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Abstract

While people on all sides of the political spectrum were amazed that Don-

ald Trump won the Republican nomination this paper demonstrates that

Trump’s victory was not a crazy event but rather the equilibrium outcome

of a multi-candidate race where one candidate, the buffoon, is viewed as

likely to self-destruct and hence unworthy of attack. We model such pri-

maries as a truel (a three-way duel), solve for its equilibrium, and test its

implications in the lab. We find that people recognize a buffoon when they

see one and aim their attacks elsewhere with the unfortunate consequence

that the buffoon has an enhanced probability of winning. This result is

strongest amongst those subjects who demonstrate an ability to best re-

spond suggesting that our results would only be stronger when this game

is played by experts and for higher stakes.
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1 Introduction

People on all sides of the political spectrum were amazed that Donald Trump

won the Republican nomination for president of the United States in 2016. This

amazement turned to complete disbelief when he was thereafter elected president.

The question then arises as to how this all happened. How did a political outsider

with a flamboyant personality and a flamboyant past defeat a field of well funded

political veterans some with outstanding pedigrees?

This is the question we ask in this paper and the answer we provide is simple.

During the early stages of the Republican primaries all the contestants viewed

Mr. Trump as a buffoon, or a candidate who, if left to his own devices, would

soon implode or self destruct leaving his supporters to back another candidate,

hopefully them. For a mainstream candidate the strategy was to leave “The Don-

ald” alone and use precious airtime to attack the other mainstream candidates.

Why waste scarce resources attacking an opponent who is likely to implode on

his own? Why not save one’s powder for others?1

This logic obviously failed since by the time the Republican field realized

that Trump was not going to implode, it was too late and he was the clear front

runner upon whom all other candidates eventually aimed their fire. Ironically, as

we will see in this paper, this outcome is in line with the equilibrium prediction

of a simple model where candidates in a political contest have to choose who to

attack. In the equilibrium it can happen that poor candidates who are likely to

self destruct—candidates to whom we shall refer as buffoons—do end up with

excellent chances of winning the contest.

The paper proposes a theoretical model and uses a laboratory experiment to

test the validity of our results. We model the Republican primary as a truel, a

three-way duel, between conventional candidates and buffoons (i.e., candidates
1This clearly worked in the case of Ben Carson who, while a front runner at some point, did

destroy his own chances of gaining the nomination.

2



with positive implosion probabilities). Each candidate has one shot with given

accuracy that he can fire at any candidate he wants and if there is only one person

standing at the end, that person gets the nomination. If more candidates survive

they share the survival benefits equally (perhaps in a runoff duel). While we do

examine the general model where each candidate is characterized by a shooting

accuracy and an implosion probability, we will be most interested in the case

where only one candidate has a chance of imploding — the “buffoon.” As we

will show, in equilibrium the other candidates do not aim at the buffoon but

rather at their more stable competitors. As a result, in equilibrium, the buffoon

can achieve a comparatively high survival probability, especially, if his opponents

are good shooters. The buffoon may even be the player with the highest survival

probability and if he does not implode the nomination is very likely to be his.

Our experimental results offer support for our theory. In those treatments

where buffoons exist they tend to be attacked far less than similar non-buffoon

candidates in our other treatments. In other words, as our theory predicts, if

we were to transform a candidate from a non-buffoon to a buffoon in a ceteris

paribus manner by increasing her implosion probability, that candidate draws

significantly less fire from the other candidates than her non-buffoon counterpart.

This result is nuanced, however. The theory seems to work best among

a subset of subjects who prove themselves most adroit at best responding to

the actions of computerized competitors in a second part of our experiment.

Above-median subjects are more likely not to attack the buffoon when that is

the equilibrium outcome than below-median subjects. We take this result as

support for the external validity of our results in that, in the real world, we

would expect political candidates to hire experts to advise them and the greater

sophistication of these advisors only serves to enhance the predictions of the

theory.

The remainder of the paper proceeds as follows. In Section 2 we will present
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some background of the Republican primaries and demonstrate that Trump was

indeed perceived as a candidate likely to self destruct and hence not worthy of

attack. In Section 3 we discuss some of the literature related to primary elec-

tions. In Section 4 we introduce our model and discuss its equilibrium properties.

Section 5 introduces our experimental design and the parameters used in our ex-

periment and also presents a set of hypotheses to be tested. Section 6 presents

our results by first testing the hypotheses in the aggregate and then by grouping

subjects by their ability. Finally, in Section 7 we offer some conclusions.

2 The Background

There were 17 candidates at the beginning of the 2016 Republican primaries,

each vying for the nomination. Some, like Jeb Bush, were Republican aristo-

crats, while others were established politicians who were current or former U.S.

Senators (Rubio, Cruz, Graham, Santorum, Paul) or Governors (Kasich, Walker,

Christie, Jindahl, Huckabee, Pataki, Gilmore, Bush). Candidates like Fiorina

and Trump came from business backgrounds, while there were two medical doc-

tors (Carson and Paul who was also a Senator). None, of course, had the type of

broad media exposure as did Trump whose reality show “The Apprentice” was

a popular success.

From the start, possibly because of his name recognition, Trump rose to front

runner status. Figure 1 shows the polling status of each candidate during the

main primary season from 1 January 2016 to 5 May 2016 as reported by Real

Clear Politics poll averages.2 Obviously Trump had established himself as the

clear front runner very early on.

Despite this front-runner status, the other candidates spent relatively little

time or money trying to burst the Trump bubble. Using data from the Political
2Data scraped from https://www.realclearpolitics.com/epolls/2016/president/us/

2016_republican_presidential_nomination-3823.html (last accessed 14 September 2020)
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Figure 1: Average Polling Data From Real Clear Politics from 1 January 2016
to 5 May 2016

Note: In this graph we only show candidates who polled at more than 4% at any point
between 1 January 2016 and 5 May 2016.

TV Ad Archive3 (Internet Archive, 2016), we try to back out each candidate’s

attack strategy across the primary campaign. We find that, in the first three

primaries at least, Donald Trump was among the least attacked.

The Political TV Ad Archive is a freely accessible data base, which tracks

airings of political ads in selected US TV markets. The database allows us to

identify the sponsor and the candidates mentioned in the ad. First, we match

TV markets to states and sponsors to candidates using publicly available infor-

mation. The database has information on Donald Trump, Marco Rubio, Ted

Cruz, Ben Carson, Jeb Bush, Carly Fiorina, Rand Paul, Chris Christie, Mike

Huckabee, Jim Gilmore, George Pataki, Rick Santorum and John Kasich. Ta-

bles 8 and 9 in Appendix A1 show the matching between TV markets and states,

and between candidates and sponsors. Second, the database contains informa-

tion on which candidates were mentioned in an ad. Under the assumption that

the candidates will not have anything nice to say about one another we clas-

sify all ads that mention a candidate but have not been sponsored by someone
3https://politicaladarchive.org/ (last accessed 14 September 2020)
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associated to that candidate’s campaign as an attack ad. We use the database

to track all airings of political attack ads 30 days before a Republican primary

between January and May 2016. Furthermore, we restrict our analysis to mar-

kets in which there are at least 100 attack ads in the database and to attacks

by and at candidates for which we record more than 100 attack ads in those

markets in total. This leaves us with six candidates (Donald Trump, Ted Cruz,

Marco Rubio, Chris Christie, Jeb Bush and John Kasich) in TV markets in 7

US states (Florida, Iowa, North Carolina, New Hampshire, Nevada, Ohio and

South Carolina) with a total number of 16047 observations.

Figure 2 shows the number of attack ads directed at the various candidates 30

days before each primary. Throughout the first three primaries, despite Trump’s

front runner status, Marco Rubio drew the most fire from other candidates while

Trump attracted little attention. It was not until the Florida primary when

Rubio faced a do-or-die situation, that Trump finally drew the fire of others but

by then it was starting to be too late.
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Figure 2: Attack Ads 30 Days Before Each Primary

There is consistent anecdotal evidence that this lack of attention to Trump

was intentional and there are many quotes to be found that express the expec-

tation that Trump’s campaign would eventually implode. Famously, in an ap-
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pearance on Fox Business on August 24, 2015, Anthony Scaramucci, who would

later serve as Trump’s White House Communication Director, called Trump a

“political hack” who would “eventually implode.”4

Interestingly, the idea of Trump’s implosion being imminent persisted even

after he had secured his party’s nomination. For example, an article in the New

Statesman in August 2016 by Woolf (2016) entitled “Is Donald Trump finally

imploding? It is looking like this might finally be the end for the Republican

party’s ill-fated Trump experiment” summarizes the well considered view that

Trump was a flash in the pan. He states:

“Time and again, journalists and analysts expressed with great cer-

tainty that one cretinous gaffe or another would finally put Donald

Trump’s rickety, ridiculous, idiosyncratic campaign into a tailspin.

He lied, and lied, and lied. His contempt for the truth, and for the

constitution of the United States, was breathtaking – and matched

only by his wilful ignorance of both. This was a bubble and, received

wisdom held in the summer of 2015, it would burst soon enough.”

Later in the piece, Woolf seems to see the light at the end of the tunnel. “This

week, [the week commencing August 15, 2016] that longed-for tailspin seems to

have finally arrived. Having goaded the news cycle, bare-facedly telling lie after

madcap lie, Trump’s quittance is, maybe, finally here.”

Whether there was an objective high probability for Trump’s self destruction

or whether this was only perceived by his rivals is debatable and does not matter

for the model that we will introduce below. Hanson (2016) argued in the National

Review in March 2016 that it was naive perception:

“Then there was the Republican establishment’s assumption that the
4The clip can be found at https://youtu.be/KZOeqL2ZSWA (last accessed 14 September

2020).
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supernova Trump would on its own burn out by last autumn. That

was an odd expectation for a variety of reasons. It required ten

debates and a winnowed-down field for other candidates finally to

do to Trump what they had already done to one another. And by

then the desperate level of invective needed to damage the Trump

locomotive ensured that the attacker appeared as mean-spirited as

Trump himself.”

These quotes, which are just a few of many, all make the same point; Trump

was not worth attacking. He would either implode or if not the best way to

win the nomination would be to kill off one’s conventional opponents, grab their

support, and then face Trump one on one with the establishment lined up behind

you. We know how well that worked.

3 Related Literature

The formal analysis of primary elections is extensive. Ware (2002) and Hirano

and Snyder (2019) provide an outstanding historical and analytical account of

primaries in the US. The first question is “why organize primaries?” Caillaud

and Tirole (2002), Meirowitz (2005), Adams and Merrill (2008), Ansolabehere

et al. (2010), and Hortala-Vallve and Mueller (2015) among others, argue that

by stimulating intra-party competition, primaries improve the quality of the

chosen candidate. Yet, primaries also feature a number of drawbacks. One is

the risk of depressing the efforts of all contestants when the party trails behind

(Castanheira et al., 2009), and Huck et al. (2001) identify conditions under which

it pays off for a faction to send multiple contestants instead of a single one. Intra-

party competition may also split (Ware, 1979) or polarize (Burden, 2001; Hirano

et al., 2009) the party at the primary stage, and may require flip-flopping at

the general election stage (Hummel, 2010; Agranov, 2016). All these effects
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hurt the party that runs primaries when facing an opponent with a pre-selected

front-runner, e.g. an incumbent who can run for reelection.

A second set of questions relates to candidate behavior during a primary con-

test. The theoretical analysis of contests has been pioneered by Tullock (1980),

Hirshleifer (1989), and Baron (1994), and is extensively surveyed by Corchón

(2007) and Konrad (2009). Some noteworthy results are that contestants tend

to invest more resources at attacking each other when the outcome is uncertain

(Esteban and Ray, 1999; Herrera et al., 2014, 2016; Bouton et al., 2020); the

equilibrium level of effort tends to be higher than with traditional incentives

schemes, to the point that there can be more than full rent dissipation (Potters

et al., 1998; Gradstein and Konrad, 1999), and experimental research shows that

observed efforts can be even higher than theoretically predicted (Nalbantian and

Schotter, 1997; Sheremeta, 2011).

In multi-candidate contests there can be positive effort to foster one’s own

campaign or negative effort to harm competitors. Positive effort can be seen

as investing more into advertising one’s own campaign (Congleton, 1986): it

increases the player’s chances of winning, without singling out a particular op-

ponent. Negative effort can be seen as actively sabotaging the effort of a specific

opponent (Konrad, 2000). In the case of primary elections, this translates into

a so-called negative advertising strategy (see Lau and Rovner (2009) for an ex-

tensive survey). Negative advertising serves the purpose of reducing the support

of the opponent, but sometimes at the cost of hurting the attacker’s own base

(Boyer et al., 2017).

Skaperdas and Grofman (1995) study both, and propose a model in which

positive advertising attracts support from a pool of undecided voters, whereas

negative advertising repels initially committed voters, both on the attacker’s and

the target’s side. Hence, the candidate with the largest support has the most

to lose from going negative and tends to use more positive campaign strategies
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in equilibrium. Conditional on going negative, the return of the attack is pro-

portional to the initial base of the opponent. Consequently, attacks never target

the opponent with the lowest support.

Our model differs in a number of ways from these established approaches.

First, while the above papers model primaries as a contest, we propose that the

nature of televised political debates is different: each contestant is given a fixed

amount of time, which must largely be devoted to displaying the superiority of

one’s candidacy over the other contestants. Hence, the key strategic variable in a

contest game, the amount of resources to be invested, does not feature. Rather,

the main decision is who to attack.

Following that observation, we model the primary as a multi-lateral duel, fo-

cussing mainly on the three-player case, a truel. In a truel the competing players

either decide simultaneously or sequentially who to shoot at with the empty set

(“shooting into the air”) being considered as an option in some models (Lar-

son, 1948; Kilgour, 1971, 1975; Shubik, 1982). A typical result is that the best

shooters get targeted the most, with the implication that under certain condi-

tions bad shooters may not be wiped out by Darwinian forces (Archetti, 2012).

We build on a simple simultaneous-move truel but introduce a key modification.

Following the notion that a candidate’s campaign may simply implode we allow

this to happen in our model. Candidates have an exogenous probability to exit

even if they are not attacked.

4 The Model

In this section and most of the paper we use a three-candidate static version of

a truel, because such a version can easily be brought to the laboratory. Gener-

alizations and extensions are discussed in Section 4.4. Most proofs are relegated

to Appendix A2.
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Consider a primary with three candidates i ∈ {X,Y, Z}. Each candidate

has one chance to attack another candidate, say, in an ad or a statement in a

debate (given the overwhelming majority of men in the above examples, we shall

assign the pronoun “he” to a candidate). In line with the truel terminology and

keeping open whether the attack is an ad or a statement we shall simply say that

each candidate can fire one bullet at another candidate. Call the probability

that candidate i hits his target the candidate’s precision which we denote by

πi ∈ {πX , πY , πZ}. Note that a candidate’s precision depends on his own identity

only and is independent of the target’s. If a targeted candidate is hit successfully,

he is out of the race.

In addition to a candidate’s accuracy in attacking opponents, each candidate

also has a probability of imploding or self-destructing. The implosion probabilities

are βi ∈ {βX , βY , βZ}. If a candidate implodes, he is also out of the race. We

order the candidates by increasing implosion probabilities: βX ≤ βY ≤ βZ .

(In the experiment we will, in fact, focus on the case where there is only one

candidate who has a strictly positive implosion probability.)

In our truel a candidate’s innate strength is measured by, both, his precision

as a shooter and the inverse of his implosion probability. Consequently, we

think of a buffoon as a candidate who is weak on both of these dimensions

– a sufficiently bad shooter (comparatively low πi ), prone to self-destruction

(comparatively high βi) – and we identify the formal condition in Section 4.2. In

the model that we also test experimentally in the lab this condition boils down

to πi < βi.

The game is simple. Each candidate aims his one attack at one of his op-

ponents, that is, candidate i’s strategy set is {X,Y, Z} \ {i}. Candidates are

knocked out either if they are successfully hit by an attack or if they implode. If

there is a single survivor, he gets a payoff of 1 (the nomination). Two survivors

split the chance of being nominated, for a payoff of 1/2 each. Three survivors
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split it for a payoff of 1/3 each.5

4.1 Best Responses

One observation is crucial to derive the equilibrium of this game: as a candidate,

you have no control over your own survival probability. It is entirely determined

by your implosion probability and by who shoots at you, both of which you can-

not influence. What you do have control over is your expected payoff conditional

on survival. This, you can influence by aiming at the right opponent.

To identify best responses, we first compute the counterfactual expected pay-

off, Πc
i , of a candidate i before he aims at either of his opponents. Let pi be

candidate i’s exit probability given his opponents’ choices, their precisions and i’s

own implosion probability. Let p−ij be candidate j’s counterfactual exit probabil-

ity that would result were candidate i not to attack anybody. These counterfac-

tual exit probabilities depend on both other candidates’ implosion probabilities

and on whom they target. We obtain:

Πc
i/ (1− pi) = p−ij p

−i
k × 1 +

[
p−ij

(
1− p−ik

)
+
(
1− p−ij

)
p−ik

]
× 1

2

+
(
1− p−ij

) (
1− p−ik

)
× 1

3 , (1)

where the first term of the right-hand side is the probability that i remains

alone in the race, and gets the nomination (value: 1). The second term is the

probability that i and a single opponent remain in the race, multiplied by a split

of the payoff in two. Finally, the third term is the probability that all remain in

the race and split the payoff three ways. On the left-hand side we divided by i’s

own survival probability as the payoff only obtains conditional on survival.

If i chooses to attack opponent j, his expected payoff increases relative to
5If all candidates get eliminated, everyone receives a payoff of zero. In terms of a primary,

think of this case as the party choosing an external candidate over any of the eliminated
candidates.

12



the counterfactual expectation above by:

∆Πi(j)/ (1− pi) = πi ×
[(

1− 1
2

) (
1− p−ij

)
p−ik + ...

...
(

1
2 −

1
3

) (
1− p−ij

) (
1− p−ik

)]
, (2)

where the right-hand side is the probability of successfully hitting j when either

of two situations realize. The first summand is when the field of survivors is

initially composed of i and j only. Then, successfully hitting j implies that i

gets the nomination with probability 1 instead of 1/2. The second summand is

when all three candidates initially survive. Then, successfully hitting j reduces

the field of survivors from 3 to 2, and increases the probability of nomination

from 1/3 to 1/2.

Candidate i will optimally attack candidate j if:

1
2

(
1− p−ij

)
p−ik + 1

6

(
1− p−ij

) (
1− p−ik

)
≥ ...

... ≥ 1
2

(
1− p−ik

)
p−ij + 1

6

(
1− p−ik

) (
1− p−ij

)
, (3)

which simplifies to p−ij ≤ p−ik . In other words, a candidate simply shoots at

the opponent whose counterfactual exit probability (absent an attack from i) is

minimal. Notice that this result is independent of the payoffs that the player

obtains for sharing survival with one or two others—both payoff increments, 1/2

and 1/6, could be replaced by any other positive value. Hence, the result holds

independently of whether a successful attack drives an exit (as we assume here)

or only marginally hurts the opponent’s odds of winning. For the same reason,

it is also independent of player i’s risk attitude:

Lemma 1 The best-response of player i is always to aim at the candidate with

the highest survival probability in the absence of his own attack, that is, i aims

at j iff p−ij ≤ p
−i
k . This holds irrespective of player i’s risk attitude.
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Lemma 1 is intuitive and already contains the core of the point we are making

in this paper: candidates may be shielded from an attack if they are prone

to implosion. Hence, increasing the implosion probability for a candidate has

two countervailing effects. On the one hand, it hurts the candidate as he does

become more likely to actually implode but on the other hand, he becomes

a less attractive target for his opponents and the latter (indirect) effect can

be strong enough such that nobody shoots at the implosion-prone candidate.

Consequently, a player’s expected equilibrium payoff can be locally increasing in

his implosion probability. We will see this in detail below.

4.2 Equilibrium Analysis

Let us now turn to the search for pure-strategy equilibria in our truel game. An

equilibrium will be a constellation of targets such that each candidate’s target is

a best response to the targets of his opponents. Since every player has to choose

between two options, there are 23 = 8 possible strategy combinations: (i) two

circular cases: X → Y, Y → Z, Z → X and X → Z, Y → X, Z → Y, where

i → j means “i targets j”; and (ii) six cases in which two candidates target

each other, and the third candidate shoots at one of these two. For instance:

X → Y, Y → Z, Z → Y .

W.l.o.g., let us order X, Y and Z from the lowest to the highest probability

of implosion: βX ≤ βY ≤ βZ . The application of Lemma 1 immediately rules

out four of the six non-circular candidate equilibria, namely those where X

and Y are not attacked. The intuition is as follows: consider one of the other

configuration where players i ∈ {X,Y } and player Z attack each other while

player j ∈ {X,Y } \ {i} is unscathed. In such a configuration player i violates

the best response condition from Lemma 1 as player Z must have a lower survival

probability than player j prior to i’s choice.

We are thus left with only four candidate equilibria: the two circular ones,
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labeled Cases 1 and 2 below, and two in which X and Y target each other, labeled

Cases 3 and 4. These are depicted in Table 1, together with their associated

best-response conditions.

X Y

Z

X Y

Z

BRX : βY −βZ
1−βZ

< πY (always true) BRX : βY −βZ
1−βZ

< πZ

BRY : βZ−βX
1−βX

< πZ BRY : βX−βZ
1−βZ

< πX (always true)
BRZ : βX−βY

1−βY
< πX (always true) BRZ : βY −βX

1−βX
< πY

CASE 1 CASE 2

X Y

Z

X Y

Z

BRX : βY < βZ (always true) BRX : βZ−βY
1−βY

> πZ

BRY : βZ−βX
1−βX

> πZ BRY : βX < βZ (always true)
BRZ : βY −βX

1−βX
+ (1−βY )πX

1−βX
> πY BRZ : βY −βX

1−βX
+ (1−βY )πX

1−βX
< πY

CASE 3 CASE 4

Table 1: Equilibrium Conditions
Note: Arrows denote attacks. X → Y means “X attacks Y”

We are, of course, particularly interested in Cases 3 and 4 where Z, the

candidate with the maximal implosion probability, is not attacked. As can be

seen in Table 1, there is another necessary condition for this configuration:

πZ < max
{
βZ−βX
1−βX

, βZ−βY
1−βY

}
. (4)

In other words, to be left unattacked, the self-imploding candidate must also

be a sufficiently bad shooter in comparison with his implosion probability.6 If
6Note that only Z may remain unscathed, even if X and Y were also buffoons. Also, the

result would remain identical if there was uncertainty about the exact values of βZ : the latter
would be replaced by its expected value in (4).
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condition (4) holds we shall call candidate Z a buffoon and we shall refer to the

equilibria where the buffoon remains unattacked as buffoon equilibria.

From now on, up until Section 4.4, we shall focus on the setup that we

bring to the lab: βX = βY = 0, that is, there is only one candidate prone to

self-destruction. Notice that, in this setup, condition (4) boils down to:

πZ < βZ .

That is, player Z is a buffoon if his implosion probability is bigger than his

precision. Combining the BR conditions from each of the four Cases in Table 1

yields our first proposition (all proofs are in Appendix A2):

Proposition 1 For βX = βY = 0 < βZ , circular and buffoon equilibria are

mutually exclusive.

For πZ > βZ , the two circular equilibria coexist.

For πZ < βZ , there is a unique, buffoon, equilibrium:

– with πX > πY , the equilibrium is X → Y, Y → X, Z → X,

– with πX < πY , the equilibrium is X → Y, Y → X, Z → Y.

Figure 3 summarizes the proposition graphically. As stated in the proposition,

the structure of the equilibrium depends on whether or not player Z is a buffoon.

If he is not, that is, if he can at least shoot reasonably well, there are just the two

circular equilibria that also arise when nobody else may implode. The reason

is straightforward in light of Lemma 1: since Z shoots at either X or Y , that

candidate’s counterfactual survival probability is (1 − πZ), which is lower than

Z’s. Hence, Z must be shot at in equilibrium.

Conversely, if Z is a buffoon, then there exists only a buffoon equilibrium and

which one emerges depends simply on whether X or Y is the better shot. If it is

candidate X, the buffoon will shoot at X, if it is Y , he will shoot at Y . Notice
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Figure 3: Equilibria when βX = βY = 0

also that the truel, once Z becomes a buffoon, is dominance solvable. Given that

βZ > πZ shooting X becomes a dominant action for Y and vice versa. After

that first round of elimination, Z’s decision is determined by dominance in the

second round.

In light of Proposition 1 it is informative to look back at Figures 1 and 2 in

Section 2 and try to connect its predictions to what happened in the primaries.

Trump was ahead in the polls from the very beginning but despite his lead he

was initially not attacked. The punchline of our paper is to point out that this

was not an anomaly but an equilibrium outcome. Even as a front runner he was

not to attacked because of the common belief that he would implode. Attacks

on him would be wasted money. This perception started to change at the end

of February when it dawned on campaign advisers that Trump was here to stay

and was not going to implode, at which point we see a steady rise in attacks
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going into the Nevada and Florida primaries. Interestingly, this shift happens

before Trump’s support in opinion polls started to take off. If anything, the only

movement in the polls was increasing support for Rubio and Kasich. Based on

the model, our interpretation is that campaign professionals realized earlier than

many that Trump’s implosion probability was not as high as initially thought.

Around the end of February Trump’s perceived implosion probability became

sufficiently low, i.e., β < π, and he started to draw fire form other candidates

but, as we know with hindsight, that was too late.

4.3 Comparative statics

We can now examine how different types of players perform in truels. We are

still focusing on the case with βX = βY = 0 in this section.

Corollary 1 Z’s survival probability is generically decreasing in βZ , except at

βZ = πZ , where it displays a discontinuous upward jump.

The most important part of this corollary is, of course, in the exception: the

moment candidate Z turns into a buffoon, his survival probability jumps upwards

as the players move from a circular equilibrium to a buffoon equilibrium, and

Z no longer gets shot at. Notice that this jump can be big: when both players

X and Y are good shooters (with precisions above Z’s implosion probability)

candidate Z’s survival probability will reach a global maximum for an interior

implosion probability.

This is illustrated in Figure 4 which, for a specific set of parameters, also

plots the other players’ survival probabilities as a function of βZ and we assume

coordination on the X → Y, Y → Z, Z → X equilibrium for low values of βZ .

At βZ = πZ , Z’s probability of survival jumps from (1− πY )(1− βZ) ≈ 0.36 to

(1−βZ) = 0.65. Notice also the dramatic fall in Y ’s survival probability once he

gets targeted by two players instead of one. The same exercise can, of course, be
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Figure 4: Buffoon Equilibria: Survival Probabilities as a Function of βZ
Survival probabilities of X (dotted), Y (dashed) and Z (solid) as βZ varies from 0 to 0.8, for

πX = .55, πY = .45, and πZ = .35.

done varying Z’s precision πZ . Then, we would see that his survival probability

jumps upwards when his precision drops below his implosion probability.

It is also interesting to think about variations in the precision of one of the

other players when we are in a buffoon equilibrium. As an illustration, we plot

the survival probabilities for all three players as a function of player Y ’s precision

in Figure 5. The buffoon’s survival probability is, of course, independent of Y ’s

precision as nobody shoots at Z. Candidate X’s survival falls almost everywhere

in Y ’s precision but jumps up discretely once Y ’s precision exceeds his own—

simply because Z now changes his target from X to Y . Consequently, Y ’s own

survival probability drops. X and Y essentially swap places at this point.

We can state in a second corollary under which conditions the buffoon is the

candidate with the highest survival probability. Labeling X as the candidate

with the highest precision (πX > πY ):

Corollary 2 In a buffoon equilibrium (i.e. for βZ > πZ), candidate Z has the

highest survival probability iff βZ < min{πX , πY + (1− πY )πZ}.
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Figure 5: Buffoon Equilibria: Survival Probabilities as a Function of πY
Survival probabilities of X (dotted), Y (dashed) and Z (solid) as πY varies from 0.2 to 1,

when πX = 0.6, πZ = 0.4, βZ = 0.5.

A simple sufficient condition would be πZ < βZ < min{πX , πY } which en-

capsulates the irony of our equilibrium results. In particular, when the buffoon

competes against proper pro shooters, he emerges as the most likely candidate

to win the contest. We believe that this encapsulates the core of what happened

at the 2016 Republican primaries. Trump did not triumph despite competing

against some excellent other candidates. He triumphed because he was a buffoon

playing against real pros.

4.4 Extensions: mixed strategies and generalized setup

Before we move on to the experiment there are at least four open questions that

require some attention. First we have, so far, focused on pure-strategy equilibria

and we have to ask what role mixed-strategy equilibria might play. Second, we

need some reassurance that our results do extend to a setup in which multiple

candidates may implode. Third, actual primaries are held in multiple rounds:

how do such dynamics modify best responses? Finally, we need to verify that

our results are not an artefact that only arises with three players.
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Mixed strategy equilibria

For a (fully) mixed-strategy equilibrium we need:

p−ij = p−ih ∀i and j 6= h. (5)

That is, from player i’s perspective the other two players are equally likely to

survive in the counterfactual scenario where i himself shoots in the air. In this

case, he is indifferent between his two targets and may mix.

For the case in which all implosion probabilities are zero, that is, for the

standard truel, we obtain:

qij = πi + πj − πh
2πi

, (6)

where qij denotes the probability with which player i targets player j.

The existence of a fully mixed equilibrium requires relatively balanced shoot-

ing precisions. The precision of the best shooter must not be larger than the

sum of the precisions of the other two players. Suppose this condition is met (as

it will be in our experiment) and we introduce the possibility to self-destruct for

player Z. How will that change the mixed-strategy equilibrium? Consider all

players sticking to the equilibrium mixtures above while βZ becomes positive.

Clearly, to maintain the indifference of player X either player Y must decrease

qY Z or player Z must increase qZY . Similarly, to maintain the indifference of

player Y either player X must decrease qXZ or player Z must increase qZX . No-

tice that Z cannot do his part in both cases and also note that the Z indifference

condition has not changed which implies that, as before, we must have:

qXY πX = qY XπY . (7)

Hence, qXY and qY X can only change keeping their proportion fixed. The above
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reasoning rules out that they both decrease as otherwise, both, qZX and qZY

would have to increase as well, which is impossible as they sum to 1. Hence,

as a consequence of Z starting to implode, X and Y must shoot with higher

probability on each other. In other words, as Z’s implosion probability increases,

a fully mixed equilibrium necessarily moves closer to one of the buffoon equilibria.

The general description of fully mixed or degenerate mixed strategy equilibria

is trivial but tedious and omitted for space reasons. But we shall derive them

further below for the parameter settings that we implement in the experiment.

Generalized implosion probabilities

In this section, we extend the analysis to the case of all candidates facing a risk

of implosion: 0 < βX < βY < βZ . The intuition becomes less straightforward

than in the simple setup. The equilibrium structure is summarized in Figure 6

below but the proof is relegated to Appendix A2. As illustrated, seven regions

of relevance emerge, instead of three in Figure 3. Note that the three initial

regions remain: they are the Case 1, Case 2 box at the top right of the figure,

and the two boxes at the bottom (Case 3 and Case 4 ).

Going from βX = βY = 0 to βY > βX > 0 thus adds four new regions,

three of which emerge for intermediate values of πZ , namely when condition (4)

is satisfied (πZ < max
{
βZ−βX
1−βX

, βZ−βY
1−βY

}
), but πZ is larger than the minimum of

these two fractions (πZ > min
{
βZ−βX
1−βX

, βZ−βY
1−βY

}
). In this new intermediate zone,

the necessary condition for a buffoon equilibrium is satisfied but the equilibrium

need not be dominance solvable. The intuition for the proof is as follows: con-

sider first πY close to 1, in which case a buffoon equilibrium cannot exist, even

though Z is a buffoon. Why? First, note that the candidate targeted by Y is

almost certain to exit. Hence, one of the other candidate’s best response will be

to aim at the opponent not targeted by Y . Consider for instance the situation

in which Y shoots at X. Then, Z’s best response is to shoot at Y , and X’s to
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Figure 6: Equilibria with non-zero βX and βY

target Z: there is no buffoon equilibrium. By contrast, when πY is close to 0,

the equilibrium is dominance solvable, and there is a buffoon equilibrium. In

between these extremes, i.e. for intermediate values of πY , Z’s best response

is contingent on Y ’s action, giving rise to the coexistence of one circular and

one buffoon equilibrium. Last, a new region appears at the top left, for πZ

sufficiently close to 1 and πY sufficiently close to 0. Only one of the circular

equilibria survives in this case.

Introducing Dynamics

The Republican primaries described in Section 2 have a clear dynamic compo-

nent; they are a multistage game. While characterizing the equilibria of such a

dynamic game is beyond the scope of this paper, we show here how Lemma 1

generalizes to a two-period game. At time 1, the three contestants simultane-
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ously choose a target, and nature selects which of them make it to the second

primary. There are thus four possible outcomes of the first primary: if the three

contestants survive the first round, the second primary is a repeat of the first

one (this subgame is the same as in base model). If only two contestants do,

the second primary is a simple duel – with two such duels possible. If only one

contestant does, he wins the nomination outright.

In Appendix A2, we show that a candidate j gets less attacked in the first

primary than in the second if and only if his implosion probability is high enough

compared to his precision. The exact condition is:

1− πk
1− πj

<
2− (1− βj)(1− πi)
2− (1− βk)(1− πi)

.

For equal precisions, the condition boils down to βj > βk. That is, our results

in the static game get reinforced in the early stage of a two-period game.

One element is very intuitive: each candidate prefers to run against oppo-

nents with a high probability of implosion and a low precision (the later increases

your own survival probability). Perhaps less straightforward, the effect of these

two characteristics is different early and late in the race: late in the race, you

lose the possibility to select your opponents. As in Lemma 1: your best response

then only depends on your opponents’ counterfactual exit probabilities. Early in

the race, instead, you can manipulate against whom you’ll be competing in the

future: then, also their precision matters. Eliminating the best shooters early

makes subsequent primaries less dangerous.

Larger number of players

Finally, let us consider what happens with more than three players. As shown in

Appendix A2 generalizing Lemma 1 is straightforward: as discussed already, the

results of Lemma 1 do not depend on the exact value of the realization payoffs
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(1/3, 1/2, and 1). When comparing targeting opponent X vs. Y , these values can

be replaced by the expected value of the prize being divided among any number

of competitors. Two-by-two comparisons between potential targets yield the

same conclusion: you must target the opponent with the lowest counterfactual

exit probability. Iterating two-by-two comparisons proves the result.

Generalizing Proposition 1 is trickier: with N players, there are (N − 1)N

possible combinations. We thus focus on identifying a sufficient condition for the

existence of a buffoon equilibrium. Consider a population of N candidates, with

nX “professionals”, whose implosion probability is lower than their precision, and

nZ := N−nX buffoons: ∀zi ∈ Z = {z1, ..., znZ}, πzi < βzi . Moreover, minzi βzi >

maxxi βxi and maxzi πzi < minxi πxi (see Appendix A2). That is, buffoons are

uniformly worse candidates. Finally, nZ ≤ nX : there are fewer buffoons than

pros. In that setup, the sufficient condition for a buffoon equilibrium to exist is

similar to what identifies the bottom-left region of Figure 6:

Proposition 2 With nX “professionals” and nZ buffoons, a sufficient condition

for the existence of an equilibrium in which no buffoon gets targeted is:

max
x∈X

πx ≤ min
x∈X,z∈Z

βz − βx
1− βx

.

As detailed in the proof, this is actually a sufficient condition to satisfy

another sufficient condition. But it has the advantage of being easy to interpret:

with nZ ≤ nX , all the pros get targeted by one other pro, and some of them

get also targeted by one buffoon. When the precision of all opponents does

not exceed the threshold identified in the proposition, the counterfactual exit

probability of at least one of the fine candidates must be larger than that of a

buffoon who hasn’t been targeted by anyone. Note that such an equilibrium is

no longer dominance solvable: if all candidates were targeting a single opponent,

the latter’s counterfactual exit probability must converge to zero as population
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size increases.

5 Experiment

5.1 Experimental Setup

The experiment was run at the WZB-TU laboratory at Technical University

Berlin in January and February 2020. In total 6 sessions took place for which

129 subjects were recruited from the laboratory’s subject pool using ORSEE

(Greiner, 2015). Subjects were students from a wide range of fields who had

been studying for 3.6 semesters and were 22.2 years old on average. 68% of

subjects were male, 30% were female and 2% were other. The program was

written in oTree (Chen et al., 2016). The experiment lasted for one hour and

subjects earned, on average, 13.45 Euro plus a show-up fee of 7 Euro.

The experiment had two parts. Subjects first received the instructions for

Part 1 of the experiment. They were made aware that there would be a second

part, but that Part 2 was independent from their choices in Part 1. After Part 1

concluded subjects received instructions for Part 2 without any feedback about

outcomes and payoffs from Part 1. The experiment was run in German. An

English translation of the instructions is provided in Appendix A3. Feedback

for the results of both parts was only provided after Part 2.

In Part 1 subjects played the game against random human opponents. In

Part 2 of the experiment we removed the strategic uncertainty of playing against

human opponents and subjects played eight games against computerized oppo-

nents with a transparent strategy instead. We randomized the order in which

the treatments were presented to subjects in both parts. Subjects finished the

experiment by filling out a form and, finally, got paid privately in cash.
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5.2 Experimental design and hypotheses testing

5.2.1 Part 1

In part 1 subjects played a truel with players {X,Y, Z} against other human

subjects and we asked subjects to make choices for all three roles.7 There were

four treatments with different parameter sets, shown in Table 2. Subjects faced

each of these four treatments in random order. For each treatment, subjects had

to choose targets for all three player roles. Subjects could make the decisions for

all three roles in any order they wanted and they could go back and forth and

revise their choices. Only when they were happy with all three decisions would

they submit their strategies. The interface is shown in Figure 7.

There was no feedback after any of these choice triplets. Instead, payoffs

were determined at the end of the experiment. One parameter set was chosen at

random and subjects were grouped into sets of three with their roles {X,Y, Z}

also being randomly chosen. The choices that they specified for relevant treat-

ment and role were then implemented and the random variables realized, i.e.,

the random realizations that determined whether the players would hit their tar-

gets and whether they would implode. There was a 15 Euro prize per group that

was split equally among the survivors of the implemented truel. Finally, subjects

were informed which parameter set was chosen, which role they were assigned to,

what the choices of their opponents were, and whether they and their opponents

survived. Subjects received this feedback only after completing Part 2. By not

providing feedback until the end of the experiment we avoid possible confounds

from learning and maximize the number of independent observations.

We chose four parameter settings to put the theory through its paces—

and making only one parameter change at the time. In treatment Baseline

all implosion probabilities are zero. The players are asymmetric in their attack
7In the experiment the players were labelled {A,B,C}, but in the analysis we will continue

to label them {X,Y, Z}.
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Figure 7: Interface in Part 1
In the experiment, players were labelled {A,B,C} instead of {X,Y, Z}. Subjects see a table
summarizing the parameters on top. In the center they see a graph visualizing their attack

choices that automatically updates when they change their choices in using the radio buttons
for each role at the bottom. The text in the screenshot reads “The survivors split 15 Euro.

You are A. Who do you attack... if you are A (B or C).”

probabilities but there are only circular pure-strategy equilibria in which every-

body gets attacked. In addition, there is a fully mixed-strategy equilibrium with

qXY = 1/5, qY Z = 2/3, and qZX = 2/3.

In Circular we increase Z’s implosion probability slightly to 0.25. Since Z’s

precision is still greater than his implosion probability the pure strategy equilib-
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Treatment πX πY πZ βX βY βZ

Baseline 0.5 0.3 0.6 0 0 0
Circular 0.5 0.3 0.6 0 0 0.25

BuffoonZX 0.5 0.3 0.6 0 0 0.7
BuffoonZY 0.5 0.8 0.6 0 0 0.7

Table 2: Treatment Parameters, Part 1

ria remain the same as in Baseline. Player Z is not yet a buffoon. However, in

line with the prediction that we developed above, the probabilities with which

X and Y attack Z in the mixed strategy equilibrium fall and they do so sub-

stantially. In fact, the mixed-strategy equilibium becomes degenerate as Y com-

pletely ceases to attack Z. The equilibrium mixtures are qXY = 3/5, qY Z = 0,

and qZX = 7/12.

Finally, in treatments BuffoonZX and BuffoonZY we increase Z’s implosion

probability βZ to 0.7 so that he becomes a buffoon who should be ignored by

X and Y , who should instead attack each other. There is only one equilibrium

in both treatments and this equilibrium is in pure strategies. In treatment

BuffoonZX X’s precision of 0.5 is higher than Y ’s precision of 0.3, so Z attacks

X, and the unique equilibrium is X→Y , Y→X, Z→X. In treatment BuffoonZY

we increase Y ’s attack probability to 0.8, so Z now attacks Y and the unique

equilibrium is X→Y , Y→X, Z→Y .

We can now turn to developing some hypotheses for Part 1 of the experiment.

The most fundamental prediction of the theory is that not attacking player

Z is a dominant strategy for both player X and player Y , when player Z is

a buffoon. In contrast, in both Baseline and Circular, every equilibrium has

positive probability for Z being attacked. A weak version of this is summarized

in:

Hypothesis 1 (Dominance) Compared to Baseline and Circular, player Z

does get attacked less often by X and Y in BuffoonZX and BuffoonZY.
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Examining the mixed-strategy equilibria we can also make predictions for dif-

ferences in X’s and Y ’s attack rates between Baseline and Circular, and Circular

and BuffoonZX.

Hypothesis 2 (Mixed Nash) The frequency with which Z gets attacked falls

from Baseline to Circular and it falls further from Circular to BuffoonZX.

Our final hypothesis deals with player Z who is predicted to shoot player

X in BuffoonZX and player Y in BuffoonZY. This does not result from out-

right dominance but iterated elimination of dominated strategies or equilibrium

reasoning.

Hypothesis 3 (Pure Nash) Z attacks Y more in BuffoonZY than in Buf-

foonZX.

5.2.2 Part 2

Part 2 of the experiment is designed to investigate behavior at the individual

level more closely and see how subjects respond to the behavior of their oppo-

nents. Subjects are assigned the role of player X and they play against two

computer players who are already committed to an action. The prize is again

15 Euro, but all money that the computer players earn is retained by the exper-

imenter and not paid to any of the subjects. Subjects make eight choices in a

random order without any feedback. This transforms the game into a series of

decision problems such that the indeterminacy of what constitutes rational be-

havior that characterizes much of Part 1 disappears. In Part 1, both multiplicity

and off-equilibrium beliefs may justify different actions in eight out of the twelve

decisions. Only in BuffoonZX and BuffoonZY are the best responses of players

X and Y belief-independent.

Of course, we could have opted to elicit beliefs in Part 1 but that would have
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required an additional 24 decisions and the usual measurement issues. So instead

we decided to fix beliefs in a second part of the experiment by letting subjects

play against computer players who play fully transparent strategies. An added

benefit of this approach is that it also eliminates any potential confounds from

social preferences.

Computer Prediction

Set βZ qY Z qZX qXY

1 0.25 0 0 0
2 0.25 0 1 1
3 0.25 1 0 0
4 0.25 1 1 1
5 0.7 0 0 1
6 0.7 0 1 1
7 0.7 1 0 1
8 0.7 1 1 1

Table 3: Part 2 Treatment Parameters and Predictions
Note: Subjects play as player X. qij denotes the probability with which player i targets
player j. Column Prediction shows the rational theory’s prediction. πX = 0.5, πY = 0.3,

πZ = 0.6 and βX = βY = 0 remain constant.

We decided to re-use the parameters of the Circular and BuffoonZX treat-

ments from Part 1. In all parameter sets subjects are assigned the role of player

X, and they encounter all possible combinations of actions of computer players

Y and Z. We vary only βZ and the computers’ actions, and keep πX = 0.5,

πY = 0.3, πZ = 0.6 and βX = βY = 0 constant. This generates eight decision

problems in an otherwise stable environment. For each of these, expected utility

maximization makes a unique prediction (for arbitrary monotone von Neumann

Morgenstern utility functions, see the discussion of Lemma 1 above). Table 3

summarizes the parameters and predictions for each decision.
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6 Results

Let us start by investigating the hypotheses listed in Section 5: Table 4 shows

the average attack rates in Part 1 of our experiment for all four treatments.8

As Hypothesis 1 suggests, we expect that, in our experiment, player Z will

get attacked less often by X and Y in BuffoonZX and BuffoonZY than in the

Baseline and Circular treatments. This is because only in those treatments are

the implosion rates sufficiently high as to warrant subjects ignoring player Z

when they are in the roles of X or Y . This hypothesis is supported in our data.

As we see in Table 4, the rate with which X targets Z or Y targets Z drops

substantially when Z becomes a buffoon, in line with Hypothesis 1. To test

this hypothesis we count how often a subject decides to attack Z when making

decisions for roles X and Y , separately for the treatments when Z is a buffoon

and when he is not, constructing a measure with values between 0 and 4. Since

we observe the same subjects in both treatment groups, we employ a one-sided

Wilcoxon matched pairs test. On average, subjects direct 2.55 attacks at Z in the

Baseline in Circular treatments and 1.56 attacks in BuffoonZX and BuffoonZY

treatments. This difference is highly significant (p < 0.001).9 As a consequence,

the probability that Z is not attacked by X and Y increases from a minimum

of 0.11 in Baseline to a maximum of 0.42 in BuffoonZY treatment.

Hypothesis 2 predicts that the rate at which Z gets attacked by X and Y

decreases from the Baseline to the Circular treatment and decreases further from

the Circular to the BuffoonZX treatment. To test this hypothesis, we again count

how often subjects attack Z when in roles X and Y , but this time separately

for each treatment and test for differences between the Baseline and Circular
8Table 7 in the appendix shows the average attack rates that resulted from subjects’ first

choices only. The results in both tables are very similar: there are no order effects affecting
subject behavior. Hence, we pool our observations and perform within-subjects tests.

9Alternatively, we can test for differences in the attack rates of X and Y between Base-
line/Circular and BuffoonZX/BuffoonZY using McNemar’s χ2 test. All eight individual com-
parisons are again significant (p < 0.05).
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Treatment qXY qY Z qZX Prob(Z safe)

Baseline 0.34 0.67 0.69 0.11
Circular 0.32 0.53 0.78 0.15
BuffoonZX 0.55 0.41 0.74 0.32
BuffoonZY 0.67 0.36 0.32 0.42

Table 4: Average Attack Rates in Part 1
Note: qij denotes the probability with which player i targets player j. Column Prob(Z safe)

shows the resulting probability that Z is attacked by neither X nor Y .

treatments and for differences between Circular and BuffoonZX treatments using

the same one-sided Wilcoxon matched pairs test. In the Baseline, subjects direct

an average of 1.33 attacks at Z, which falls to 1.22 in the Circular treatment

(p = 0.094) and to 0.86 in BuffonZX treatment (p < 0.001).10

Finally, to test Hypothesis 3 we use McNemar’s χ2 test to test for differences

between the in the attack rates qZX between the BuffoonZX and BuffoonZY

treatments, which does drop dramatically from 0.74 to 0.32 (p < 0.001).

We summarize the findings so far in the following

Summary 1 We find support for all three hypotheses: Player Z does get at-

tacked less often when he is a buffoon (H1 Dominance). Indeed, the frequency

of attacks on Z falls as we move from Baseline to Circular and it falls further

as me move from Circular to BuffoonZX (H2 Mixed Nash). Finally, the buffoon

attacks Y more when he is predicted to (H3 Pure Nash).

While our results bear out the qualitative predictions of our hypotheses, the

point predictions are still off. In the BuffoonZX and BuffoonZY treatments it is

a dominant strategy for X and Y to ignore Z but, even in the best case of the

BuffoonZY treatment, about one third of attacks by X and Y are still directed

at Z and hence violate dominance.
10If we test for differences in the attack rates by role using McNemar’s χ2 test separately,

there is no evidence of a significant difference in attack rates between Baseline and Circular for
role X (p = 0.728) but for role Y there is (p = 0.028). Comparing Circular and BuffoonZX,
there is significant evidence of a drop in attack rates for both roles X (p < 0.001) and Y
(p = 0.010).
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qXY Money at Stake

Set Predicted Observed (in EUR)

1 0 0.30 0.92
2 1 0.39 0.26
3 0 0.38 0.47
4 1 0.44 0.71
5 1 0.68 0.26
6 1 0.63 0.73
7 1 0.74 0.71
8 1 0.65 1.18

Table 5: Average Attack Rates in Part 2
Note: Subjects play as player X. qij denotes the probability with which player i targets

player j. Column Money at Stake shows the amount of money a subject is expected to lose if
they do not follow the prediction and the parameter set is chosen for payment.

Since we do not give subjects the opportunity to learn from feedback it is

likely that some strategically less savvy subjects will make mistakes. In an actual

political primary, however, we might expect the participants and their advisors

to be sophisticated experienced players. To investigate the impact of subject

sophistication on behavior in Part 1 of our experiment we exploit Part 2 where

we evaluate the ability of our subjects to best respond to the actions of their

opponents and use a median split to classify our subjects as relatively more or

less sophisticated. We ask whether subjects who perform better in that series of

decision problems are less likely to violate dominance in Part 1.

As a reminder, in Part 2 subjects assumed the role of Player X and played

against a pair of computerize opponents (Y and Z) who were assigned a specific

action that we made observable to the subject. Since the actions of their op-

ponents were fixed, the choice made by our human subjects revealed how good

she was in best responding to the predetermined actions of her opponent. The

better she was able to do so the more sophisticated we viewed her.

Table 5 summarizes the predicted and observed attack rates in each choice

set together with the expected amount of money at stake if the parameter set was

chosen for payment. As we see in the table, the observed attack rates correlate
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positively with the predicted attacks but subjects still make a sizeable number

of errors. We weigh these errors by the total amount of money that subjects

leave on the table conditional on the parameter set being chosen for payment.

Figure 8 plots a histogram of how much money subjects leave on the table

in total. As we see, around 10% of subjects perfectly follow the predictions of

the theory and leave no money on the table. The rest of the subjects leave

a nonzero amount of money on the table, with a median of 1.71 Euro and a

maximum of 5.26 Euro. Making costly errors in this series of relatively simple

decision problems is akin to a violation of dominance. Using this money-on-

the-table metric we split our subject sample in two at the median of money left

and compare the behavior of the two resulting groups in Part 1. There are 66

subjects below or at the median performance and 63 subjects above the median.
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Figure 8: Histogram of Total Expected Cost of Errors

Using these two categories of subjects, we now look to see if their revealed

sophistication in Part 2 of the experiment had consequences for their behavior

in Part 1.

Table 6 shows the average attack rates in Part 1 split by below or above

median performance in Part 2. While in the Baseline and Circular treatments

the attack rates are rather similar there are stark differences between the groups
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Treatment qXY qY Z qZX Prob(Z safe)

Below Median
Baseline 0.35 0.62 0.64 0.13
Circular 0.26 0.65 0.67 0.09
BuffoonZX 0.36 0.59 0.68 0.15
BuffoonZY 0.53 0.53 0.36 0.25

Above Median
Baseline 0.33 0.73 0.70 0.09
Circular 0.38 0.41 0.80 0.22
BuffoonZX 0.75 0.22 0.81 0.58
BuffoonZY 0.81 0.19 0.27 0.66

Table 6: Average Attack Rates in Part 1, Split by Performance in Part 2
Note: qij denotes the probability with which player i targets player j. Column Prob(Z safe)

shows the resulting probability that Z is attacked by neither X nor Y .

in the BuffoonZX and BuffoonZY treatments. In the BuffoonZX treatment the

below median group mainly attacks Z in both roles X and Y , and in BuffoonZY

they are close to 50/50. For the above median group the picture is rather dif-

ferent, with a much smaller fraction of subjects attacking Z when doing so is a

dominated strategy. Since these comparisons are between subjects, we use two-

sided Mann-Whitney-U tests to compare the attack rates between the groups.

In the treatments without buffoons subjects in the below-median group direct

an average number of 2.67 attacks at Z, while in the above-median group it

is an average of 2.43 attacks (p = 0.152). In contrast, in the treatments with

buffoons subjects in the below median group still directed an average number of

2.23 attacks on Z, while for those in the above-median group this number falls

to 0.86 (p < 0.001).11 Consequently, the probability that X and Y both avoid

attacking Z in the buffoon treatments does not exceed 0.25 in the below-median

group but reaches 0.66 in the above-median group.
11All comparisons between groups in the buffoon treatments hold when we use Pearson’s χ2

test to test for a difference in proportions in the attack rates of X and Y individually (p < 0.01).
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7 Conclusion

In this paper we have investigated a phenomenon in political contests where it is

possible for a candidate who appears on the surface to have no chance of being

viable (a buffoon) to avoid being attacked by his opponents to the extent that

he or she actually wins a primary election. We believe that this logic captures

an important element of the Trump victory in the Republican primary of 2016.

We model political competition as a truel (a three-way duel) and derive the

fact that, in the equilibrium of these contests, candidates with a high enough

probability of self destruction may avoid being attacked. In the light of this, the

Trump victory appears much less an accident but rather emerges as a plausible

equilibrium outcome of a contest with rational players.

When we take this model to the lab we find evidence that supports the buf-

foon equilibrium prediction, i.e., that a candidate with a high enough implosion

probability does get attacked less frequently. Our results appear strong as we do

not give our subjects the opportunity to learn from feedback. In a primary elec-

tion contest most candidates themselves have substantial experience in political

campaigning and their advisors are usually seasoned veterans of many campaigns

well trained in understanding the strategic intricacies of such contests. In the

laboratory, we can see that subjects who make fewer costly errors in a series of

decision tasks also follow the theory more closely. We expect that the effects for

experienced players should only be larger. As we have shown Donald Trump was

largely spared from attacks in the early stages of the 2016 Republican primaries.

For the casual observer this looks like an amazing blunder from his opponents.

Our study supports the opposite view: there were solid reasons to ignore the

buffoon who may indeed be the most likely contender to be elected.
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Appendices

A1 Additional Tables

Treatment qXY qY Z qZX

Baseline 0.37 0.54 0.69
Circular 0.40 0.60 0.80
BuffoonZX 0.60 0.36 0.80
BuffoonZY 0.71 0.35 0.26

Table 7: Average Attack Rates, First Choice
Note: qij denotes the probability with which player i targets player j.
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State TV Market

Iowa (IA) Ceder Rapids-Waterloo-Iowa City-Dublin, Iowa
Des Moines-Ames, Iowa

Sioux City, Iowa
New Hampshire (NH) Boston, MA/Manchester, NH
South Carolina (SC) Columbia, SC

Nevada (NV) Reno, NV
North Carolina (NC) Charlotte, NC

Raleigh-Durham-Fayetteville, NC
Norfolk-Portsmouth-Newport News, NC

Ohio (OH) Cincinnati, OH
Florida (FL) Tampa-St. Petersburg, FL

Orlando-Daytona Beach-Melbourne, FL
Miami-Fort Lauderdale, FL

Arizona (AZ) Phoenix-Prescott, AZ
Wisconsin (WI) Milwaukee, WI
Colorado (CO) Denver, CO

Colorado Springs-Pueblo, CO
New York (NY) New York City, NY
Virginia (VA) Roanoke-Lynchburg, VA

Pennsylvania (PA) Philadelphia, PA
California (CA) San Francisco-Oakland-San Jose, CA
Maryland (MD) Washington, DC/Hagerstown, MD

Table 8: TV Markets and States Matching
Note: We drop data from the “Greenville-Spartanburg, SC/Asheville-Anderson, NC” TV

market since the market spans two states whose primaries are only 25 days apart. Including
them for either South Carolina or North Carolina does not change our results.
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Candidate Sponsors

Donald Trump Donald J. Trump For President
Great America PAC

Rebuilding America Now
Make America Number One

Marco Rubio Marco Rubio for President
Conservative Solutions

Reclaim America
Ted Cruz Cruz for President

Keep the Promise
Stand For Truth

Trusted Leadership
Courageous Conservatives

Ben Carson Carson America
2016 Committee

Jeb Bush Jeb 2016
Right to Rise USA

Carly Fiorina Carly for President
Carly for America Committee

Rand Paul Rand Paul for President
America’s Liberty

Chris Christie Chris Christie For President
America Leads

Mike Huckabee Huckabee For President
Pursuing America’s Greatness

Jim Gilmore Gilmore For America
George Pataki Pataki for President
Rick Santorum Santorum For President 2016

John Kasich Kasich for America
New Day For America

New Day Independent Media Committee

Table 9: Candidates and Ad Sponsors

44



A2 Proofs

Proof of Proposition 1

Case 1: X → Y, Y → Z,Z → X.

Denote the incentive compatibility condition of some candidate j by ICj . We have:

ICX : p−XY = βY < βZ + (1− βZ)πY = p−XZ

ICY : p−YZ = βZ < βX + (1− βX)πZ = p−YX

ICZ : p−ZX = βX < βY + (1− βY )πX = p−ZY

ICX and ICZ automatically follow from βX < βY < βZ . ICY instead requires that:

πZ >
βZ − βX
1− βX

. (8)

Case 2: X → Z, Y → X,Z → Y . We have:

ICX : p−XZ = βZ < βY + (1− βY )πZ = p−XY

ICY : p−YX = βX < βZ + (1− βZ)πX = p−YZ

ICZ : p−ZY = βY < βX + (1− βX)πY = p−ZX

ICY automatically follows from βX < βZ . ICX and ICZ instead require that:

πZ >
βZ − βY
1− βY

and πY >
βY − βX
1− βX

. (9)

Case 3: X → Y, Y → X,Z → X. We have:

ICX : p−XY = βY < βZ = p−XZ

ICY : p−YX = βX + (1− βX)πZ < βZ = p−YZ

ICZ : p−ZX = βX + (1− βX)πY < βY + (1− βY )πX = p−ZY .
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ICX automatically follows from βY < βZ . ICY and ICZ instead require that:

πZ <
βZ − βX
1− βX

and πY <
βY − βX + (1− βY )πX

1− βX
. (10)

Note that the first of these conditions is the opposite of (8) , which means that Case 1

and Case 3 equilibria are mutually exclusive.

Case 4: X → Y, Y → X,Z → Y . We have:

ICX : p−XY = βY + (1− βY )πZ < βZ = p−XZ

ICY : p−YX = βX < βZ = p−YZ

ICZ : p−ZX = βX + (1− βX)πY > βY + (1− βY )πX = p−ZY .

ICY automatically follows from βX < βZ . ICX and ICZ instead require:

πZ <
βZ − βY
1− βY

and πY >
βY − βX + (1− βY )πX

1− βX
,

where the first condition contradicts both (8) because βZ−βY

1−βY
< βZ−βX

1−βX
and (9), and

the second condition contradicts (10). Hence, Case 4 can never coexist with any of the

other Cases.

This implies that Case 1 can only coexist with Case 2, and Case 2 can only coexist

with Case 1 or Case 3. We depict the mapping from all possible parameter constellations

to equilibrium existence in Figure 3 for the case 0 = βX = βY < βZ and in Figure 6 for

the case 0 ≤ βX < βY < βZ .

Introducing Dynamics

Denote by Π∗i (j, k) the value for i of entering the second round with both j and k still in

the contest. Conversely, Π∗i (j) and Π∗i (k) are the continuation values associated with i

entering a duel, respectively against j and against k. Importantly, all three continuation

values are strictly increasing in the remaining opponents’ implosion probabilities.

Player i’s counterfactual payoffs in the first round are a straightforward modification

of (1). Denoting by ∆Π1
i (j) the utility gain from targeting j in round 1, and comparing
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it against the value of targeting k, it emerges that:

∆Π1
i (j)−∆Π1

i (k)
(1−pi)πi

=
(
p−ik − p

−i
j

)
+
[
Π∗i (k)(1− p−ik )−Π∗i (j)(1− p−ij )

]
. (11)

Note that this difference is strictly decreasing both in p−ij and in Π1
i (j), and hence in

βj . That is, the higher is j’s implosion probability, the lower is i’s incentive to shoot at

j, which extends our previous results to the dynamic game.

Going further, we can compare (11) with (3), the difference obtained in the static

game, which is (p−ik − p
−i
j ). It thus appears that j is less targeted early in the race if

the second term in (11), the one between square brackets, is negative. This happens if

and only if:
1− πk
1− πj

<
2− (1− βj)(1− πi)
2− (1− βk)(1− πi)

,

which compares the opponents’ precisions and implosion probabilities. For equal preci-

sions, the condition boils down to βj > βk. For the general case, the condition is more

easily satisfied the higher is βj and less easily satisfied the larger is πj .

Generalization of Lemma 1 to N+3 players

Consider a game with N + 3 players (i, j, k and N > 0 others), and consider the per-

spective of player i. For a given action profile, define K as the set of players who aim at

candidate k. k’s probability of survival is then: sk := (1− βk)
∏
j∈K (1− πj) , and his

probability of exit is 1 − sk. From the perspective of player i, k’s counterfactual exit

probability is:

p−ik := 1− (1− βk)
∏
j∈K\i

(1− πj) .

To ease reading, in the developments below we denote p−ik by pk. Define also P :=∏
l=1,..,N pl, which is the probability that all the players n1, n2, ..., N exit the race,

conditional on i not aiming at anyone. We have:

Lemma 2 Given an action profile, candidate i’s best response is to aim at the other

candidate j with the lowest counterfactual exit probability.
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Proof. First, we derive the value of aiming at some candidate j:

∆Πi (j)
πi (1− pi)

= (1− pj) pk

α︷ ︸︸ ︷ (
1− 1

2
)
P +

( 1
2 −

1
3
)∑

l1

(1−pl1)
pl1

P + ...

...+
( 1

3 −
1
4
)∑

l1

∑
l2 6=l1

(1−pl1)(1−pl2)
pl1pl2

P + ...


+ (1− pj) (1− pk)

 ( 1
2 −

1
3
)
P +

( 1
3 −

1
4
)∑

l1

(1−pl1)
pl1

P + ...

...+
( 1

4 −
1
5
)∑

l1

∑
l2 6=l1

(1−pl1)(1−pl2)
pl1pl2

+ ...


︸ ︷︷ ︸

γ

.

Conversely, value of aiming at k is:

∆Πi (k)
πi (1− pi)

= pj (1− pk) α+ (1− pj) (1− pk) γ

Comparing the two:

∆Πi (j)−∆Πi (k)
πi (1− pi)

= [(1− pj) pk − pj (1− pk)]× α,

which is positive iff pj < pk. This comparison being valid for any pair of candidates j

and k different from i, applying recursively proves the lemma.

Generalization of Proposition 1 to N players

Consider nX “professional candidates” x ∈ X = {1, 2, ..., nX} with:

πx > βx,

and nZ candidates z ∈ Z = {1, 2, ..., nZ} who are buffoons:

πz < βz.

We impose that: βz > βx and πz < πx for all x ∈ X and z ∈ Z that is, any buffoon has

a probability of implosion strictly higher than any fine candidate. We also set nZ ≤ nX :

there are fewer buffoons than fine candidates.

Note that each candidate may a priori aim at any of the other (nX + nZ − 1) can-

didates, implying a number of possible combinations equal to: (nX + nZ − 1)nX+nZ .
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There also are multiple combination of actions that may be outcome equivalent: con-

sider for instance a slate of 4 professionals and one buffoon. Both of the following action

profiles would characterize a buffoon equilibrium: first, consider a circular action profile

among the pros, x1 → x2, x2 → x3, x3 → x4, x4 → x1, z → x1. Second, two duels among

the pros: x1 → x2, x2 → x1, x3 → x4, x4 → x3, z → x1. Given the potentially large

number of such profiles, we only look for a sufficient condition to ensure the existence

of at least one buffoon equilibrium.

Proof of Proposition 2. We focus on the following action profile: first, let all

the professional candidates pick their target in accordance with Lemma 2: none of the

buffoons are targeted as long as maxx∈X βx < minz∈Z βz. Next, let the buffoons pick

their target in the same fashion. None of the buffoons get targeted if there are at least

nZ professionals such that:

1− (1− βx) (1− πx) = βx + πx (1− βx) ≤ min
z∈Z

βz.

A sufficient condition for this to hold is:

max
x

πx ≤ min
x∈X,z∈Z

βz − βx
1− βx

.

By transitivity, no buffoon wants to aim at another buffoon if this condition is satisfied.

A3 Instructions

These instructions are translated from the original German instructions. The German

instructions are available from the authors upon request. Subjects received the instruc-

tions for Part 2 only after finishing Part 1.
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Part 1

Welcome to our experiment!

During the experiment you are not allowed to use electronic gadgets or to communicate

with other participants. Please only use the programs and functions that were designed

for the experiment. Please do not talk to other participants. If you have a question,

please raise your hand. We will come to you and answer your question privately. Please

do not ask questions aloud. If the question is relevant for all participants, we will repeat

and answer it aloud. If you break these rules, we will have to exclude you from the

experiment and from payment.

Part 1 of the experiment

This experiment has two independent parts. Your decisions in the first part will not

influence the second part.

Short description

You take part in a tournament with three players. In total there are three players who

we call A, B, and C. During the competition each player has the option to attack one

other player. If an attack is successful, the attacked player is ELIMINATED and will

not earn any money. You only earn money if at the end of the competition you are

STILL STANDING. All players that are still standing will share 15 Euro between each

other. Additionally, you will receive a participation fee of 5 Euro.

In this part of the experiment you will make decisions in 4 different situations. At

the end of the experiment one of those decisions will be randomly drawn for payment.

Attacks

All players must decide whom to attack at the same time. That is, by the time you

make your decision, you will not know who the other players will attack.

An attack is not always successful. When a player attacks, the computer rolls a die
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that determines whether his attack succeeds in eliminating the opponent. But players

differ in their odds of successful attacks.

In addition, there is a probability that a player exits the competition and thus is

ELIMINATED even if he was not attacked or if all attacks on him failed. If a player is

eliminated in this way, we say that he IMPLODED.

All attacks are carried out at the same time. A player is still standing at the end of

the tournament if and only if:

(1) All attacks on him failed.

(2) He did not implode.

This gives rise to three possible situations for every player:

(1) The player was not attacked by anyone. Then, he is STILL STANDING if he did

not IMPLODE.

(2) The player was attacked by exactly one other player. Then, he is STILL STAND-

ING if the attack failed AND he did not IMPLODE.

(3) The player was attacked by both other players. Then he is STILL STANDING

only if both attacks failed AND he did not IMPLODE.

This means that you cannot influence your own likelihood to be STILL STANDING

at the end of the competition. You can only influence the likelihood that the other

players are STILL STANDING.

In the experiment we will present all the information in a table as follows. Imagine

the following situation:

Player Probability to attack successfully Probability to implode

A 50% 0%

B 40% 0%

C 10% 30%

Note that in this situation two players, A and B, have a probability to implode of

zero, while player C has a probability of 30% to implode. In this situation player C is at

the same time the player with the lowest probability to successfully attack, while player

A is the player with the highest probability to successfully attack.
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Results

After the attacks, there are four possible scenarios that can arise:

(i) All players were ELIMINATED. In this case, all players receive 0 Euro.

(ii) Two players were ELIMINATED, one player is STILL STANDING. The players

who were eliminated, receive 0 Euro. The player who has survived receives 15

Euro.

(iii) One player was ELIMINATED, two players are STILL STANDING. The player

who was eliminated receives 0 Euro. The two players who are still standing,

receive 7.50 Euro each.

(iv) All players are STILL STANDING. All players receive 5 Euro each.

Procedure of the experiment

In the experiment you will first make choices for 2 different situations. In each round

we will ask you who you attack if you are player A, player B, or player C. You have

to make exactly one decision for each role. It means that you must to make a choice

for the role of player A whether you want to attack B or C. For the role of player B

you must decide whether you want to attack C or A. For the role of player C you must

decide whether you want to attack A or B.

After every participant in the experiment has made all choices in all situations the

computer will match you randomly and anonymously with two other participants in

the room. Then the computer will randomly pick one of the situations and will assign

you the role of player A, player B, or player C. The computer will then implement

the choice that you made for this role in this situation. Simultaneously, the computer

will implement the choices of the other two players, which they made for their roles.

Afterwards, the computer will roll dice to determine if the players hit their targets, if

they implode, and if they are still standing. The computer will use the probabilities

which were defined in the chosen situation.

Note that you will not receive feedback of what other people are doing when you

are making your choices! You will only learn more at the end of the experiment.
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Payments

At the end of the experiment we will pay your earnings in cash. You will receive 5 Euro

for your participation in the experiment plus your earning from Part 1 and Part 2.

Part 2

Welcome to part 2 of the experiment

In this part of the experiment you do not interact with the other participants in the

room but only with the computer. Like in part 1 you take part in a competition with

three players.

The differences compared to Part 1:

• You do not have a random, but a specific role, which you will know when making

your choice.

• The other two roles will be controlled by the computer.

• All earnings by players who are controlled by the computer will not be paid out

to human participants.

• The players who are controlled by the computer will commit from the beginning

who they will attack. You will know from the shown arrows who the computer

will attack.
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In this example the computer controls players B and C. B will attack C and C will

attack B. You are player A and you have to decide whether to attack B or C.12

Apart from these differences the same rules like in Part 1 apply. You will see the

same table containing all the information about attack and implosion probabilities.

All players who were not eliminated again share 15 Euro between themselves. Any

money that is earned by a computer-controlled player will not be paid out to human

participants. You will make decisions for 8 situations. The computer will randomly pick

one of these situations and will implement the choice that you made in this situation.

Afterwards, the computer will roll dice to determine if the players hit their targets, if

they implode, and if they are still standing. The computer will use the probabilities

which were defined in the chosen situation.
12The text in the picture reads “The survivors split 15 Euro. You are A. Who do you attack?”
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Payments

At the end of the experiment we will pay your earnings in cash. You will receive 5 Euro

for your participation in the experiment plus your earning from Part 1 and Part 2.
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