3 (with a horizontal Equi-

librium line). Note that under the unanimity rule, k = n, informed experts over-reject the

alternative, θo < θ∗. Intuitively, under the unanimous agreement, a single informed expert

with a slightly negative signal can vote down an otherwise high quality alternative. To miti-

gate the problem of over-rejection, the principal optimally introduces uninformed members,

λo 6= 1, since, by Proposition 4, she expects them to accept the alternative and delegate the

decision to the informed. The principal can achieve her objective by limiting the committee’s

access to information or the time to process it before the vote. While lowering the quality

of the committee’s decision, the uninformed members increase the alternative’s probability

of approval. A similar argument also explains why the principal prefers an imperfectly in-

formed committee when the voting rule is a dictatorship, k = 1. Unlike with the unanimity,

though, informed experts over-accept the alternative under this rule, θo > θ∗, which the un-

informed members help alleviate by rejecting it in equilibrium. Proposition 6 shows that the

intuition from the two extreme voting rules carries over to less extreme ones depending on

the parameter values. For intermediate voting rules, however, the principal wants all com-

mittee members to be informed, i.e., λo = 1. Although, as is clear from Figure 3, the problem

of over-rejection or over-acceptance is also present under intermediate voting rules, it is not

severe enough for the principal to lower the quality of the decision.

Proposition 6 suggests that when the principal cannot introduce uninformed members

to the committee (perhaps, limiting information about the alternative is infeasible), she may

optimally exclude some informed experts from the decision. That is, the principal may con-

sult fewer experts than the alternative requires for a fully informed decision. Our last result

demonstrates this possibility.
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Proposition 7 (Optimal committee size) Let β = λ = 1. Then, for k = 1 (dictatorship) and

k = m (unanimity), there is a threshold n∗k < ∞ such that the optimal committee excludes some

experts, i.e., mo < n, if and only if n > n∗k . Moreover, if k =
⌊m+1

2

⌋
(simple majority), n is odd, and

F(0) = 1
2 , then the optimal committee includes all experts, i.e., mo = n.

The intuition behind Proposition 7 is similar to Proposition 6. Consider, for instance, the

unanimity rule. Proposition 7 shows that when the number of informed experts is sufficiently

large, the principal excludes some from the committee to attenuate the over-rejection prob-

lem. The principal may also appoint a smaller committee of the informed experts under a

dictatorship rule to alleviate the over-acceptance problem. Under the simple majority rule,

however, the optimal committee includes all informed experts. Under this rule, the problem

of over-acceptance is not severe enough for the principal to risk a less informed decision. It is

readily verified that in Example 1 above, the optimal committee size would be mo = 1 for a

dictatorship, mo = n = 11 for the simple majority, and mo ∈ {7, 8} for the unanimity.

Together, Propositions 6 and 7 reveal that information design for the committee can be as

valuable a tool for the principal as its composition. As such, it relates to several studies dis-

cussed in the Introduction, especially Caillaud and Tirole (2007) and Bardhi and Guo (2018).

In different settings, these authors also discover that a committee may be best persuaded to

approve an alternative by selectively informing some of its members and relying on rubber-

stamping of the uninformed. We add to their insights by highlighting the importance of the

majority rule as well as the committee design.

6 Conclusion

Decision-making by committee is a staple of democratic organizations. While organizations

often pre-commit to the voting rule, be it simple majority or unanimity, they are flexible in

appointing the members of a specific committee. Such flexibility appears especially relevant

when committee members are experts with specialty bias: each can evaluate one attribute

of the alternative but is also biased toward it. In this paper, building on the recent models

of collective decision-making with interdependent payoffs, we investigate how a status quo

biased principal or planner chooses the optimal composition of a committee.

While it is intuitive that a status quo biased principal would appoint biased experts, we

show that the optimal specialty bias would depend crucially on the majority rule. If a weak

majority is required for the alternative’s approval, the principal prefers the least biased mem-
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bers, whereas if the majority requirement is moderate, she prefers the most biased. And for

the remaining majority rules, those closer to unanimity, the principal prefers modestly biased

members. The intuition behind such nonmonotonicity comes from the fact that the majority

rule determines how much a committee member learns from the pivotal event in equilib-

rium, and his specialty bias (or the degree of payoff interdependence) determines how much

he cares about this event to ignore his evaluation. Hence, by choosing its composition, the

principal chooses the amount of strategic voting in the committee to implement her optimal

approval standard.

By extending the analysis, we have found that the committee composition is less impor-

tant when some members can be uninformed. The reason is that learning little from the

pivotal event in this case, informed members vote less strategically, regardless of their spe-

cialty bias. Nevertheless, when the committee composition is not optimal, we show that the

principal may prefer some members to be uninformed, perhaps by limiting the committee’s

access to information or rushing the vote on the alternative. While lowering the quality of the

decision, the uninformed members help correct for the alternative’s probability of approval

since, in equilibrium, they tend to delegate the decision to the informed. We have also found

that when she cannot restrict the experts’ access to information, the principal may optimally

exclude some from the committee. That is, the principal may use fewer experts than required

for a fully informed decision on the alternative.
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Appendix A: Proofs for Section 3

In the appendix, the subscripts of functions refer to partial derivatives.

Proof of Lemma 1. Using (3), define V(x; k, β) = vA(x; x, k, β). Note that V(x; k, 1) = x,

which, from (4), implies that θ∗ = 0 is the unique equilibrium for β = 1.

Next, suppose β < 1. Since E−[x] < E+[x], V(x; k, β) is strictly increasing in k. Thus,

given E[θ] = 0, we have

V(θ; k, β) ≤ V(θ; n, β) = [1− (n− 1)
1− β

n
]θ < 0

and

V(θ; k, β) ≥ V(θ; 1, β) = [1− (n− 1)
1− β

n
]θ > 0.

In addition, Vx(x; k, β) > 0 since, with appropriate limit arguments for x = θ and θ,

E+′[x] =
f (x)

1− F(x)
(E+[x]− x) > 0 and E−′[x] =

f (x)
F(x)

(x− E−[x]) > 0. (A-1)

From these three facts, there exists a unique (and interior) solution, θ∗(k, β) ∈ (θ, θ), to

V(x; k, β) = 0, which also constitutes an equilibrium by (4).

Proof of Proposition 1. Let β < 1. Then, by Lemma 1, θ∗(k, β) ∈ (θ, θ) for all β and k. To

prove part (a), note that

F(θ∗)E−[θ∗] + (1− F(θ∗))E+[θ∗] = E[θ] = 0

by the law of iterated expectations. Since F(θ∗) ∈ (0, 1) and E−[θ∗] < E+[θ∗], it follows that

E−[θ∗] < 0 < E+[θ∗].

Next, recall from the previous proof that V(x; k, β) is strictly increasing in x and in k.

Moreover,

V(θ∗(k, β); k, β) = 0. (A-2)

Thus, θ∗(k, β) is strictly decreasing in k, as claimed in part (b).

To prove part (c), we implicitly differentiate (A-2) with respect to β and find

θ∗β(.) = −
Vβ(θ

∗(.), .)
Vx(.)

.

Simple algebra shows Vβ(θ
∗(.), .) = θ∗(.)

1−β . Since Vx(.) > 0 and β < 1, we conclude that

sgn
[
θ∗β(k, β)

]
= sgn [−θ∗(k, β)] .
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Finally, treating k as a continuous variable and solving V(0; k, β) = 0 for k, we find

κ∗ =
E+[0]− nE−[0]
E+[0]− E−[0]

. (A-3)

Note that

F(0) =
E+[0]

E+[0]− E−[0]
, (A-4)

since F(0)E−[0] + (1− F(0))E+[0] = E[θ] = 0 by the law of iterated expectations. Substituting

from (A-4), (A-3) reduces to:

κ∗ = 1+ (n− 1)[1− F(0)], (A-5)

as defined in the proposition. Clearly, θ∗(κ∗, β) = 0. Hence, by part (b), θ∗(k, β) > 0 for

k < κ∗, and θ∗(k, β) < 0 for k > κ∗. Equivalently stated,

sgn [−θ∗(k, β)] = sgn[k− κ∗],

proving part (c).

Before proving Corollary 1 and Lemma 2, we record two auxiliary lemmas.

Lemma A1. Let wA(x, k) = ∑n
m=k p(x; m, n)wA(x, m) and P(x, k) = ∑n

m=k p(x; m, n) denote

the principal’s expected payoff from the alternative, and the probability of its acceptance, respectively,

where p(x; m, n) = (n
m)[1− F(x)]m[F(x)]n−m is the binomial probability. Then,

(a) Px(x, k) = −n f (x)p(x; k− 1, n− 1)

(b) wA(x, k) = p(x; k− 1, n− 1)
∫ θ

x θdF(θ)

(c) wA
x (x, k) = Px(x,k)

n {x+ (k− 1)E+[x] + (n− k)E−[x]}.

Proof. For conciseness, let φ = 1− F(x) in this proof. Part (a) follows because

∂

∂φ

(
n

∑
i=k

(
n
i

)
φi(1− φ)n−i

)
= n

(
n− 1
k− 1

)
φk−1(1− φ)n−k.

For part (b), we re-write

wA(x; k, n) = Λ(φ, x, k, n)

=
n

∑
i=k

(
n
i

)
φi(1− φ)n−i

[
iE+(x) + (n− i)E−(x)

n

]

=
n

∑
i=k

(
n
i

)
φi(1− φ)n−i

 i
n

∫ θ
x θdF(θ)

φ
+

n− i
n

∫ x
θ θdF(θ)

1− φ

 .
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Since
i
n

(
n
i

)
=

(
n− 1
i− 1

)
,

n− i
n

(
n
i

)
=

(
n− 1

i

)
and

n

∑
i=k

(
n− 1
i− 1

)
φi−1(1− φ)n−i =

n−1

∑
i=k−1

(
n− 1

i

)
φi(1− φ)n−1−i,

we have

Λ(φ, x, k, n) =
∫ θ

x
θdF(θ)

[
n−1

∑
i=k−1

(
n− 1

i

)
φi(1− φ)n−1−i

]

+
∫ x

θ
θdF(θ)

[
n−1

∑
i=k

(
n− 1

i

)
φi(1− φ)n−1−i

]

=

(∫ x

θ
θdF(θ) +

∫ θ

x
θdF(θ)

)[
n−1

∑
i=k

(
n− 1

i

)
φi(1− φ)n−1−i

]

+
∫ θ

x
θdF(θ)

[(
n− 1
k− 1

)
φk−1(1− φ)n−k

]
= E[θ]

n−1

∑
i=k

(
n− 1

i

)
φi(1− φ)n−1−i +

∫ θ

x
θdF(θ)

[(
n− 1
k− 1

)
φk−1(1− φ)n−k

]
.

Given that E[θ] = 0, we obtain the desired expression:

Λ(φ, x, k, n) =
(

n− 1
k− 1

)
φk−1(1− φ)n−k

∫ θ

x
θdF(θ) (A-6)

or equivalently,

wA(x, k) = p(x; k− 1, n− 1)
∫ θ

x
θdF(θ). (A-7)

To prove part (c), recall φ = 1− F(x) and differentiate (A-6) with respect to x:

wA
x (x, k) = Λφ(.)

∂φ

∂x
+Λx(.)

= − f (x)

[(
n− 1
k− 1

) [
(k− 1)φk−2(1− φ)n−k − (n− k)φk−1(1− φ)n−1−k

] ∫ θ

x
θdF(θ)

]

+

(
n− 1
k− 1

)
φk−1(1− φ)n−k(−x f (x)).

Since
∫ θ

x θdF(θ) = φE+(x), and φE+(x) + (1− φ)E−(x) = E[θ] = 0, we further have

Λφ(.)
∂φ

∂x
+Λx(.) = − f (x)

{(
n− 1
k− 1

)
φk−1(1− φ)n−k [(k− 1)E+(x) + (n− k)E−(x)

]
+

(
n− 1
k− 1

)
φk−1(1− φ)n−kx

}
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or equivalently,

wA
x (x; k) = − f (x)

(
n− 1
k− 1

)
φk−1(1− φ)n−k {(k− 1)E+(x) + (n− k)E−(x) + x

}
,

which, after substituting for φ = 1− F(x), produces the expression for wA
x (x; k) in part (c).

Lemma A2. w(x; k, w0) is strictly quasi-concave or single-peaked in x.

Proof. By Lemma A1, the ex ante payoff in (7) can be re-stated:

w(x; k, w0) = wA(x, k) + [1− P(x, k)]w0. (A-8)

Differentiating with respect to x and substituting from Lemma A1, we find

wx(x; k, w0) = wA
x (x, k)− Px(x, k)w0

=
Px(x, k)

n
{

x+ (k− 1)E+[x] + (n− k)E−[x]− nw0}
=

Px(x, k)
n

(
H(x, k)− nw0) (A-9)

where

H(x, k) = x+ (k− 1)E+[x] + (n− k)E−[x]. (A-10)

Clearly, Hx(x, k) > 0 since E+′[x] > 0 and E−′[x] > 0 by (A-1). Moreover, since Px(x, k) < 0

by Lemma A1(a), further differentiation yields

sgn
[

wxx(x; k, w0)
∣∣
wx(x;.)=0

]
= sgn [−Hx(x, k)] < 0.

Hence, w(x; k, w0) is strictly quasi-concave or single-peaked in x.

Proof of Corollary 1. Let β < 1. Simple differentiation shows

∂P(θ∗(k, β), k)
∂β

= Px(θ
∗(k, β), k)× θ∗β(k, β).

Since Px(.) < 0 by Lemma A1(a), Proposition 1(c) implies

sgn
[

∂P(θ∗(k, β), k)
∂β

]
= sgn

[
−θ∗β(k, β)

]
= sgn [κ∗ − k] .
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Appendix B: Proofs for Section 4

Proof of Lemma 2. As mentioned in the text, the existence of a solution to (8) follows

because w(x; .) is continuous and the feasible set, [θ, θ], is compact. Its uniqueness follows

from Lemma A2. To establish when the solution is interior, i.e., θo ∈ (θ, θ), note from (A-9)

that

sgn
[
wx(x; k, w0)

]
= sgn

[
nw0 − H(x, k)

]
, (B-1)

since Px(x, k) < 0 by Lemma A1(a). Moreover, since θ < 0 < θ,

H(θ, k) = (n− k+ 1)θ < 0 and H(θ, k) = kθ > 0.

Thus,

wx(θ; k, w0) > 0 and sgn
[
wx(θ; k, w0)

]
= sgn

[
nw0 − kθ

]
.

From here (and the single-peakedness by Lemma A2), θo ∈ (θ, θ) if and only if wx(θ; k, w0) <

0, or equivalently w0 < k
n θ. As such, θo = θ whenever w0 ≥ k

n θ.

Proof of Proposition 2. Suppose w0 < θ
n . Then, w0 < k

n θ for all k. By Lemma 2, the

unique solution θo(k, w0) to (8) is interior, and by (B-1), it satisfies the following first-order

condition:

nw0 − H(x, k) = 0, (B-2)

where H(x, k) is defined in (A-10).

Note that Hx(x, k) > 0, as established in the proof of Lemma A2, and that H(x, k) is

strictly increasing in k given that E−[x] < E+[x]. Hence, (B-2) implies that θo(k, w0) is strictly

decreasing in k and strictly increasing in w0, as claimed in part (a).

To show part (b), first observe that

H(0, k) = (k− 1)E+[0] + (n− k)E−[0]

= k(E+[0]− E−[0])− E+[0] + nE−[0]

= (E+[0]− E−[0])
(

k− E+[0]
E+[0]− E−[0]

+ n
E−[0]

E+[0]− E−[0]

)
. (B-3)

Inserting (A-4) and (A-5) into (B-3), we find

H(0, k) = (E+[0]− E−[0]) (k− F(0)− n(1− F(0))

= (E+[0]− E−[0])(k− κ∗).
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Setting x = 0 in (B-2) and solving H(0, k) = nw0 for k, we obtain

κo(w0) = κ∗ +
nw0

E+[0]− E−[0]
.

Finally, since θo(κo(w0), w0) = 0 and the fact that θo(k, w0) is strictly decreasing in k by part

(a), we conclude that sgn
[
θo(k, w0)

]
= sgn

[
κo(w0)− k

]
.

Proof of Proposition 3. Let w(θ∗(k, β); k, w0) be the principal’s expected equilibrium

payoff. Recall from Lemma A2 above, which is depicted in Figure 2, that w(x; k, w0) is single-

peaked in x. In particular, wx(x; k, w0) > 0 for x < θo(k, w0), and wx(x; k, w0) < 0 for x >

θo(k, w0).

Suppose k ∈ [1, κ∗). Then, by Propositions 1(c) and 2(b), we have

0 < θ∗(k, β) ≤ θ∗(k, 0) = θo(k, 0) < θo(k, w0),

where the equality is due to (B-2) and the fact that (4) can be re-stated as: H(θ∗, k) = −n β
1−β θ∗.

Since θ∗ < θo, and θ∗β < 0 by Proposition 1(c), we have

d
dβ

w(θ∗; k, w0) = wx(θ
∗; k, w0)× θ∗β < 0.

Now suppose k ∈ (κ∗, κo(w0)]. Then, w(θ∗; k, w0) is strictly increasing in β since, in this

case,

θ∗(k, β) < 0 ≤ θo(k, w0),

but θ∗β > 0.

Last, suppose k ∈ (κo(w0), n]. In this case, the optimal voting can be implemented in

equilibrium for some β. To find it, we set θ∗(k, β) = θo(k, w0) and employ (B-2), simplifying

(4) to:

βθo(.) +
1− β

n
nw0 = 0

and yielding

β(k, w0) =
w0

w0 − θo(k, w0)
.

Since θo(.) < 0 and it is strictly decreasing in k, we have that β(k, w0) ∈ (0, 1) and it is

strictly decreasing in k. Moreover, since θ∗(k, β(.)) = θo(k, w0) (by definition); θ∗β(k, β) > 0

(by Proposition 1); and θo
w0(k, w0) > 0 (by Proposition 2), β(k, w0) is strictly increasing in w0.

Finally, since θ∗β(k, β) > 0,

sgn
[
θ∗(k, β)− θo(k, w0)

]
= sgn

[
β− β(k, w0)

]
.
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Hence, by Lemma A2, w(θ∗(k, β); .) is strictly increasing in β for β < β(k, w0), and strictly

decreasing in β for β > β(k, w0), as claimed.

Proof of Corollary 2. Let βo(k, w0) = arg maxβ∈[0,1] w(θ
∗(k, β); k, w0). Suppose k ∈ [1, κ∗).

Then, by Proposition 3, w(θ∗(k, β); .) is strictly decreasing in β, and thus βo(k, w0) = 0. For

k > κ∗, the corollary is also immediate from Proposition 3. For k = κ∗, we know from

Proposition 1(c) that θ∗(κ∗, β) = 0 for all β, so the principal is indifferent to the committee

composition, i.e., βo(κ∗, w0) ∈ [0, 1].

Before proving Corollary 3, we report the following result similar to Proposition 3.

Proposition B1. (negative status quo bias) Suppose w0 < 0. The principal’s ex ante equi-

librium payoff w(θ∗(k, β); k, w0) is strictly decreasing in β for k ∈ (κ∗, n] but strictly increasing for

k ∈ [κo(w0), κ∗). Finally, for k ∈ [1, κo(w0)), there is a unique cutoff β(k, w0) ∈ (0, 1) such that

her equilibrium payoff is strictly increasing in β for β < β(k, w0), and strictly decreasing in β for

β > β(k, w0).

Proof. By replacing w0 with −w0, the proof mimics that of Proposition 3. In particular, it

is evident from Lemma A2 that w(x; .) continues to be single-peaked except that κo(w0) < κ∗.

Proof of Corollary 3. As in Corollary 2, the result directly follows from Proposition B1.

Appendix C: Proofs for Section 5

Proof of Lemma 3. From (15), it is clear that κl(λ) is increasing, and κh(λ) is decreasing

in λ. Moreover, κl(1) = κh(1) = 1+ (n− 1)[1− F(0)], which is equal to κ∗ by (A-5). Finally,

κl(0) = 1 and κh(0) = n, as claimed.

The following lemma is useful in the proof of Proposition 4.

Lemma C1. E+[x, π; λ] and E−[x, π; λ] are both increasing in x if one of the following holds: (1)

x > 0 and π = 0, (2) x < 0 and π = 1, or (3) x = 0.

Proof. Using (9) and (10), we derive

∂

∂x
E+[x, π; λ] =

λ f (x)
φ(x, π; λ)

(E+[x, π; λ]− x) and
∂

∂x
E−[x, π; λ] =

λ f (x)
1− φ(.)

(x− E−[x, π; λ]).

Suppose x > 0 and π = 0. Then, clearly E+[x, 0; λ] > x and x > 0 > E−[x, 0; λ]. Next, if

x < 0 and π = 1, then E+[x, 1; λ] > 0 > x and x > E−[x, 1; λ]. In both cases, ∂
∂x E+[x, π; λ] > 0

and ∂
∂x E−[x, π; λ] > 0. Finally, if x = 0 , the claim trivially follows since E+[0, π; λ] > 0 >

E−[0, π; λ].
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In what follows, let

V(x, π; k, β, λ) = (β+
1− β

n
)x+

1− β

n
h(x, π; k, λ) (C-1)

where

h(x, π; k, λ) = (k− 1)E+[x, π; λ] + (n− k)E−[x, π; λ],

as defined in (11).

Proof of Proposition 4. Let β < 1. The equilibrium characterization is by construction.

First, suppose that h(θ∗, π∗; k, λ) = 0. Then, θ∗ = 0 by (12), and solving h(0, π∗; k, λ) = 0 for

π∗, we find π∗ =
k−1
n−1−λ(1−F(0))

1−λ . Since π∗ is strictly increasing in k, π∗ ∈ [0, 1] if and only if

κl(λ) ≤ k ≤ κh(λ) where κl(λ) and κh(λ) are as defined in (15).

Next, take k < κl(λ). Then, π∗ = 0 or 1. Suppose π∗ = 1. Then, h(θ∗, 1; k, λ) > 0, which,

from (12), implies θ∗ < 0. Now note the following two properties: (1) h(x, π; k, λ) is strictly

increasing in k since E+[x, π; λ] > E−[x, π; λ] for all x, and (2) by Lemma C1, h(x, 1; k, λ) is

strictly increasing in x for x ≤ 0. Therefore,

h(θ∗, 1; k, λ) < h(0, 1; κl(λ), λ) < h(0, 0; κl(λ), λ) = 0,

where the equality follows from the definition of κl(λ). Hence, h(θ∗, 1; k, λ) < 0, a contradic-

tion. This means that π∗ = 0 for k < κl(λ). Then, h(θ∗, 0; .) < 0 and, in turn, θ∗ > 0. To show

that for k < κl(λ), such an equilibrium exists and it is unique, note from (C-1) that

V(0, 0; k, β, λ) =
1− β

n
h(0, 0; k, λ)

=
1− β

n

(k− 1)

∫ θ
0 θdF(θ)
1− F(0)

+ (n− k)
λ
∫ 0

θ θdF(θ)

1− λ[1− F(0)]

 .

Since E[θ] = 0, we have
∫ 0

θ θdF(θ) = −
∫ θ

0 θdF(θ). As a result,

sgn [V(0, 0; k, β, λ)] = sgn
[

k− 1
1− F(0)

− (n− k)
λ

1− λ[1− F(0)]

]
= sgn

[
k− κl(λ)

]
< 0.

On the other hand,

V(θ, 0; k, β, λ) = (β+
1− β

n
)θ +

1− β

n
h(θ, 0; k, λ) > 0
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because θ > 0, E+[θ, 0; λ] > 0, and E−[θ, 0; λ] = 0, implying h(θ, 0; k, λ) > 0. Hence, there is

θ∗ ∈ (0, θ) that solves: V(θ∗, 0; k, β, λ) = 0. The solution is also unique since Vx(x, 0; k, β, λ) >

0 due to the fact that hx(x, 0; k, λ) for x > 0 by Lemma C1.

Finally, implicitly differentiating V(θ∗, 0; k, β, λ) = 0 with respect to β, we find that for

k < κl(λ),

θ∗β = −
Vβ(θ

∗, 0; k, β, λ)

Vx(θ
∗, 0; k, β, λ)

< 0,

where Vβ(.) > 0 since θ∗ > 0 and h(θ∗, 0; k, λ) < 0. Equivalently, sgn
[
θ∗β

]
= sgn [−θ∗] for

k < κl(λ), as claimed in part (b). Together with the fact that π∗ = 0 is independent of β, the

proof is complete for k < κl(λ).

A similar line of argument also proves the claims in the proposition for k > κh(λ). The

conclusions in parts (a) and (b) trivially hold for κl(λ) ≤ k ≤ κh(λ) since both π∗ and θ∗ are

independent of β in this region of k.

Proof of Lemma 4. We first show that κ̃o(w0, λ) = κh(λ) + nw0

E+[0,1;λ]−E−[0,1;λ] , as defined in

Lemma 4, uniquely solves

h(0, π∗(k, λ); k, λ) = nw0. (C-2)

To do so, let κ̃ be a solution to (C-2). We prove that κ̃ > κh. Suppose, to the contrary, that

κ̃ ≤ κh. In particular, suppose κ̃ ∈ [κl , κh]. Then, θ∗ = 0 by Proposition 4, and, in turn,

h(0, π∗(κ̃, λ); κ̃, λ) = 0 by (12), a contradiction. Next, suppose κ̃ < κl . Then, π∗(κ̃, λ) =

π∗(κl , λ) = 0 by Proposition 4, and because h(0, 0; k, λ) is strictly increasing in k, h(0, 0; κ̃, λ) <

h(0, 0; κl , λ) = 0 < nw0, a contradiction. Hence, κ̃ > κh, which implies π∗(κ̃, λ) = 1. Given

that h(0, 1; k, λ) is also strictly increasing in k , there is a unique k that solves h(0, 1; k, λ) = nw0.

Recalling, by definition, that

h(0, 1; k, λ) = (k− 1)E+[0, 1; λ] + (n− k)E−[0, 1; λ],

we find

κ̃o(w0, λ) =
E+[0, 1; λ]− nE−[0, 1; λ]

E+[0, 1; λ]− E−[0, 1; λ]
+

nw0

E+[0, 1; λ]− E−[0, 1; λ]
.

Though not obvious from the definition of κh(λ) in (15), it can also be written as: κh(λ) =
E+[0,1;λ]−nE−[0,1;λ]
E+[0,1;λ]−E−[0,1;λ] since it solves: h(0, 1; κh, λ) = 0. Thus, κ̃o(w0, λ) = κh(λ) + nw0

E+[0,1;λ]−E−[0,1;λ] ,

as claimed. From here, parts (a), (b), and (c) follow.

Finally, we prove that sgn
[
θ̃

o
(k, w0, λ)

]
= sgn

[
κ̃o(w0, λ)− k

]
. To this end, recall the fol-

lowing definition from the text:

w(x, π∗(k, λ); w0, λ) = wA(x, π∗(k, λ); k, λ) + (1− P(x, π∗(k, λ); k, λ))w0,
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where

wA(x, π∗(k, λ); k, λ) = ∑n
m=k p(x, π∗(k, λ); m, λ)wA(x, π∗(k, λ); m, λ)

and

P(x, π∗(k, λ); k, λ) = ∑n
m=k p(x, π∗(k, λ); m, λ).

By mimicking the proof of Lemma A1(b), it is readily established that

wA(x, π∗(k, λ); k, λ) = λp(x, π∗(k, λ); k− 1, n− 1, λ)
∫ θ

x
θdF(θ). (C-3)

Moreover, by mimicking the proof of Lemma A1(c), we find that

wA
x (x, π∗(k, λ); k, λ) = λ

Px(x, π∗(k, λ); k, λ)

n
×{

x+ (k− 1)E+[x, π∗(k, λ); λ] + (n− k)E−[x, π∗(k, λ); λ]
}

.

Differentiating w(x, π∗(k, λ); w0, λ) with respect to x as in the proof of Lemma A2, we, there-

fore, obtain

sgn [wx(x; .)] = sgn
[
nw0 − x− h(x, π∗(k, λ); k, λ)

]
. (C-4)

Suppose that for a given k, θ̃
o
(.) solves wx(x; .) = 0, or, equivalently,

θ̃
o
(.) = nw0 − h(θ̃

o
(.), π∗; k, λ). (C-5)

To establish that θ̃
o
(.) > 0 for k < κ̃o, suppose, to the contrary, that θ̃

o
(.) < 0 for some

k′ < κ̃o (since θ̃
o
(.) = 0 if and only if k = κ̃o). Then, θ̃

o
(k, w0, λ) < 0 for any k < κ̃o.

Thus, by (C-5), h(θ̃
o
(k, w0, λ), 1; k, λ) > nw0 for any k ∈ (κh, κ̃o). Now note the following

two properties for h(x, π; k, λ) for k in (κh, κ̃o): (1) h(x, π; k, λ) is strictly increasing in k; and

(2) by Lemma C1, h(x, 1; k, λ) is strictly increasing in x for x ≤ 0. These facts imply that

h(θ̃
o
(k, w0, λ), 1; k, λ) < h(0, 1; κ̃o, λ) = nw0, a contradiction. As a result, θ̃

o
(.) > 0 for every

k < κ̃o.

Next consider k > κ̃o. Given that hx(0, 1; κ̃o, λ) > 0, and h(x, π; k, λ) is strictly increas-

ing in k, we have θ̃
o
(k, w0, λ) < 0 for k close enough to κ̃o. Moreover, since, by Lemma C1,

hx(x, 1; k, λ) > 0 for x ≤ 0, we have θ̃
o
(.) > 0, as desired.

To prove Proposition 5, we state and prove Proposition C1, which generalizes Proposition

3. The following lemma is useful in doing so.

Lemma C2. w(x, π∗(k, λ); w0, λ) is single-peaked in x if k ≤ κl(λ) or k ≥ κ̃o(w0, λ).
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Proof. Suppose k ≤ κl(λ) or k ≥ κ̃o(w0, λ). Then, by Proposition 4, π∗ = 0 and π∗ = 1,

respectively. By Lemma C1, hx(x, π∗; k, λ) > 0 for: (1) k ≤ κl(λ) and x ≥ 0, or (2) k ≥
κ̃o(w0, λ) and x ≤ 0. Using (C-4), we, therefore, have

sgn
[

wxx(x; .)|wx(x;.)=0

]
= sgn [−(hx(.)+1)] < 0,

proving the single-peakedness.

Proposition C1. For k ∈ [1, κl(λ)), w∗(.) is strictly decreasing in β whereas for k ∈ (κh(λ), κ̃o(w0, λ)],

w∗(.) is strictly increasing in β. Moreover, for k ∈ (κ̃o(w0, λ), n], there is a unique cutoff β̃(k, w0, λ) ∈
(0, 1) such that w∗(.) is strictly increasing in β for β < β̃(.) and strictly decreasing in β for β > β̃(.),

where β̃(.) is strictly increasing in w0. Finally, for k ∈ [κl(λ), κh(λ)] we have that w∗(.) is indepen-

dent of β.

Proof. Recall from (16) that w∗(k, β, w0, λ) = w(θ∗(k, β, λ), π∗(k, λ); w0, λ). Suppose k ∈
[1, κl(λ)). Then, by Proposition 4 and Lemma 4, we have

0 < θ∗(k, β, λ) ≤ θ∗(k, 0, λ) = θ̃
o
(k, 0, λ) < θ̃

o
(k, w0, λ).

Since θ∗β(.) < 0 in this region of k, the single-peakedness identified in Lemma C2 implies that

w∗(.) is strictly decreasing in β. Now suppose k ∈ (κh(λ), κ̃o(w0, λ)]. Then,

θ∗(k, β, λ) < 0 ≤ θ̃
o
(k, w0, λ).

Given that (i) by Lemma C1, hx(x, 1; k, λ) > 0 whenever x ≤ 0, and (ii) h(x, 1; k, λ) is in-

creasing in k, we have that wx(x; .) is strictly increasing in x. Thus, since θ∗(k, β, λ) < 0 and

θ∗β(k, w0, λ) > 0, we conclude that w∗(.) is strictly increasing in β.

Next, suppose k ∈ (κ̃o(w0, λ), n]. Then, by Proposition 4, π∗(k, λ) = 1, and from (C-4),

θ̃
o
(k, w0, λ) solves

x+ h(x, 1; k, λ) = nw0. (C-6)

By Lemma C1, the left-hand side of (C-6) is strictly increasing in x, k, and λ. Hence, θ̃
o
(.) is

strictly decreasing in k and λ, and strictly increasing in w0. Now set θ∗(k, β, λ) = θ̃
o
(k, w0, λ)

in (12) and use (C-6) to find

β̃(k, w0, λ) =
w0

w0 − θ̃
o
(k, w0, λ)

.

Clearly, since θ̃
o
(.) < 0, so β̃(.) ∈ (0, 1). Moreover, β̃(.) is strictly decreasing in k and λ. To see

that it is strictly increasing in w0, simply recall that θ∗(k, β, λ) = θ̃
o
(k, w0, λ) and the fact that
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θ∗β(k, w0, λ) > 0 in this region. In sum, we find

sgn
[
θ∗(k, β, λ)− θ̃

o
(k, w0, λ)

]
= sgn

[
β− β̃(k, w0, λ)

]
.

Hence, by the single-peakedness identified in Lemma C2, w∗(.) is strictly increasing in β for

β < β̃(.) and strictly decreasing in β for β > β̃(.), as claimed. Finally, for k ∈ [κl(λ), κh(λ)],

we have from Proposition 4 that θ∗(k, β, λ) = 0 for all β. Therefore, w∗(.) is independent of β.

Proof of Proposition 5. Immediate from Proposition C1.

Proof of Proposition 6. Let β = 1. Then, by (12), θ∗(k, 1, λ) = 0 for all λ. From (16) and

(C-3), the principal’s ex ante payoff can be written:

w∗(k, 1, w0, λ) = w(0, π∗; w0, λ)

= λp(φ∗; k− 1, n− 1)S(0) + (1− P(φ∗, k))w0

= ω(λ)

where π∗ = π∗(k, λ), φ∗ = λ[1− F(0)] + (1− λ)π∗, p(φ; k− 1, n− 1) = (n−1
k−1)φ

k−1(1− φ)n−k,

S(0) =
∫ θ

0 θdF(θ), and P(φ, k) = ∑n
m=k p(φ; m, n).

Differentiating with respect to λ and using the fact that Pφ(.) = np(.) from Lemma A1, we

find

ω′(λ) = p(.)S(0) + λpφ(.)φ∗λS(0)− Pφ(.)φ∗λw0 (C-7)

= p(.)
[
S(0)− nφ∗λw0]+ λpφ(.)φ∗λS(0)

= p(.)
[

S(0)− nφ∗λw0 + λ
pφ(.)
p(.)

φ∗λS(0)
]

,

where
pφ(.)
p(.)

=
k− 1

φ∗
− n− k

1− φ∗
.

To establish the result, we prove three claims about the sign of ω′(λ) across different values

of k.

Claim 1. (a) ω′(λ) < 0 if k > κ̃o(w0, λ) + 1− λF(0), and (b) ω′(λ) > 0 if κh(λ) < k <

κ̃o(w0, λ) + 1− λF(0).

Proof. First, recall from Lemma 4 that

κ̃o(w0, λ) = κh(λ) +
nw0

E+[0, 1; λ]− E−[0, 1; λ]
,
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where E+[0, 1; λ]− E−[0, 1; λ] = λS(0)
(

1
1−λF(0) +

1
λF(0)

)
and κh(λ) = 1+ (n− 1)[1− λF(0)]

from (10) and (15), respectively.

Next, suppose k > κh(λ). Proposition 4 implies that π∗ = 1 and, in turn, φ∗ = 1− λF(0)

and φ∗λ = −F(0). Then, (C-7) implies that ω′(λ) < 0 if and only if

k− 1
1− λF(0)

− n− k
λF(0)

>
1
λ

[
1

F(0)
+

nw0

S(0)

]
or, after some algebra, if and only if

k > κ̃o(w0, λ) + 1− λF(0).

Part (b) similarly follows. �
Claim 2. ω′(λ) > 0 if κl(λ) ≤ k ≤ κh(λ).

Proof. For κl(λ) ≤ k ≤ κh(λ), Proposition 4 reveals that φ∗ = k−1
n−1 , which implies φ∗λ = 0.

Hence, from (C-7),

ω′(λ) = p(.)S(0) > 0. �

Claim 3. Suppose k < κ∗. Then, ω′(1) < 0.

Proof. Suppose k < κ∗, and recall that κ∗ = κl(1). From Proposition 4, π∗ = 0 and, in

turn, φ∗ = λ[1− F(0)] and φ∗λ = 1− F(0). Then, (C-7) implies that ω′(1) < 0 if and only if

n− k
F(0)]

− k− 1
1− F(0)

>
1

1− F(0)
− nw0

S(0)

or, equivalently,

k < κ = κ∗ − F(0)
(

1− nw0

E+[0]

)
.

Note that κ ≥ κ∗ − F(0), implying κ > κ∗ − 1. Since κ∗ is assumed to be integer, ω′(1) < 0

for k < κ∗. �
Armed with Claims 1-3, the conditions for λo = 1 and λo 6= 1 follow from Lemmas 3 and

4. Then, for k = n, we have that λo 6= 1 if and only if κo(w0) + 1− F(0) < n. Substituting for

κo(w0) from Proposition 2, straightforward algebra reveals that λo 6= 1 for k = n if and only

if wo <
(

1− 1
nF(0)

)
E+[0].

Proof of Proposition 7. Let λ = 1 so that all experts are informed. Also let the princi-

pal appoint m ∈ {1, ..., n} experts to the committee. Extending Lemma A1 and abusing the

notation to introduce m, her expected payoff is found to be

w(x; k, m) =
m
n

p(x; k− 1, m− 1)
∫ θ

x
θdF(θ) + (1− P(x; k, m))wo. (C-8)
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Now suppose β = 1. Then, θ∗ = 0. For k = 1 (dictatorship), the optimal committee size

solves

mo = arg max
1≤m≤n

w(0; 1, m).

Note that p(0; 0, m − 1) = Fm−1(0) and P(0; 1, m) = 1 − Fm(0). Thus, since
∫ θ

0 θdF(θ) =

(1− F(0))E+[0],

w(0; 1, m) =
m
n

Fm−1(0)(1− F(0))E+[0] + Fm(0)w0.

Treating m as a continuous variable and differentiating with respect to m, we obtain

∂w(0; 1, m)
∂m

= ln(F(0))Fm−1(0)(1− F(0))
(

m+
1

ln F(0)
+

F(0)nw0

(1− F(0))E+[0]

)
= ln(F(0))Fm−1(0)(1− F(0))

E+[0]
n

(m−mo)

where

mo = − 1
ln F(0)

− F(0)
(1− F(0))E+[0]

nw0.

Moreover,
∂2w(0; 1, m)

∂m2

∣∣∣∣
m=mo

= ln (F(0)) Fmo−1(0)(1− F(0))
E+[0]

n
< 0.

Hence, the optimal committee size is

mo = min{mo, n}.

Straightforward algebra reveals that mo < n if and only if mo < n, or

n > n∗1 =
− 1

ln F(0)

1+ F(0)nw0

(1−F(0))E+[0]

.

Clearly, 0 < n∗1 < ∞.

Next, for k = n (unanimity),

w(0; m, n) =
m
n
(1− F(0))mE+[0] + [1− (1− F(0))m]w0.

In this case, we find

mo = − 1
ln (1− F(0))

+
w0

E+[0]
n.

Hence, mo < n if and only if mo < n, or

n > n∗n =
− 1

ln(1−F(0))

1− w0

E+[0]

.
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Note that 0 < n∗n < ∞ if w0 < E+[0]. The latter condition is satisfied; otherwise, the principal

would not appoint a committee for w0 ≥ E+[0].

To prove the last part of the proposition, suppose that k =
⌊m+1

2

⌋
(the simple majority), n

is odd, and F(0) = 1
2 . To establish mo = n, we first show that mo cannot be an even integer.

To see this, pick an even integer m1 ≤ n− 1, and let m2 = m1 + 1. Then,

k1 = k2 − 1 =
m1

2
,

and thus,
p(0; k1 − 1, m1 − 1)m1

n
p(0; k2 − 1, m2 − 1)m2

n
=

m1

m1 + 1
< 1. (C-9)

Moreover, since m1 is even and F(0) = 1
2 ,

P(0; k2, m2) =
1
2
< P(0; k1, m1). (C-10)

From (C-9) and (C-10), (C-8) implies that

w(0; k1, m1) < w(0; k2, m2).

Thus, the optimal committee size mo must be odd.

Next suppose that m1 ≤ n− 2 is odd and m2 = m1 + 2. Clearly, k1 = bm1+1
2 c =

m1+1
2 and

k2 = k1 + 1. Thus, after some algebra,

p(0; k1 − 1; m1 − 1)m1
n

p(0; k2 − 1; m2 − 1)m2
n

=
(

m1−1
m1+1

2 −1
)
( 1

2

)m1−1

(
m1+1
m1+1

2
)
( 1

2

)m1+1
m1

m1 + 2

=
m1 + 1
m1 + 2

< 1.

Moreover, P(0; k1, m1) = P(0; k2, m2) =
1
2 , implying that

w(0; k1, m1) < w(0; k2, m2).

Hence, mo must be odd and n− 1 ≤ mo ≤ n. Given that n is odd, mo = n, as claimed.
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