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Abstract 

We consider a popular theoretical model of jurisdiction formation where there is a 
tradeoff between efficiencies of scale and heterogeneity. We develop a maximum score 
estimation technique to determine the parameters of a central planner’s payoff function 
given the way they partitioned a territory into jurisdictions. We apply this technique 
to historical data on a set of centralized boundary changes in Japan: walking distance 
appears to largely determine jurisdiction boundaries, with only small effects from land 
type and historical feudal ruler, and no effect of religion. 

We then assume that local villages shared these preference parameters emphasizing 
walking distance, and use binary integer programming to calculate core partitions for a 
decentralized coalition formation game based on this model. Core partitions exist with 
very high probability. In a counterfactual world in which there are no between-village 
income differences, these core partitions are extremely close to the partition that would 
be chosen by a utilitarian central planner. When actual cross-village income differences 
are used, however, sorting on income results in mergers that are both smaller and 
geographically discontiguous. 
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Does exercise of the right to self-determination result in an efficient arrangement of polit-
ical boundaries? There is substantial theoretical interest in this issue both inside and outside 

of economics. Policy relevance is suggested by past votes on independence in Scotland, Cat-
alonia, Quebec, and elsewhere, as well as the recent decision by the United Kingdom to 

leave the European Union. Empirical results regarding the efficiency of jurisdiction forma-
tion, however, are very limited. 

This paper considers a historical set of municipal mergers in Gifu, Japan, that were de-
cided by a central planner in the late 19th century. Pre-defined subunits corresponding to 

feudal villages were merged to create modern municipalities. We use an Alesina and Spolaore 

[1997] type model, where there is a tradeoff between efficiencies of scale and heterogeneity, 
and estimate the relative importance of different sorts of heterogeneity to the planner via a 

variation on the Fox [2007] pairwise maximum score estimator. We then estimate param-
eters regarding the cost of public good provision via method of moments, combined with 

calibration based on official government reports and observed spending. We assume that 
the central planner acted as a Benthamite aggregator of the preferences of the villages, and 

thus the parameters just estimated also give us the preferences of villages over types of het-
erogeneity and their importance relative to efficiencies of scale. We find small effects of land 

type and historical feudal lord, and a much larger effect for geographic distance variables, in 

particular walking distance. 
A counterfactual case is then considered, where villages were allowed to choose how to 

arrange themselves into jurisdictions in a coalition formation game. The game is without 
transfers: this is common in political economy [Acemoglu 2003] and matches later actually 

decentralized mergers [Weese 2015]. In addition to heterogeneity and efficiencies of scale, 
however, each individual village also cares about the degree to which it – rather than its 
merger partners – will end up paying the taxes that fund the municipality. The core is used 

as the solution concept in this decentralized jurisdiction formation game, and results are 

obtained via simulation. The core partitions in this coalition formation game are automat-
ically Pareto optimal. Payoffs for players, however, are quasi-linear with respect to money, 
and we consider inefficiency from a utilitarian perspective. We perform simulations with 

the observed data, as well as considering setups with changed village characteristics or the 

addition of inter-governmental subsidies. 
Our simulations show that decentralized coalition formation results in substantial inef-

ficiency; however, in the case where the players do not differ in per capita tax base core 

partitions are very close to the central planner’s optimal partition. Although from a theoret-
ical perspective inefficiency could arise from a variety of sources, our simulations suggest that 
the empirically relevant source of inefficiency is the sorting of Farrell and Scotchmer [1988]: 
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each player would prefer to merge with others that are richer than themselves, while avoiding 

poorer players. Stratification on income leads to a shortage of mutually acceptable partners, 
resulting in coalitions that are geographically discontiguous and substantially smaller than 

those in the central planner’s optimal partition. Depending on the exact scenario, back of 
the envelope calculations suggest that inefficiency could be equivalent to 2.25% of GDP. 

This paper makes two methodological contributions. First, we present a method of 
computing core partitions in coalition formation games that have an Aziz, Brandt, and Har-
renstein [2014] fractional hedonic form. Our overall approach follows a method used in the 

“roommates problem” by Chung [2000], where successive myopic deviations eventually lead 

to a stable partition. A major issue is that the coalition formation game in Gifu consists of 
approximately 1000 players, and unlike a standard (pairwise) roommates problem, enumer-
ation of potential coalitions is computationally infeasible. To avoid having to enumerate all 
potential coalitions, we express each myopic deviation as the solution to a binary integer 
program. Using this technique, we are able to compute core partitions in a few hours using 

standard equipment. 
Finding core partitions of coalition formation games is known to be an NP-hard problem 

in general. There is substantial previous applied research using coalition formation games 
with transfers (e.g. Diermeier, Eraslan, and Merlo 2003) or games with only pairwise coali-
tions (e.g. Gordon and Knight [2009]). To our knowledge, our results are the first to show 

solutions for large instances of a coalition formation game without transfers. Although frac-
tional hedonic games have attracted theoretical interest in economics, to date they have 

not been used in applied research. Our results suggest that many real world instances of 
fractional hedonic games may be much more easily solvable than theoretical worst case 

instances. 
Second, we present a method of estimating the preferences of a decision maker based 

on the way they have partitioned a territory. This method is based on the pairwise max-
imum score estimator of Fox [2007], except we use a relaxed version of the Manski [1975] 
rank ordering property that only considers alternative partitions that can be created via 

permutations of player labels. Our method does not rely on any particular structure for the 

decision maker’s deterministic payoffs, and thus could potentially be used to estimate pref-
erences even in cases where payoffs are clearly non-linear, such as in the process of creating 

gerrymandered districts. 
An obvious objection to our approach is that we obtain parameter estimates by assuming 

that the importance villages place on different sorts of heterogeneity (and the importance of 
that heterogeneity relative to the cost of running the jurisdiction) is shared by the planners 
in the national government. If this assumption is incorrect, then the portions of this paper 
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that serve as a program evaluation of a particular set of municipal mergers in 19th century 

Japan are invalid. The main objective of our analysis, however, is more general. Our model 
introduces a simple distinction between “horizontal” characteristics such as religion, where 

similar merger partners are preferred, and “vertical” characteristics such as income, where 

richer merger partners are preferred. We show that there is an approximate “invisible hand” 

type result for decentralized jurisdiction formation when players differ only in horizontal 
characteristics, but not when they also differ in vertical characteristics. 

Simulations are required to reach these conclusions because the models we are most 
interested in have no closed form solutions [Gregorini 2009]. To perform these simulations 
we must somehow choose plausible parameter values and distributions of characteristics. We 

base our parameters on a particular instance of boundary changes in Japan because the 

institutional setup there appears to match a fractional hedonic model and we can thus make 

it computationally tractable. We use further Monte Carlo simulations of a dramatically 

simplified game to show that our key results require only that the cost of providing public 

goods must be increasing in population. The precise degree of congestibility, however, as 
well as the precise distribution of heterogeneity among players, are not critical to our results. 
If we have dramatically misunderstood the actual process of mergers in our Japanese data, 
the general results from our simulations still hold for a hypothetical environment in which 

there is substantial congestibility of public goods as well as some sort of tradeoff between 

heterogeneity and efficiencies of scale. We believe that this is an environment of interest 
because it corresponds to how public goods appear to be provided in many situations. 

1.1 Related Literature 

This paper is inspired by Desmet et al. [2011], who consider European national boundaries as 
a coalition formation game. Desmet et al. use exhaustive enumeration for their simulations, 
and are forced to cut their dataset in half (from 24 down to 11 players) in order to make 

this computationally feasible. A number of other papers consider similar political coalition 

formation games. These include Brasington [1999], Gordon and Knight [2009], and Weese 

[2015]. These papers do not focus on simulating the outcome of the coalition formation 

game that they study, and the simulations that are performed do not face computational 
constraints because the object of interest is pairwise mergers. 

From a broader perspective, this paper presents a sorting model based on a “strong 

Tiebout equilibrium” [Greenberg and Weber 1986], one where players arrange themselves into 

core-stable coalitions based on their income as well as other characteristics. Many Tiebout 
models involve each player caring about the “average” type of player in their coalition, and 
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a fractional hedonic game provides a natural way of modelling this “average” based payoff. 
We provide an algorithm to compute the solution to large fractional hedonic games, and 

we show that empirically this solution exists and features substantial inefficiency. Although 

the precise model we consider is much simpler than those generally used in the Tiebout 
literature, our algorithm would also apply to fractional hedonic games where the payoff for 
players depended on many more variables. It thus may be empirically possible to use strong 

Tiebout equilibrium models to analyze problems related to public schooling or other local 
public goods. 

Integer programming has been used extensively in the two-sided matching literature for 
finding chains of kidney donors [Roth, Sönmez, and Ünver 2007]. Our application of integer 
programming techniques is to a matching game where there is only one type of player: both 

our algorithm and the underlying theory differ substantially from the two-sided case. The 

previous literature on integer programming in political economy appears limited to Serafini 
[2012], who considers a seat allocation problem in the EU parliament. Previous uses in other 
fields of economics include Gomory [1994] and Pinar and Camci [2012], as well as Elomri 
et al. [2013] in supply chain management. 

Maximum score estimation has been used on a wide variety of empirical topics, including 

network formation games (e.g. Fox [2018]). From one perspective, the problem we study is 
simpler than a network game because we have a single decision maker choosing a partition, 
and thus our estimation matches directly the classic discrete choice framework used in Fox 

[2007]. On the other hand, simple models of network formation involve pairwise idiosyncratic 

shocks that can be isolated by considering only one edge on the network, whereas moving a 

single player to a different coalition in a partition potentially involves losing (and gaining) 
many coalition partners. The pairwise structure of idiosyncratic shocks we use is closely 

related to the standard structure in network formation, but the “permutation rank ordering 

property” we base our objective function on appears to be new to the literature. 
This paper appears to be the first quantitative study of municipal mergers in Meiji 

Japan. Previous work on more recent Japanese municipal mergers includes Hirota and 

Yunoue [2014], Miyazaki [2014], and Weese [2015]. The techniques used and results obtained 

in these papers differ substantially from those presented below. Hirota and Yunoue [2014] 
uses a logit framework to look at political determinants of mergers. Miyazaki [2014] uses 
data on municipal referenda. Weese [2015] considers recent Japanese data where the central 
government provides equalization payments to municipalities. The observed equalization 

payments in this recent data are extremely large (up to 25% of GDP per capita for the 

smallest municipalities), and counterfactuals where there are no such payments are thus so 

far out of sample that there would be computational difficulties with any such simulation, 
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as well as theoretical difficulties in interpreting the results. 
The remainder of this paper has the following structure: Section 2 presents the theoretical 

model, Section 3 introduces the data used, Section 4 describes the maximum score estimation 

approach, Section 5 presents the estimation results, Section 6 shows how we obtain estimates 
for two additional parameters that are otherwise not identified, and Section 7 covers the 

counterfactual simulations performed. 

2 Model 
In a hedonic game [Bogomolnaia and Jackson 2002; Dreze and Greenberg 1980], payoffs to 

players depend only on the identity of their coalition partners. A fractional hedonic game 

[Aziz, Brandt, and Harrenstein 2014] is a hedonic game where the payoff to player i from ∑
being a member of coalition S is vi(S) = vi(i ′ )/|S|, where |S| is the number of players i ′ ∈S 

in S. That is, the payoff to a coalition is the average of pairwise payoffs vi(i ′ ). 
Games of this sort have long been considered in economics: for example, if we set 

vi(i) = yi − γ1 (1) 
vi(i 

′ ) = yi ′ for i ′ ≠ i, 

then we have a Farrell and Scotchmer [1988] “partnership” game, where team members 
generate different incomes y but these are pooled and shared equally by the entire team 

after paying a fixed cost γ1. If we instead assign each player a type and set 

vi(i) = −γ1 

vi(i 
′ ) = 0 if i and i ′ ̸= i are the same type (2) 

vi(i 
′ ) = −1 if i and i ′ ≠ i are different types, 

then we have a setup similar to that used by Alesina, Baqir, and Hoxby [2004] to describe 

the formation of school districts in the United States. Here players face a tradeoff between 

efficiencies of scale and a desire to share a district only with others that look like themselves. 
In this paper we will describe heterogeneity between players as vertical if it is of Farrell 

and Scotchmer [1988] type, where it leads to all players having the same ranking over poten-
tial partners. In contrast, we will call heterogeneity horizontal when it leads to each player 
preferring to join with other players similar to themselves. Situations involving both vertical 
and horizontal heterogeneity are difficult to analyze theoretically [Gregorini 2009] but occur 
frequently in the real world. For example students partition into schools, with (almost) 
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everyone preferring higher academic ability peers but often looking to be with others that 
share their own religious or political views. Civil servants and staff at universities often par-
tition themselves into multiple unions (e.g. “service & maintenance”, “clerical & technical”, 
“security”, and “police”), where vertical heterogeneity is important because of within-union 

wage compression and horizontal heterogeneity arises due to the natural differences in the 

bargaining objectives of different occupations. The most obvious application of fractional 
hedonic games in economics, however, is to political jurisdictions: these jurisdictions gener-
ally group together people that are close to one another (either geographically or in terms of 
other characteristics), but at the same time a shared pool of tax revenue results in wealthier 
individuals trying to escape and form more exclusive jurisdictions. 

A particularly simple way to model a situation with both vertical and horizontal het-
erogeneity is to use a weighted fractional hedonic game, with the special choice that the 

weights assigned to players are their incomes yi. The payoff to player i will then be 

vi(S) = 
∑ 

yi ′ vi(i ′ )/ 
∑ 

yi ′ , and we choose i ′ ∈S i ′ ∈S 

vi(i) = −γ1 − γ2 (3) 

vi(i 
′ ) = − 

yi 
γ2 − yid(i, i 

′ ). 
yi ′ 

Here γ1 is the fixed cost of running a jurisdiction, γ2 is a per player variable cost, and d(i, i ′ ) 

is some sort of distance (geographic or otherwise) between player i and i ′ . In the geographic 

data presented in Section 3 it will always be the case that d(i, i ′ ) ≥ 0, d(i, i) = 0, and the 

triangle inequality is satisfied, but these facts are not used anywhere below and for non-
geographic variables and in Monte Carlo exercises we will frequently generate d(i, i ′ ) entries 
that reflect “dissimilarity” rather than a true mathematical distance. 

To see why this choice of payoffs makes sense, let YS = 
∑ 

i ′ ∈S yi ′ . The payoff for player i 
then expands to ∑yi yi ′ 

vi(S) = − (γ1 + γ2|S|) − yi d(i, i ′ ). (4)
YS YS

i ′ ∈S 

The first term here is player i’s share of the cost of running the jurisdiction under proportional 
taxation: from the perspective of the club good literature, γ2 > 0 corresponds to the case 

with congestibility. The second term is the weighted distance between i and the players in 

S. If the distance in question is a geographic distance, then the weighting by yi could be 

due to a greater time cost of travel for those with higher incomes. An obvious simplification 

here is that there is no quality dimension to the services provided. For a given coalition S, 
the amount that must be paid by each player is determined mechanically by the tax base 

YS and the total cost of providing services. Other than the proportional taxation to pay for 
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these services, there is no redistribution or other transfers within a coalition. 
When we perform Monte Carlo simulations, we will use payoffs as given in Equation 4. 

In the Japanese data that will be presented in Section 3, however, a player will correspond 

to a feudal village with some population p. We thus need to scale the congestion cost γ2 by 

the population, leading to payoffs of ∑ ∑yi yi ′ 
vi(S) = − (γ1 + γ2 pi ′ ) − yi d(i, i ′ ). (5)

YS YS
i ′ ∈S i ′ ∈S 

An obvious objection to the form of the payoffs just presented relates to our choice to 

weight by y. This weighting is actually not essential, because techniques following Barros 
[1998] could be used to run a mixed integer program similar to that presented below in Sec-
tion 2.1 even though payoffs would no longer have the form of a fractional hedonic game. We 

do not explore this extension, however, because in our historical Japanese dataset there is 
substantial evidence for the overrepresentation of the elite both in formal and informal insti-
tutions and thus it seems appropriate to overweight richer players (see Nishikawa, Hayashi, 
and Weese [2018] for details). A further advantage is that in our data the players correspond 

to feudal villages that contain multiple households with different levels of y. The preferences 
described in Equation 5 lead to all of these households having the same preferences over 
mergers. Thus, the specific form chosen allows us to ignore within-village heterogeneity in 

income. 
Another potential objection is that we follow Desmet et al. [2011] and have our players 

experience disutility proportional to the average distance between them and their coalition 

partners. In recent years the modelling choice used in Alesina and Spolaore [1997] has 
become popular, where players experience disutility based on how far their ideal point is 
from a policy decision.1 We do not use this type of model for two reasons. First, we will 
show that the most important type of heterogeneity in our data is the walking distance 

between players, which does not map to a low dimensional euclidean space as would be 

required by an ideal point model. Second, the loss function in an Alesina and Spolaore 

[1997] type model involves a quadratic, which means that the program we are about to 

present would be a computationally costly quadratically constrained program, instead of a 

linearly constrained program. 
1The “average distance” functional form comes from the Lieberson [1964] extension of Greenberg [1956]. 

Earlier work on Alesina and Spolaore [1997] type models includes Greenberg and Weber [1986]: a literature 
review is provided in Donder, Breton, and Peluso [2012]. 
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2.1 Solution 

We will use the core as our solution concept. In a hedonic coalition formation game without 
transfers, the core is 

Π ∗ = {π|∀S ′ ∈/ π, ∃i ∈ S ′ s.t. vi(π) ≥ vi(S ′ )}, (6) 

where π is a partition of players into coalitions, and vi(π) indicates the utility that player 
i receives from whatever coalition it belongs to in partition π. There is the possibility that 
Π∗ is empty, and a substantial amount of work has been devoted to finding conditions under 
which the non-emptiness of Π∗ is guaranteed.2 In general, the results in this literature have 

been mostly negative: it is difficult to find conditions under which the core is guaranteed to 

be non-empty, and even more difficult to define these conditions in such a way that they can 

be easily checked. Brandl, Brandt, and Strobel [2015] discuss how fractional hedonic games 
also suffer from this problem, and provide a specific six player example with an empty core. 

In this paper we will mostly ignore this issue, and instead simply show that core partitions 
exist given our data and parameter estimates. A potential criticism here is that this “works 
for me” attitude does not tell us anything about whether core partitions generally exist in 

fractional hedonic games. On the other hand, in the two-sided matching literature in certain 

cases empirical results [Roth and Peranson 1999] regarding existence of stable matchings 
predated theoretical results [Kojima, Pathak, and Roth 2013] explaining why this occurred. 
In an attempt to generalize our empirical results we will also perform Monte Carlo simulations 
and show that our results hold with high probability on randomly generated datasets. 

To generate core partitions we will follow Roth and Vate [1990] and Chung [2000] and use 

a series of myopic deviations by blocking coalitions. However, the data that will be presented 

below in Section 3 involves approximately 1000 players who could combine to form 21000 − 1 

distinct coalitions. It is thus not computationally feasible to enumerate all the coalitions 
that could potentially form. Instead, we will use a binary integer program that relies on the 

payoff structure inherent in fractional hedonic games. 
Any given partition π may have many blocking coalitions. Suppose that S ′ is a blocking 

coalition. Taking the payoffs defined in Equation 5 for a weighted fractional hedonic game, 
2These conditions include “consecutiveness” [Greenberg and Weber 1986], “intermediate preferences” 

[Demange 1994], the “top coalition property” [Banerjee, Konishi, and Sönmez 2001], and the “single lapping 
property” [Pápai 2004], among many others. Banerjee, Konishi, and Sönmez [2001] provides a detailed 
literature review. 
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it must be the case that, for every player i in S ′ , ∑ 
yi ′ vi(i ′ )i ′ ∈S ′ vi(π) < ∑ . (7) 
yi ′ i ′ ∈S ′ 

The intuition behind our strategy is that multiplying both sides of this inequality by 
∑ 

yi ′ i ′ ∈S ′ 

creates inequalities that are linear in the membership of S ′ , and the membership of S ′ can 

be described by a binary variable for each player indicating whether or not it is a member. 
Details of this approach are provided in Appendix A.1. The problem of finding a blocking 

coalition can then be posed as a maximization problem based on binary integer programming 

with linear constraints. Let w be a vector of weights. The program ∑ 
argmax wi (8) 

S ′ 
i∈S ′ ∑ ∑ ∑ 

i ′ ∈S ′ s.t. ∀i ∈ S ′ , 0 < −vi(π) 
yi ′ − yi ′ d(i, i 

′ ) − (γ1 + γ2 pi ′ ) 
yi 

i ′ ∈S ′ i ′ ∈S ′ 

will either return a blocking coalition S ′, or an infeasibility certificate with a numerical proof 
that no such coalition exists. We will call the S ′ that is returned by this optimization a 

“myopic deviation”. If there are multiple possible myopic deviations, the program returns 
the deviation with the highest possible weight. By choosing different weights for different 
players, different deviations and paths of deviations can be selected. 

We are able to numerically prove the non-existence of a blocking coalition when none 

exists because the maximization problem in (8) is a binary integer program. Programs of 
this type are solvable by techniques such as branch and bound [Land and Doig 1960], which 

use linear relaxations of the integer program to eliminate large parts of the search space. If 
there is no blocking coalition, the entire search space will eventually be eliminated in this 
way, resulting in a numerical proof that no blocking coalition exists. 

Binary integer programs are NP-hard and there is no theoretical guarantee that a solution 

(or numerical proof that a solution does not exist) can be obtained in a reasonable amount 
of time. However, we do not encounter this problem when using the commercial solver 
CPLEX on modern hardware, and even with N = 1000 players the binary integer program 

usually terminates within a few minutes, and often much faster. Counterintuitively, however, 
we observe much worse computational performance in the special case where there is no 

horizontal heterogeneity and d(i, i ′ ) = 0 for all i and i ′ . This suggests that the speed of 
the fast solutions that we observe in the case where there is horizontal heterogeneity is in 

fact due to that heterogeneity. CPLEX is likely able to rule out many potential blocking 

coalitions because they would have too much horizontal heterogeneity, and quickly restrict 
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Data: N , v, w, y 
Result: A core partition π∗ (or loop forever) 
Arbitrarily assign players to a starting partition π1; 
Iteration count j = 1; 
while there is a blocking coalition S ′ for partition πj do 

Identify “affected” coalitions, A = {S|S ∈ πj , ∃i ∈ S s.t. i ∈ S ′ }; 
Identify “residual” players, R = {i|i ∈ S ∈ A, i ∈/ S ′ }; 
if R ̸= ∅ then 

Recursion: find a core partition πR∗ using only players R; 
πj+1 = (πj \ A) ∪ {S ′ } ∪ πR∗; 

else πj+1 = (πj \ A) ∪ {S ′ }; 
j = j + 1; 

end 
π∗ = πj ; 

Algorithm 1: Core Partition via Myopic Deviations 

the search for blocking coalitions to a much smaller set of such coalitions where the coalition 

partners are close to each other in terms of distance d(i, i ′ ). 
Algorithm 1 attempts to find a core partition by successively generating blocking coali-

tions, where nomenclature and some ideas regarding recursion are taken from Ray and Vohra 

[1997]. In this algorithm, the binary integer program to find a blocking coalition given in 

(8) appears in the loop condition. 
Although we know that the program given in (8) will always terminate with either a 

blocking coalition or a proof that that none exists, there is the possibility that Algorithm 

1 will not terminate. In particular, Algorithm 1 may loop forever if there is a cycle of 
myopic deviations. Using our data and parameter estimates, however, the algorithm always 
terminates so long as the weights wi are positive for all players i.3 By running Algorithm 1 

multiple times with different weights w, we pick out different paths of myopic deviations, and 

thus different core partitions. The partition π1 used to initialize Algorithm 1 does not appear 
to matter: we obtain qualitatively similar results using the grand coalition, the all-singleton 

partition, or the central planner’s preferred partition. We use the all-singleton partition 

as our starting partition for the results discussed below, because any stable partition can 

be obtained via a sequence of myopic deviations starting from the all-singleton partition.4 

3When some weights are negative, such as when wi ∼ Normal(0, 1), we very occasionally observe cycles. 
These cycles are short and thus easy to identify. Re-randomizing weights from a non-negative distribution 
such as wi ∼ Uniform(0, 1) generally breaks the cycle. 

4Proof: Let S ′ ∈ π∗ be a non-singleton coalition. Set wi to some high value for i ∈ S ′ and to some very 
negative value for all other i. Then S ′ is the coalition that maximizes (8): so long as different coalitions have 
different payoffs S ′ must be a deviation from the singletons because otherwise π∗ would have some singleton 
deviation. Repeat for all other coalitions in π∗ . 
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Additional computational details are proviided in Appendix A.2. 
We now perform several Monte Carlo exercises to better understand the nature of the 

core in coalition formation games of the type we are considering. We begin by using the 

payoffs in Equation 4 and setting yi = 1 for all players, γ2 = 0, and randomly drawing 

d(i, i ′ ) = d(i ′ , i) ∼ Normal(0, 1). Appendix Figure B.1 shows the fraction of games of this 
type that have no core partitions for different values of γ1. For the 99.9+% of games that 
have a non-empty core, Appendix Figure B.2 shows the average number of core partitions. 
We see that for very small or very large fixed cost γ1 the core has only a single partition, while 

for intermediate values the core can be quite large. This makes sense, because there is only 

one all-singleton partition, and only one grand coalition, but there are many intermediate 

options where some but not all players have chosen to merge together. 
For games with non-empty cores, Appendix Figure B.3 shows the average size of coalitions 

in a core partition. Comparing Appendix Figure B.3 to Appendix Figure B.1, we see that 
values for γ1 that sometimes result in games with an empty core are parameter values that 
lead to many small but non-singleton coalitions forming. This is likely because it is more 

difficult to create a cycle that involves many singletons, but with small coalitions the total 
number of coalitions is higher and thus there are more opportunities for a cycle to arise. Low 

but not tiny values of γ1 should thus generate the highest probability of cycles forming. 
We now show that the probability of an empty core falls dramatically when we im-

pose more structure on the pairwise distances d(i, i ′ ). Specifically, suppose that we let 
d(i, i ′ ) = ||zi − zi ′ ||, where zi is a two-dimensional vector with each dimension drawn from a 

Uniform(0, 
√ 
N) distribution. That is, each player is given a location inside a square of side 

length 
√ 
N , where we increase the size of the square with the number of players in order 

to keep player density constant. Appendix Figure B.4 shows that games based on this new 

set of payoffs have dramatically smaller probabilities of having an empty core: less than one 

game in a million for most values of γ1, even for games with N = 8 players. This very high 

probability of a non-empty core appears not to have been previously noted in the literature; 
however, in the case of coalition formation games with transfers, Drèze et al. [2008] consider 
a game with a similar setup to ours, and show theoretically that the core in their game is 
“almost” non-empty. This finding matches with our empirical finding here that the core is 
non-empty with high probability in the case without transfers. 

One interesting feature of Appendix Figure B.4 is that the probability of having an empty 

core does not appear to grow evenly with the number of players. Unfortunately, the very 

small probabilities in question mean that it is computationally costly to investigate this 
further, particularly with higher numbers of players. However, in Section 4 we run a Monte 

Carlo exercise (Appendix Table B.5) with N = 1000 players, and we do not observe any 
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empty cores over 1000 replications of this game. This suggests that the dramatic growth in 

the probability of an empty core between N = 5 and N = 6 in Appendix Figure B.4 may be 

a one time occurrence, not recurring at higher values of N . 
We now examine whether Algorithm 1 generates core partitions that are “representative” 

in some sense of the whole set of partitions in the core. To do this we randomly generate 

10000 games with N = 10, compute the cores of these games using brute force enumeration, 
and select the game with the largest core. We then run Algorithm 1 10000 times using 

different random weights wi ∼ Normal(0, 1) for each run. We consider both the case where 

the random games are generated using d(i, i ′ ) ∼ Normal(0, 1), and where they are generated 

by choosing player locations in a square. We show the relative frequencies of different core 

partitions being selected for these two types of random games in Appendix Figure B.6. For 
both cases, all core partitions were generated by Algorithm 1 at least once in the 10000 

runs of the algorithm. However, the frequency with which the different core partitions were 

generated varied dramatically depending on the partition. We thus might worry that certain 

types of partitions are more likely to be generated by the algorithm than other types, and 

that an analysis of a coalition formation game using this algorithm thus may be biased. 
In this paper, our analysis below focusses mainly on comparing core partitions to a 

Benthamite social planner’s optimal partition. To see whether this analysis is likely to suffer 
from bias due to Algorithm 1, we randomly generate 100 games, run Algorithm 1 on each of 
the games 10000 times with (normally distributed) random weights, and then compare the 

frequency with which a partition appears as a solution to the sum of payoffs for all players 
in that partition. Appendix Figure B.7 shows the results from this analysis. We find that 
while there is a correlation between the frequency of appearance of a partition and the total 
payoff it offers to players, this appears to be due to the fact that games that have many 

core partitions are games that have on average higher payoffs for partitions in the core. 
For a specific game, we do not observe any tendency for Algorithm 1 to be biased towards 
generating partitions that are particularly good or bad for players overall. 

2.2 Centralized Solution 

Let π ∈ Π be a partition of players into coalitions, where Π is the set of all possible partitions. 
With some abuse of notation, let the payoff to a Benthamite central planner of choosing 
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partition π be ∑ 
v(π) = vi(π) 

i ∑ 
= −WSS(π) − γ1|π| − γ2 pi, 

i 

[ ]∑ ∑ ∑1WSS(π) = yiyi ′ d(i, i 
′ ) ,

YS
S∈π i∈S i ′∈S 

(9) 

where WSS(π) is the “within sum of squares” of partition π. At first glance this appears to 

be unusual terminology, given that nothing in Equation 9 is being squared. 
A particularly well-known special case of this problem is where d(i, i ′ ) is euclidean dis-

tance, calculated based on players’ locations on some plane. In the limiting case, where the 

players are tiny, uniformly distributed on the plane, and otherwise identical, the optimal 
partition is given by a regular hexagonal tiling. This was first discussed in the “central place 

theory” of Christaller [1933].5 In general, however, there is no closed-form solution for the 

optimal partition of a fractional hedonic game [Aziz, Gaspers, et al. 2015] and it must be 

computed via some combinatorial optimization technique. 
We will break the planner’s problem down into two steps. First, find the best parti-

tion among those partitions with exactly k coalitions, for all possible values of k. Second, 
choose the optimal value of k. The advantage of this seemingly-inefficient approach becomes 
apparent when we write down the first step optimization problem: 

πFB 
k = argmax v(π) 

π∈Π s.t. |π|=k 

= argmin WSS(π), (10) 
π∈Π s.t. |π|=k ∑

where we can drop the fixed cost term γ1|π| = γ1k and the variable cost term pi because i 

they are both constant. The overall best possible partition is 

πFB = argmin WSS(πk 
FB) + γ1k. (11) 

k∈{1,...,N} 

The immediately apparent tradeoff here is between heterogeneity within each coalition and 

the fixed cost of running k jurisdictions. This optimal partition πFB is generically unique, 
and can easily be determined if πk 

FB is known for all possible values of k.z 

5Drèze et al. [2008] provides extensive citations regarding hexagonal tiling results. The efficient partition 
will be stable in this case because any deviation to a larger hexagon would be opposed by those at the edge 
of the deviation, and any deviation to a smaller hexagon would be opposed by those at the center of the 
hexagons in the efficient partition. However, the core is very large here, and thus depending on how it is 
determined which partition from the core actually occurs, substantial inefficiency could result. 
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The optimization problem in Equation 10 corresponds to a weighted kernel k-means 
objective, where d(i, i ′ ) gives the kernel distance between players i and i ′ .6 In Appendix A.3 

we show that a “spread transform” [Hathaway and Bezdek 1994] can be used to transform 

this weighted kernel k-means problem into a standard weighted k-means problem, and the 

objective for this problem is (up to the “spread” constant) identical to the objective in 

Equation 10. (All standard k-means problems can be expressed in terms of the squared 

distance between points in a euclidean space, explaining why it is appropriate to label the 

WSS(π) term of Equation 9 as a sum of squares.) 
Making use of this transformation, we will compute πk 

FB via a weighted version of Hartigan 

and Wong [1979]. The solution to a single run of Hartigan and Wong [1979] is not guaranteed 

to be a global optimum, but from a theoretical perspective multiple restarts of the algorithm 

with different starting configurations will eventually find the global optimum. We use the 

kmeans++ [Arthur and Vassilvitskii 2007] method of selecting starting configurations with 

250 restarts. 

3 Data 

We use data from Gifu Prefecture in Japan. During the Meiji period, a set of municipal 
mergers (the Meiji Daigappei) were mandated by the central government as part of its 
modernization policies: prefectural and national officials acted as a central planner for these 

mergers. Mergers occurred across the country, mainly in the 1880s and 90s, and are described 

in more detail in the introduction of Nishikawa, Hayashi, and Weese [2018]. We concentrate 

on Gifu because high quality data on covariates is only available for that prefecture. 
The main advantage of historical data is that it better matches the simple theoretical 

model presented in Section 2. Modern data for Japan (and most other countries) would 

feature municipalities receiving some sort of transfers from a higher level of government. 
In the presence of such a transfer system, centrally planned mergers become a complicated 

tradeoff between redistribution through this transfer system, and redistribution by forcing 

rich and poor municipalities to merge together. Using data from a period when there was 
almost no redistribution avoids these issues. 

Interior Ministry Order 352 is the main document responsible for the mergers. It states 
in fairly explicit terms that the mergers are to involve a tradeoff between efficiencies of scale 

and geographic distance: “... for the purpose of creating independent municipalities, in each 

6To see this, look at Equation 3 of Roth, Laub, et al. [2003] and note that it corresponds to an unweighted 
version of Equation 10. Now suppose that we combined yi ′ identical unweighted players into a single new 
player i ′ . Then suppose that we combined yi identical unweighted players into a single new player i. 
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Figure 1: Mergers in Gifu Prefecture 

(a) Feudal villages, 1881 (b) Municipalities, 1897 

municipality an appropriate amount of financial resources are required ... when merging do 

not make area excessively large and do not disturb convenience of access.” Although the 

words “efficiencies of scale” do not appear in the order, the tax base of each village is fixed, 
and thus the obvious way a municipality with “appropriate” financial resources could be 

created out of villages without “appropriate” financial resources would be if the per capita 

cost of providing services is decreasing with scale.7 We thus have primary source support 
for a model that can conveniently be written in the form of a fractional hedonic game. 
The same source also states that the planner is to “give consideration to the wishes of the 

villages, and not be antagonistic to the sentiment of the people.”: the mergers are thus to be 

consultative but not democratic, with the planner responsible for considering local opinions 
before deciding on the final set of jurisdiction boundaries. 

The main dataset for covariates is the Gifu-ken Chouson Ryakushi (GKCR, “Outline of 
Towns and Villages of Gifu Prefecture”) of 1881 and related documents. This covers the 

southern portion of Gifu, describing 1111 feudal villages that were combined to form 289 

western-style municipalities. The initial boundaries of these villages from the GKCR are 

shown in Figure 1a, and the boundaries after the mergers are shown in Figure 1b. 
To match the model in Section 2 to the data, let the players be feudal villages. In 

7A potential counterargument would be that the order is not referring to efficiencies of scale, but is 
instead asking for poorer areas to be deliberately merged with richer areas, thereby creating municipalities 
with closer-to-average (and thus “appropriate”) resources. This alternative interpretation is not consistent 
with the portion of the order that reads “existing villages that ... have sufficient resources should not be 
merged or split”, because if the objective was to redistribute resources then the richer villages are precisely 
the ones that should be targeted for merging. 
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Table 1: Summary Statistics 

Variable Actual Permuted Difference Units Description Source 
(xπ0 ) (xψπ0 ) (× 1000) 

DIST.WALKING 1.37 1.37 -55.90 1000 sec. Distance in terms of walking time CIAS, 
(44.81) GIAJ 

DIST.STRAIGHT 1.19 1.19 -49.05 km Straight line distance CIAS 
(38.87) 

ADJACENT 0.27 0.27 -1.53 Indicator Are feudal villages adjacent? CIAS, 
(0.85) GKCR 

RELIGION 0.87 0.87 -0.05 Herfindahl Differences in religious sect identities GKCR 
(0.22) 

PRODUCTION 0.50 0.51 -8.54 Herfindahl Differences in (agricultural) products GKCR 
(45.96) 

PROPERTY 0.41 0.42 -6.16 Herfindahl Differences in types of property GKCR 
(12.46) 

LORD 0.31 0.31 -0.99 Herfindahl Differences in identity of feudal lord GKCR 
(1.00) 

FISH 0.50 0.50 -0.02 100*Herf. Differences in fishing activity GKCR 
(0.26) 

WEALTH 0.79 0.79 -0.003 Herfindahl Differences in land holding distribution GKCR 
(0.006) 

HH300 0.90 0.90 0.0002 Indicator Are there more than 300 households? GKCR 
(0.0007) 

HH500 0.44 0.44 -0.0001 Indicator Are there more than 500 households? GKCR 
(0.0008) 

# players 1111 1111 
# partitions 1 616605 
# distinct 612075 

Actual: characteristics of actually observed partition π0 

Permuted: characteristics of permuted partitions ψπ0, where ψ flips one player with another 
Difference: (xπ0 − xψπ0 ) multiplied by 1000. 
x is calculated as described following in Equation 12, and the meaning of this calculation 
is reported in the “Units” column. In most cases x corresponds to a (weighted) Herfindahl 
index of the characteristic in question, calculated at the coalition level and then summed 
across all coalitions in the partition. For a more detailed description of the characteristics 
and the method used, see Appendix C. ∑
Reported numbers have been divided by total tax base i yi, and thus correspond to the 
average heterogeneity experienced by a single player. For example, the average player will 
be located an average straight line distance of 1.19km away from players in its coalition, 
and will be in a coalition with religious heterogeneity corresponding to a Herfindahl index 
of 0.87. 
# distinct: number of partitions actually used in estimation, after removing permutations 
that do not actually alter the partition structure because they flip two players in the same 
coalition 
Data source abbreviations: 
CIAS: Center for Integrated Area Studies, Kyoto Univ. 
GIAJ: Geospatial Information Authority of Japan 
GKCR: Gifu-ken Chouson Ryakushi 



Equation 5, pi will be the population of village i. Income yi is taken to be the koku rating 

of the village: this is a historical land tax assessment, converting all production in a village 

into common units of rice. Nishikawa, Hayashi, and Weese [2018] discuss local government 
funding, and show that land tax was the most important source of revenue during this period: 
use of the koku ratings thus seems appropriate. 

For distance d(i, i ′ ) there is an overabundance of variables, leading to the parameter 
estimation problem we consider below in Section 4. For geographic sources of heterogeneity, 
there is data on the geographic adjacency of villages. In addition, we will calculate a straight 
line distance (in km) and a walking distance (in minutes) between each pair of villages. The 

construction of these last two variables relies on being able to represent the population 

distribution of villages using one or a small number of points. Details are provided in 

Appendices C.1 and C.2. 
For non-geographic sources of heterogeneity, there is data on the specific religious sects 

present in each village, the types and quantities of agricultural and non-agricultural products 
produced, the total valuations of the different types of land present, the identity of the 

feudal lord that had controlled the village prior to the Meiji Restoration, the amount of 
fishing taking place, and a binned distribution of the wealth of households. More details are 

provided in Appendix C.3, including a demonstration that d is equivalent to computing a 

weighted Herfindahl index in the case where there are discrete types of players: this shows 
that our model could be used in cases where ethnolinguisitic or similar types of fragmentation 

are relevant, a popular subject of study in political economy. 
In Section 2 we developed a model where there is a scalar distance d(i, i ′ ) between each 

pair of players. Our data instead provides nine different distances, three geographic and six 

non-geographic. To match our theoretical model to the data, let us suppose that d(i, i ′ ) is 
now a vector giving nine different distances between players i and i ′ , with each entry in the 

vector corresponding to a different type of heterogeneity. We then modify the definition of 
the “within sum of squares” term WSS(π) in Equation 9 to [ ]∑ ∑∑1WSS(π) = −x T 

π β, xπ = 
YS 

yiyi ′ d(i, i 
′ ) , (12) 

S∈π i∈S i ′ ∈S 

where β is a parameter vector with length equal to the number of different types of het-
erogeneity, with each entry in β indicating the importance of the corresponding type of 
heterogeneity. Our data vector xπ has the same length as β, with each entry giving the 

total amount of heterogeneity of a given type experienced by players in partition π. We add 

a negative sign in Equation 12, thereby making plausible values for entries in β negative, 
so that more desirable partitions have higher values of xπ 

Tβ. This is necessary to match 

17 



the convention in the discrete choice literature that xπ β represents the utility from choice 

π, rather than disutility. The total distance experienced by players in a partition is thus 

T 

Texpressed as −xπ β. 
Summary statistics for these data are provided in Table 1. The first column in Table 

1 displays the average amount of each type of heterogeneity experienced by players in the 

jurisdictions that were actually created by central planner. The remaining columns in Table 1 

provide information about the heterogeneity of alternative mergers that could have happened 

but did not, but we will delay discussion of these columns until Section 4.2, where we describe 

the alternative mergers that we will consider. 

4 Estimation Strategy 

The observed data is a partition of players, as chosen by a central planner. Let the payoff 

to the planner of choosing partition π be 

u(π|β) = v(π|β) + e(π), (13) 

where v(π|β) is the deterministic payoff of partition π when the parameters are β, and 

e(π) is the idiosyncratic payoff. To estimate β in this general case, in Section 4.1 we will 
present a variation on the Fox [2007] pairwise maximum score estimator, which is based in 

turn on Manski [1975]. This estimator requires specific assumptions regarding the form of 
idiosyncratic shocks e(π), but does not place any restrictions on the deterministic component 
of the payoff v(π|β). 

Substituting Equation 12 into Equation 9, we have 

T v(π|β, γ) = xπ β − γ1|π| − γ2 

∑ 
pi. (14) 

i 

In Section 4.2 we will present an objective function to produce a maximum score estimate 

for β for this specific functional form. The parameters γ1 and γ2 will not be identified by 

our estimator: we will produce estimates for these parameters in Section 6. 

4.1 General Case 

Let the idiosyncratic shock for partition π be ∑∑∑ 
i ′ ∈S ϵii ′ e(π) = . (15)
|S|

S∈π i∈S 
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That is, e(π) is a sum of the average of pairwise idiosyncratic shocks ϵii ′ for each player 
within each coalition. For simplicity we will assume that ϵi ′ i = ϵii ′ because these shocks 
enter identically into the decision maker’s payoff. The ϵii shock gives the idiosyncratic desire 

of player i to remain alone; this is not essential to the model and ϵii = 0 could be imposed 

without any substantive changes to the discussion below.8 

In Equation 15 the e(π) idiosyncratic shocks are not i.i.d. across choices π. This is 
desirable given that the choices we are considering are partitions: the idiosyncratic shock for 
the {{1,2}, {3,4},{5,6},{7,8},{9,10}} partition should naturally be highly correlated with 

the shock for the {{1,2},{3,4}, {5,6}, {7,10}, {8,9}} partition, and not very correlated with 

the shock for the {{1,10}, {3,2} {5,4}, {7,6}, {9,8}} partition. The pairwise ϵii ′ idiosyncratic 

shock structure we use creates the desired correlation. An estimation strategy that ignored 

this correlation structure, such as a standard multinomial logit model, would encounter 
substantial difficulties due to the very large number of potential partitions. 

Maximum score estimation relies on the Manski [1975] rank ordering property: a partition 

must be more likely to be chosen if it has a higher deterministic payoff. Specifically, 

Definition 1 (Rank Ordering Property). 

v(πj |β) > v(πj ′ |β) 

if and only if 
Pr(πj |v(β)) > Pr(πj ′ |v(β)). ∫

Here the probability of partition πj being selected is Pr(πj |v) = f(ϵ)1 (πj = π(ϵ|v)) dϵ,RN (N+1)/2 

where f(ϵ) is the density of the idiosyncratic shocks and π(ϵ|v) is the partition selected by 

the decision maker when the shocks are ϵ and the deterministic payoffs for all possible par-
titions are given by the vector v. To simplify notation we suppress the parameters β here 

writing v instead of v(β). 
Unfortunately, a data generating process based on Equations 13 and 15 violates the rank 

ordering property: 

Example 1. Let N = 3 and v(π) = 0 for all partitions π. Let π1 = {{1, 2}, 3} and 

8We retain the ϵii shock because without it e(π) = 0 for the all-singleton partition, and the probability 
of this partition being selected in the null model (v(π) = 0 for all partitions) is then very small, particularly 
for larger N . 
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π2 = {{1, 2, 3}}. Then 

ϵ11 + ϵ12 ϵ22 + ϵ12 
u(π1) = e(π1) = + + ϵ33

2 2 
ϵ11 + ϵ12 + ϵ13 ϵ22 + ϵ12 + ϵ23 ϵ33 + ϵ13 + ϵ23 

u(π2) = e(π2) = + + 
3 3 3 

Let the ϵii ′ idiosyncratic shocks be i.i.d., with ϵii ′ ∼ N(0, 1). Then Pr(π1) ≃ 0.223 but 
Pr(π2) ≃ 0.165. 

As a small change in deterministic payoffs will generate only a small change in choice 

probabilities, we will have a violation of the rank order property in Example 1 if we increase 

the structural payoff to the grand coalition by some small amount. 
Our estimation strategy will instead use a weaker version of the rank order property, 

one that is satisfied by the data generating process described by Equations 13 and 15. Let 
ψ be a permutation of the player indices such that player 1 is relabeled to be player ψ(1), 
and so forth. We will write ψπ for a permuted partition, where the player indices have 

been permuted but the coalition structure otherwise left unchanged.9 We now present our 
innovation, the permutation rank ordering property: 

Definition 2 (Permutation Rank Ordering Property). Either v(π) = v(ψπ) for all π ∈ Π 

or ∑|Π| 

(Pr(πj|v) − Pr(ψπj |v)) · sign (v(πj ) − v(ψπj )) > 0 (16) 
j=1 

To see the relationship between our permutation rank ordering property and the original 
Manski [1975] rank ordering property, note that the original rank ordering property requires 
that either v(πj ) = v(πj ′ ) or 

(Pr(πj |v) − Pr(πj ′ |v)) · sign (v(πj ) − v(πj ′ )) > 0. (17) 

We weaken this original rank ordering property in two ways. First, we do not allow partition 

πj to be compared to an arbitrary alternative partition πj ′ : instead, we restrict consideration 

to permutations ψπj . This eliminates the problem shown in Example 1, as the grand coalition 

is not a permutation of the {{1,2}, 3} partition. 
Second, we do not base our inequality on only a single partition πj and its permutation 

ψπj ; rather, we consider the whole set Π of partitions. To see why this is important, consider 
the following example: 

9For example suppose that N = 3, ψ(1) = 2, ψ(2) = 1, ψ(3) = 3. That is, ψ swaps the identities of the 
first two players and leaves the third unchanged. Then if π = {{1, 3}, {2}} we will have ψπ = {{2, 3}, {1}}. 
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Example 2. Let N = 4, π1 = {{1, 2, 3}, {4}}, v(π1) = 1, and v(π) = 0 for all other 

partitions π ̸= π1. Let the ϵii ′ idiosyncratic shocks be i.i.d, with ϵii ′ ∼ N(0, 1). Then 

Pr({{1, 2, 3}, {4}}) ≃ 0.275 Pr({{1, 2, 4}, {3}}) ≃ 0.050 

Pr({{1, 3}, {2}, {4}}) ≃ 0.038 Pr({{1, 4}, {2}, {3}}) ≃ 0.066 

Here we see that the probability of the decision maker choosing the {{1, 3}, {2}, {4}}
partition is low because of substitution into the {{1, 2, 3}, {4}} partition. This sort of sub-
stitution effect would result in a violation of the original rank ordering property if we in-
crease v({{1, 3}, {2}, {4}}) slightly. Our permutation rank ordering property, however, ag-
gregates across the {{1, 2, 3}, {4}} to {{1, 2, 4}, {3}} comparison and the {{1, 3}, {2}, {4}}
to {{1, 4}, {2}, {3}} comparison (see Appendix D for details). This eliminates any problems 
arising from the substitution effect just described. 

A remaining problem is that maximum score estimation generally relies on the exchange-
ability of idiosyncratic shocks.10 As defined above, however, the e(π) idiosyncratic shocks 
are not exchangeable: the difficulty in Example 2 arises precisely because e({{1, 2, 3}, {4}}) 
is positively correlated with e({{1, 3}, {2}, {4}}) but less correlated with e({{1, 4}, {2}, {3}}. 
We will instead apply exchangeability to the ϵ pairwise idiosyncratic shocks, otherwise fol-
lowing Assumption 2 of Fox [2007]: 

Assumption 1. The errors ϵ have an absolutely continuous joint distribution with full 
support on RN (N+1)/2. The associated joint density f(ϵ|v) exists and is exchangeable. 

In this paper, to obtain our empirical results we will use permutations ψ that flip a single 

player i with a single other player i ′ . Such a permutation is self-inverse: ψψπ = π for any 

partition π. For our theoretical result, we consider the class of all self-inverse permutations: 

Proposition 1. Let ψ be a self-inverse permutation. The permutation rank ordering property 

then holds under Assumption 1. 

Proof. See Appendix E. 

Under normal circumstances, we would now construct a pairwise objective function fol-
lowing Equation 4 of Fox [2007]. Specifically, if we observed m distinct choices of partitions, 
we could use the objective function 

∑1 
m 

Qψ (β) = 1(v(πb|β) > v(ψπb|β)), (18)m m 
b=1 

10If f(e) = f(e(π1), e(π2), ...) is the probability density of the idiosyncratic shocks, the distribution f(e) 
is exchangeable if f(e(π1), e(π2), ...) = f(e(π2), e(π1), ...) and likewise for all other such permutations. 
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where πb is the partition observed to have been chosen in the bth observation out of the m 

observations. Here we could choose any single potential permutation ψ in the set of self-
inverse permutations: this parallels the situation in Fox [2007] where the objective function 

in his Equation 4 is based on a pairwise comparison between only two potential choices, even 

though there may have been many choices available to the decision maker. 
A consistency proof for an estimator based on maximizing this objective function ap-

pears to be possible via a tedious but relatively straightforward rewriting of the proof in the 

appendix of Fox [2007]. There is a major problem, here, however: the asymptotics used in 

Fox [2007], which are standard throughout the discrete choice literature, assume that the 

econometrician observes an increasing number of distinct choices. In our case, this would 

correspond to observing the decision maker choosing a partition for one set of players, and 

then another partition for a separate set of players, and so forth, with an asymptotically 

increasing number of distinct partitions being chosen. The data we actually have, however, 
corresponds to exactly one partition being chosen for a very large set of players. The asymp-
totics that are plausibly associated with our data are thus an increasing number of players N , 
with the decision maker choosing a single partition that divides those players into coalitions. 
We now present an objective function based on these asymptotics. 

4.2 Application to Municipal Mergers 

Suppose that we observe a single partition that consists of an asymptotically increasing 

number of players. In order to make use of the data provided by the increasing number of 
players we will increase the number of other partitions we compare the observed partition 

to. Specifically, we choose a modified objective function, 

∑ 
Qπ0 1 

Ψ(N)(β) = 1(v(π0|β) > v(ψπ0|β)), (19)
|Ψ(N)| 

ψ∈Ψ(N) 

where π0 is the partition that was actually observed and Ψ(N) is a set of self-inverse per-
mutations of N players. The term inside the summation remains unchanged from Equation 

18: for a given β, we increment the objective function whenever the observed choice has a 

higher deterministic payoff than the alternative choice. The summation itself, however, is 
non-standard, because we are summing over the permutations in Ψ(N) whereas in Equation 

18 we were summing over the m partitions that were actually observed. This change is 
necessary because the way to incorporate the additional information provided by a newly 

added Nth player is to compare the actually observed partition with an alternative partition 

that allocated that player to a different coalition. We thus need to increase the number of 
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permutations we consider as the number of players N increases. 
We define Ψ(N) as the set of all pairwise flips, where a single player i is exchanged 

with another player i ′ . In Table 1 we show the heterogeneity of the actually observed 

partition, compared with these permuted partitions. There are a total of N(N − 1)/2 

distinct permutations of this type. Some of these permutations will leave the observed 

partition π0 unchanged when applied. For example, if π0 = {{1, 2}, 3} the permutation 

ψ that flips players 1 and 2 gives us ψπ0 = π0. A permutation ψ of this sort will have 

no effect on estimation because the indicator variable in Equation 19 will always be set to 

zero as v(π0|β) = v(ψπ0|β) for all values of β. Formally we do not want to remove these 

permutations from Ψ(N) because the set of permutations should not depend on the observed 

partition π0. In Table 1, however, we report the number of permutations ψ such that ψπ ≠ π, 
in addition to reporting the nominal number of permutations |Ψ(N)|. 

Identification of β depends on the difference v(π|β) − v(ψπ|β) changing as we vary the 

choice of β. If we substitute in our specific functional form for v from Equation 14, however, 
it is always the case that γ1|ψπ| = γ1|π|, because permuting the player labels does not change 

the number of coalitions in the partition. Thus, when we calculate the difference v(π|β, γ) − 

v(ψπ|β, γ) for our objective function, the terms involving γ1 and γ2 will always cancel. We 

will thus estimate our parameters sequentially: first we will estimate the vector of parameters 
β using maximum score estimation, and then we will obtain the cost parameters γ via method 

of moments and a calibration exercise, as described in Section 6. For pointwise identification 

the maximum score estimator requires a “special regressor” with a continuous distribution 

and full support. In our case, we assume that walking distance has these properties. 
Substituting Equation 14 into Equation 19 and cancelling the terms involving γ, we see 

that our objective function for the maximum score estimator has now simplified to 

1 
Qπ0 

∑ 
T T 

Ψ(N)(β) = 1(xπ0 β > xψπ0 β). (20)
|Ψ(N)| 

ψ∈Ψ(N) 

This is a standard objective function for a maximum score estimator (except for the unusual 
asymptotics), and estimation can be performed using standard techniques. We will compute 

β̂ by using differential evolution to find the value of β that maximizes Qπ0 .Ψ(N) This follows 
the approach in Fox and Santiago [2015]. The scale of β is not identified here because any 

scalar multiple yields the same value for the objective function. 
Proving consistency for an estimator based on the objective function in Equation 20 would 

likely follow proofs in the mixing literature. The first step would be to show that some players 
are “far away” from other players, and will almost never end up in the same coalitions. The 

second step would then be to show that we could use sets of players that are far away from 

23 



each other as effectively independent “observations”. The proof appears to be non-standard, 
however, because formally describing how to create smaller almost-independent partitions 
from one large partition is more challenging than the standard problem of creating almost-
independent observations from one long time series. We thus leave the theoretical proof 
of consistency for future research, and offer instead Monte Carlo evidence of performance 

in finite samples where there are a large number of players divided into a single partition. 
Specifically, in Appendix Table B.5 we examine the performance of an estimator based on 

Equation 19 when N = 10, 100, and 1000. We find substantial finite sample bias for N = 10, 
but minimal bias for N = 100 and 1000. The decrease in mean squared error corresponds to 

convergence at a rate between N1/2 and N1/3, but is closer to cube-root convergence. This 
seems plausible, given that in general there is cube root convergence for maximum score 

estimators [Kim and Pollard 1990], but Fox [2018] uses square root convergence following 

Sherman [1993] for a network game that has a somewhat similar form to the partition 

outcomes that we are considering. 

5 Parameter Estimates 

As is standard in the discrete choice literature, a normalization is required, and so results 
will be reported relative to the importance of walking distance, which will always have a 

coefficient of -1. We choose this normalization because, while a wide variety of variables 
describing heterogeneity are available in the data, casual inspection of Figure 1 suggests 
that geography is by far the most important. 

Table 2 gives the results of the maximum score estimator. In Columns I-VIII we consider 
three types of geographic distance (walking distance, straight line distance, and adjacency), 
and six other types of heterogeneity. We expect that coefficient estimates will be negative, 
because the types of heterogeneity being considered are undesirable. In Column I we see that 
the coefficient estimate on straight line distance is positive and statistically insignificant. We 

thus conclude that the planner seems to have followed the Ministry instructions to consider 
the convenience of transportation: they did not take the dramatic shortcut of assuming 

that Gifu was flat, and that all points that appeared to be equidistant on a map were 

in fact equally easy to reach. We will thus not consider straight line distance in further 
specifications. 

In Column II we see that geographic adjacency is statistically significant. Looking at Ta-
ble 1, however, we see that magnitude of the geographic adjacency variable is much smaller 
than the walking distance variable. Thus, while geographic adjacency is important in de-
termining the partition, walking distance appears to be much more important. Columns 
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Table 2: Maximum Score Parameter Estimates 

DIST.WALKING 

I 
−1 

II 
−1 

III 
−1 

IV 

−1 

V 

−1 

VI 
−1 

DIST.STRAIGHT 

ADJACENT 

RELIGION 

PRODUCTION 

PROPERTY 

LORD 

FISH 

0.07 

[−0.51, 0.65] 

−0.24 

[−0.31, −0.17] 

−0.34 

[−0.47, −0.21] 

−0.02 

[−0.04, 0.01] 

−0.25 

[−0.41, 0.09] 

−0.03 

[−0.05, −0.01] 

−0.19 

[−0.24, −0.15] 

−0.10 

[−0.12, −0.08] 

−0.37 

[−0.52, −0.21] 

−0.05 

[−0.08, −0.02] 

WEALTH 

HH300 

HH500 

# Inequalities violated 696 378 376 375 356 363 

A total of 612075 permuted partitions are considered (see Table 1). 95% symmetric confidence intervals are shown. 
These are generated via subsampling [Politis, Romano, and Wolf 1999] following Fox and Santiago [2015], with a 

10% subsample and cube root asymptotics. 
No confidence interval is reported for walking distance because it is fixed to -1. 



Table 2: Maximum Score Parameter Estimates, cont. 
VII VIII IX X XI 

DIST.WALKING −1 −1 −1 −1 −1 

DIST.STRAIGHT 

ADJACENT −0.24 −0.35 −0.35 −0.46 −0.32 

[−0.39, −0.08] [−0.47, −0.22] [−0.48, −0.23] [−0.70, −0.21] [−0.80, 0.16] 

RELIGION 0.01 −0.01 

[−0.04, 0.07] [−0.07, 0.04] 

PRODUCTION −0.02 −0.01 

[−0.05, 0.01] [−0.06, 0.05] 

PROPERTY −0.10 −0.11 

[−0.20, −0.00] [−0.24, 0.01] 

LORD −0.07 −0.06 

[−0.13, −0.02] [−0.13, 0.02] 

FISH −0.01 −0.01 0.00 

[−0.02, 0.01] [−0.03, 0.00] [−0.02, 0.03] 

WEALTH −0.03 −0.04 

[−0.08, 0.01] [−0.10, 0.02] 

HH300 −0.01 

[−0.02, 0.01] 

HH500 −0.02 

[−0.04, 0.00] 

Inequalities violated 378 366 366 341 334 

A total of 612075 permuted partitions are considered (see Table 1). 95% symmetric confidence intervals are shown. 
These are generated via subsampling [Politis, Romano, and Wolf 1999] following Fox and Santiago [2015], with a 

10% subsample and cube root asymptotics. 
No confidence interval is reported for walking distance because it is fixed to -1. 



III-VIII show that, while other types of heterogeneity are often also statistically significant, 
they have even smaller effects on the partition that is chosen. We thus conclude that geogra-
phy is the principal determinant of the partition that was chosen. Perhaps not coincidentally, 
geography is the only type of heterogeneity explicitly mentioned in Interior Ministry Order 
352. In Column VIII we include information on the (binned) wealth distribution of villagers. 
We see that this is statistically insignificant, which is in accordance with the model in Section 

2, where the central planner does not care about income differences within mergers. 
We might wonder whether there is any evidence that the central planner actually chose 

boundaries following the sort of model outlined in Section 2. One alternative hypothesis 
is that the planner simply followed a set of instructions it was given. The instructions in 

Interior Ministry Order 352 stated that municipalities should have between 300 and 500 

households. In Column IX, we include two additional variables to take into account these 

instructions: Appendix C.4 provides details regarding the construction of these variables. 
These variables are not statistically significant, and furthermore at the estimated coefficients 
they are not economically important regardless of their statistical significance.11 

In Columns X and XI we consider specifications including all of the non-geographic types 
of heterogeneity together. In general the results here are the same as Columns III-VIII. 
We continue to find that religious heterogeneity and differences in fishing activity have no 

statistically significant effect. The effect of heterogeneity in the types of production (crop 

types, etc.) drops slightly in magnitude and becomes statistically insignificant when it is 
included alongside heterogeneity in types of property (paddy field, dry field, etc.). This may 

be because these two types of heterogeneity are highly correlated and average production 

may have been difficult to measure accurately (the GKCR reports a single year). 
Comparing the coefficients reported in Column XI to the summary statistics in Table 

1, we see that all the non-geographic types of heterogeneity have not only small coefficient 
estimates, but the corresponding variables also have a small magnitude relative to walking 

distance. This is very convenient because village residents generally live in the same physical 
location (for details, see Appendix C.1), and given the form of Equation 5 this means that 
all residents of a village will have the same preferences over potential merger partners: we 

can thus ignore potential political issues with within-village decision-making. 
11Matsuzawa [2013] presents at least one case where they argue that central planners attempted to force 

a village to merge with specific reference to the lower population limit. The point of our analysis here is not 
to argue that Matsuzawa [2013] is incorrect: our point is that from a quantitative perspective, geographic 
distance explains the observed pattern of mergers, and Column IX shows that this is not due to collinearity 
between geographic distance and the 300/500 household thresholds. 
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6 Estimation of Additional Parameters 

The parameter estimates provided in Table 2 are arbitrarily scaled so that the payoff to 1000 

seconds of walking distance is -1, and the importance of other types of heterogeneity is relative 

to walking distance. We now need to determine the correct scaling of these heterogeneity 

costs in order to compare them with the costs of running a jurisdiction. Below, we will first 
choose values (in 1880s yen) for γ1 and γ2 by calibrating to Japanese government estimates. 
We will then establish how important distance is relative to these costs by using an optimality 

condition from the central planner’s problem in Section 2.2. 
One might worry that, because we are choosing values for γ1 and γ2 based on auxiliary 

data, different choices might lead to very different outcomes when we perform counterfactual 
simulations in Section 7. The situation here is actually quite different for the fixed cost γ1 

than for the variable cost γ2. The fixed cost γ1 appears as part of the planner’s problem 

in Section 2.2, and below in Section 6.2 we will show how we can use this to determine the 

relative weight the planner placed on fixed cost versus heterogeneity. Our use of government 
estimates to assign a yen value to γ1 thus serves only to provide units of measurement for 
our calculation, and will not otherwise affect the simulation results in Section 7. 

On the other hand, the variable cost γ2 is constant in the planner’s problem, and our 
only information about it comes from the government estimates discussed below. The size 

of γ2 relative to the fixed cost will turn out to be an important determinant of the amount 
of inefficiency in core partitions, and thus we might worry that important results are being 

determined by a calibration exercise. In Section 7.2 we run Monte Carlo simulations that 
the precise value of γ2 is actually not important to our results, so long as it is not tiny. 

6.1 Cost of public goods γ 

During the merger period, government bureaucrats produced a document describing the cost 
of providing public services for municipalities of three sizes: these costs are shown in Table 

3.12 Here c1 = ¥545.668 was a constant that corresponded to administrative costs that 
exhibited efficiencies of scale, and c2 = ¥1467.931 was a constant corresponding to costs 
that did not exhibit efficiencies of scale. At the three points provided, the costs correspond 

exactly to a cost function of the form used in Equation 5, with a fixed cost γ1 = c1/3, and 
2c1/3+c2a variable cost γ2 = 

3165 , despite the fact that statistically there is an extra degree of 
freedom. There is no explanation offered of how the government arrived at these estimates, 

12A population of 3165 appears to have been used as the base because it corresponded to the average 
population served by an administrative office under the briefly-used “ward” system, described in Nishikawa, 
Hayashi, and Weese [2018]. 
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Table 3: Cost of providing local government services 

population cost 
“large” 3165 c1 + c2 

3165 2“medium” c1 + c2 
2 3 2 

3165 1“small” c1 + c2 
4 2 4 

Source: government document reproduced in Niigata-ken Shichouson Gappei Shi (“History 
of Municipal Mergers in Niigata Prefecture”). 

and thus it is unclear whether they believed that a cost function with only a fixed cost and a 

variable cost was particularly appropriate, or whether at the sizes that they chose to examine 

the efficiencies of scale happened to fit this pattern. 
While there is no documentation available describing how these numbers were arrived 

at, verification of other sorts is available. Data on actual municipal expenditures is available 

for 1881, before the implementation of the new municipal system. This is shown in Figure 

2, along with the cost function based on Table 3. Reiter and Weichenrieder [1997] survey 

the existing literature and conclude that there has been limited success in using actual 
expenditure data to estimate efficiencies of scale. For comparison purposes, however, a 

bivariate regression is provided in the figure. 
The strongest confirmation for the validity of the numbers in Table 3 comes from much 

later sources. In 1950, when roughly the same municipal structure was still in place, a 

government document describing the efficiencies of scale in the provision of public services 
was produced.13 This document provides a detailed breakdown of efficiencies of scale by 

service, for 20 public services, with the cost of each service described by a spline function 

with 6 knots: Figure 19 in Weese [2015] shows these spline functions for later data that 
uses a greater number of knots but the same basic structure. Despite the gap of 60 years 
and a substantial expansion in the number of public services provided, the estimates match 

the 1890 figures very closely, as shown in Figure 2.14 We thus use values of γ1 and γ2 

corresponding to Table 3 (roughly γ1 = 182 and γ2 = 0.6). 
13This is the kijun zaisei juyou gaku (“standard fiscal need”) portion of the calculation for the heikou 

koufukin equalization payments. 
14An additional difference is that the 1890 figures appear to have been produced to describe the appropriate 

size for municipalities during the reorganization, while the 1950 figures were for use in an equalization transfer 
program. The different purpose suggest that any political biases in the reported figures would also be quite 
different. 
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Figure 2: Public good spending per capita 
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Data points indicate actual spending by precursors to final municipalities: this data is from 1881, 
when the final municipal system was still under development. The “OLS” line gives predicted 
expenses from a bivariate regression (not in logs), predicting total spending based on population 
and intercept: the line is curved as a result of transformation to log scale. The R2 for this regression 
is 0.22 (an equivalent regression in logs also has an R2 of 0.22). The Meiji “govt” line is based 
on the fixed cost plus variable cost for the points in Table 3 (populations 904, 1806, and 3615), 
with an adjustment to take into account that some services were not paid for by municipalities 
when the 1881 data was collected, and some revenue and associated expenses appears not to have 
been included. The Showa “govt” line is exactly the functional form provided in 1950 government 
documents describing the efficiencies of scale in the provision of local public goods, but has been 
normalized such that it is equal to “govt (meiji)” at a population of 3165 (the reference population 
for the Meiji government document). 



Figure 3: Distance in Partitions with k Coalitions 
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6.2 Relative importance of distance and fixed cost 

Let β̂u be the unscaled estimates reported in Column XI of Table 2, where the first entry is 
-1. We wish to produce correctly scaled estimates β̂ = αβ̂u, such that we have distance costs ∑ 
xTβ̂  and the cost of running the municipalities γ1|π| + γ2 pi on the same scale. This could π i 

not be done using our maximum score estimator because we could only consider alternative 

partitions that were permutations of the actually observed partition. To determine the 

appropriate scaling factor α we will employ a method of moments approach. 
Specifically, with N = 1111 players, there can be anywhere between 1 and 1111 coalitions 

in the central planner’s optimal partition. Let us begin by computing WSS(πk 
FB) from 

Equation 10, which gives us the distance experienced by players in the best possible partition 

with exactly k coalitions. The blue dots in Figure 3 show WSS(πk 
FB) for all possible values 

of k. These results are obtained by substituting our unscaled estimates β̂u into Equation 12, 
and then running weighted kernel k-means as described in Section 2.2 for all values of k. 

In the clustering literature, the line formed by the blue dots in Figure 3 is referred to as a 

“scree plot”. We see that this line is a decreasing convex function of k. Kinks in this scree plot, 
or transformations of it, are frequently used to try to identify the “natural” number of clusters 
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present in the data (see Tibshirani, Walther, and Hastie [2001] for further discussion). Most 
of the population of Gifu during this period consisted of subsistence farmers, and it appears 
unlikely that the mountain ranges of Gifu were designed with the intent that farmland should 

be naturally clustered into municipalities with a certain fixed cost γ1. We would thus expect 
that no kink should be present in Figure 3, as there should not be natural clusters in our 
data (c.f. Trebbi and Weese [2019], where natural clusters are expected). 

Suppose that we scale distance cost by α. The benefit α(WSS(πFB) − WSS(πFB )) ofk k+1 

adding an additional coalition is decreasing in k. The cost of adding an additional coalition 

is fixed at γ1. Optimality thus requires that 

WSS(πFB) − WSS(πFB 
k0−1 k0 (21)k0 k0+1) < γ1/α < WSS(πFB ) − WSS(πFB), 

where k0 = 289 is the number of coalitions actually observed in the data. So long as Figure 3 

does not have a kink, as the number of players (and coalitions) becomes large the inequality 

on the left and the inequality on the right will converge, and α will be point identified relative 

to the fixed cost γ1. 
As might be expected, there are computational issues that prevent using this approach 

exactly as presented. Specifically, while the Hartigan and Wong [1979] algorithm has good 

performance it will not return exactly the globally optimal partition, and thus in general there 

will be some noise in the calculation of WSS(πFB) − WSS(πFB ) and other such differences. k0 k0+1 

Appendix Figure B.8 shows this calculation for all possible values of k, giving some idea of 
the magnitude of the noise introduced by non-globally optimal solutions from Hartigan and 

Wong [1979]. 
To reduce the effect of this computational noise, rather than simply examine WSS(πk 

FB) 

for k ∈ {288, 289, 290}, we suppose that there is a smooth decreasing convex function g(k) = 

WSS(πk 
FB), and then model this function using the Liao and Meyer [2019] implementation 

of a Meyer [2013] constrained generalized additive model, and data from k ∈ {89, ..., 489}. 
Appendix Figure B.9 shows the results of this analysis. As confirmation, we graph the 

resulting estimate α = 0.11 (jackknife s.e. 0.02) as the black line on Figure 3 and observe 

that it appears tangent to the blue dot curve at around k0 = 289, as would be desired. 

7 Counterfactual Simulations 

Our interest is in comparing πFB with partitions that would form in the case of a decentralized 

coalition formation game. It is not theoretically obvious what the result will be here. A 

general theme in the literature on local public good coalition formation games is that while 
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games with only a small number of players may feature undesirable behaviour, these problems 
disappear as the game becomes “large”. This has been formalized by Kaneko and Wooders 
[1986] along with many others, and is essential to the sorting results in the Tiebout model. 

We might think that having N = 1111 players would make our game “large”, but this 
will in fact turn out not to be the case. Substantial inefficiency arises because although there 

are many players, it is difficult to find a willing merger partner that is attractive from both 

a horizontal and a vertical perspective: as a result, core partitions generally feature small 
and geographically discontiguous mergers. We then check whether this inefficiency persists 
in the case where there is only horizontal heterogeneity. We find that – as predicted by 

Bogomolnaia, Breton, et al. [2007] and others – discontiguous coalitions continue to emerge 

even with only horizontal heterogeneity. However, from an empirical perspective, there are 

only a tiny number of these coalitions in this case and the resulting inefficiency is minimal. 
We then show via additional simulations that the inefficiency in the model with both 

vertical and horizontal heterogeneity only emerges because the public good is congestible. If 
the variable cost of local public good provision is subsidized, inefficiency falls to close to zero. 
This type of subsidy was in fact present in Japan during a set of decentralized mergers in the 

1950s, but not during a later set of decentralized mergers in the 2000s. As predicted by our 
model, the former set of mergers was generally regarded as achieving its goals while the latter 
set was criticized for having mergers that were too small and geographically discontiguous. 

To obtain all these results, we use parameter estimates that were obtained under the 

assumption that the observed partition was chosen by a benevolent central planner. We 

thus cannot use the model estimates to show that the central planned Meiji mergers were 

socially optimal: this is an assumption rather than a conclusion of the model. What we 

can investigate is whether decentralized mergers would have matched the outcome desired 

by our central planner. We find that this is the case only when there is either no vertical 
heterogeneity or no congestibility. 

7.1 Basic results 

Results are shown in Tables 4 and 5. The rows of these tables show two different values 
of α, used to scale the importance of the heterogeneity parameters β̂  relative to the costs 
of running a jurisdiction. Our estimate from Section 6.2 is α = 0.11. We also consider the 

case where there is no heterogeneity cost, that is, α = 0. This latter case corresponds to 

the model in Farrell and Scotchmer [1988]: from the social planner’s perspective, the grand 

coalition is optimal, but differences in tax base will lead to partitions with multiple coalitions 
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Table 4: Simulation Results: Number of Municipalities 

I II III IV V 
α (social (actual (equal (no variable (subsidized 

planner) tax base) tax base) cost) fixed cost) 
0 1 60 1 1 99 

0.11 288 576.2 430.9 420.0 913.4 
(3.3) (3.3) (2.4) (1.3) 

Estimated standard deviations of partitions within solution set are given in parentheses were there 
are multiple solutions to the coalition formation game. The social planner’s optimal partition is 
unique, as is the decentralized outcome where there is no distance cost. 

Table 5: Simulation Results: Inefficiency (¥1000) 

I II III IV V 
α (social (actual (equal (no variable (subsidized 

planner) tax base) tax base) cost) fixed cost) 
0 0 10.9 0 0 18.0 

0.11 0 60.4 3.8 1.7 67.2 
(0.7) (0.1) (0.02) (0.2) 

Estimated standard deviations of partitions within solution set are given in parentheses were there 
are multiple solutions to the coalition formation game. The social planner’s optimal partition is 
unique, as is the decentralized outcome where there is no distance cost. 



in the decentralized case. Below, when we refer to columns of Tables 4 and 5 we are referring 

to the results in the α = 0.11 row unless we specify otherwise. 
Column I in Table 4 describes the partition that would be chosen by the social planner, 

computed based on the technique given in Section 2.2. Columns II-V give the characteristics 
of core partitions in a decentralized coalition formation process under various conditions. 
These are generated by running Algorithm 1, with β̂  based on Column XI of Table 2. In 

order to discover different partitions in the core, we rerun Algorithm 1 a total of 100 times, 
each time changing the weights w that appear in Equation 8. For each run, we randomly 

generate weights by drawing wi ∼ Normal(0, 1) for each player i. We do not include any 

idiosyncratic error term in these simulations: this follows other applied work that uses 
maximum score estimates including Baccara et al. [2012] and Fox and Bajari [2013]. 

Table 5 compares the partitions obtained in each case considered in Table 4 to the central 
planner’s preferred partition: Column I in Table 5 thus reports zero inefficiency by definition. 
A potential difficulty here is that the Hartigan and Wong [1979] algorithm that we use to 

generate the central planner’s preferred partition gives a partition that is a local optimum, 
but is not guaranteed to be a global optimum. To the extent that the partition we compute 

is not the true global optimum, the differences reported in Columns II-V of Table 5 will be 

underreported by some constant. We do not believe this source of error is substantial for 
two reasons. First, increasing the number of random restarts of the Hartigan and Wong 

[1979], even up to 10000, does not substantially change the results. Second, recent research 

such as Slonim, Aharoni, and Crammer [2013] shows good performance for the Hartigan and 

Wong [1979] algorithm, particularly when using Arthur and Vassilvitskii [2007] “kmeans++” 

starting locations. 
Column II of Table 4 shows that in the decentralized case there are twice as many 

coalitions compared to the partition selected by the central planner. Figure 4 gives an 

example of the type of coalition structure that arises in this decentralized coalition formation 

game. We see that, with the exception of a singleton coalition and one pair, all coalitions 
depicted are geographically discontiguous. Column II of Table 5 reports average inefficiency 

for this case of approximately ¥60,000, which is equivalent to 13.5% of total spending on 

local public goods in our model. 
Column III of Tables 4 and 5 shows the characteristics of partitions that arise if the per 

capita tax base, y/p, were set to be the same for all players in the game.15 This is the case 

where there is horizontal heterogeneity, but no vertical heterogeneity. We see that even in 

15It is easiest to make y/p equal by changing p rather than changing y. This is because y appears in the 
central planner’s optimization problem in Equation 11 but p does not, and thus changing y would change the 
central planner’s solution, whereas even after a change in p Column I describes the social planner’s optimum. ∑N ∑NWe set pi = yi i ′ =1 pi′ / i ′ =1 yi′ . 
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Figure 4: Decentralized mergers with actual per capita tax base 

Coalitions

this case the partitions that arise as a result of the decentralized coalition formation process 
are not exactly the same as the one that would be chosen by the social planner. We also 

verify that the social planner’s partition is not part of the core. 
Figure 5 shows a randomly selected core partition from Column III. From a qualitative 

point of view, the coalitions displayed in Figure 5 appear reasonable from the social plan-
ner’s perspective; however, we see that one coalition (orange) on the southern side of the 

area of interest with three members is not geographically contiguous and appears somewhat 
inexplicable. In the theoretical literature coalitions of this type are described as “nonconsec-
utive” [Bogomolnaia, Breton, et al. 2007]. Further investigation reveals that the members 
of this coalition in Figure 5 appear to be “leftovers”: each player in the coalition would like 

to instead join one of the “regular” coalitions that it is geographically adjacent to, but there 

is at least one player in each of these coalitions that is opposed to this move. The small 
amount of inefficiency reported in Column III of Table 5 appears to be due in part to the 

very low payoffs experienced by a small number of “leftover” players. In Appendix Figure 

B.12, however, we display an entire core partition, and show that there appear to be only 

two coalitions of this type in the entire partition. Inefficiency reported in Column III of 
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Figure 5: Decentralized mergers with equal per capita tax base 

Coalitions

	
	
	
	
	
	
	
	
	
	

Table 5 is approximately 1/16th the inefficiency reported in Column II, equivalent to less 
than 1% of total spending on local public goods. We thus see that in the case with only 

horizontal heterogeneity, discontiguous coalitions are a theoretical concern but turn out to 

not be empirically important. 
An alternative quantification of the difference between the coalitions in Columns II and 

III can be obtained by reusing the permutation approach previously employed to estimate 

β̂. Consider swapping the coalition membership of players i and i ′ in a core partition, and 

calculating the central planner’s payoff for the new partition. If the starting partition is 
πFB, then this swap will never improve the planner’s payoff. For other partitions, however, 
there may sometimes be an improvement. We consider all potential pairwise swaps for 1111 

players in the core partitions shown in Figures 4 and 5. For the partition in Figure 4, 58% 

of players have such a swap, and for those players there is an average of 3.2 such swaps. For 
the partition in Figure 5, only 15% of the players have any swap that would improve the 

planner’s payoff, and for those players there is only an average of 1.8 such swaps. Moreover, 
the welfare improvement from such a swap in this case is on average 10.5 times higher for 
the cases in Figure 4 than for those in Figure 5. 

Comparing Columns II and III in Table 5, we see that the main source of inefficiency 

appears to be that described by Farrell and Scotchmer [1988]. When players differ in a verti-
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cal characteristic their preferences regarding merger partners are determined (partly, in our 
case) by this vertical characteristic. Players thus trade off heterogeneity in the horizontal 
characteristic in exchange for similarity in the vertical characteristic. In the model in Section 

2, the same amount in total is being spent on providing services for any configuration involv-
ing the same number of coalitions. A willingness to accept coalition partners that are a worse 
match on the horizontal characteristics in exchange for being a better match on the verti-
cal characteristic therefore creates inefficiency from a (utilitarian) social perspective. The 
small but non-zero amount of inefficiency present in Column III suggests why simulations 
using actual data and parameter estimates were required in order to reach this conclusion: 
a small amount of inefficiency is still present even when there is no vertical differentiation, 
and thus without actual data a theoretical model is unlikely to clarify the importance of 
vertical heterogeneity to inefficiency. 

At this point, a potential objection is that the above discussion is based on the simulated 

mergers shown in Figure 4, but these mergers are unreasonable and in fact only serve to show 

that the model of Section 2 is an inappropriate model of municipal mergers. In particular, 
many of the mergers predicted are not geographically contiguous. Should any realistic model 
of municipal mergers really be predicting these sorts of configurations? 

Figure 6 shows a set of decentralized municipal mergers that actually occurred in Aomori 
Prefecture around 2006. These mergers were part of the Heisei daigappei set of municipal 
mergers. The figure shows three geographically discontiguous mergers, involving in total 
eight geographically contiguous municipalities. In the centralized mergers of the Meiji period, 
these sorts of arrangements are not observed in the data. Thus, bizarre configurations of the 
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sort shown in Figure 4 can and do occur in reality, and they do so only during decentralized 

mergers (Heisei) and not centralized ones (Meiji). Furthermore, the qualitative explanation 

offered for the outcome shown in Figure 6 is also in line with the model in Section 2: the 

municipalities shown on the map differed substantially in levels of indebtedness and revenue 

sources, and the observed mergers were the result of an attempt to avoid matching with 

undesirable but neighbouring municipalities. 
Another potential objection at this point is that the above results are due to the fact 

that our coalition formation model uses feudal villages as the players, but these are relatively 

large: in the central planner’s preferred partition, a municipality on average consists of only 

3.8 feudal villages. In contrast, results in the literature on Tiebout sorting generally assume 

that sorting can occur at the household level. In Appendix F we illustrate a simple way to 

change parameters in order to check whether our results regarding inefficiency are driven by 

the small number of players per coalition. We find that they are not, which suggests that 
our findings may be generally applicable to games where there is Tiebout sorting with both 

horizontal and vertical heterogeneity. We now investigate what particular aspects of our 
game are essential to generating the inefficiency results that we have just reported above. 

7.2 Importance of Congestibility 

Column IV of Table 4 shows results where there is both vertical and horizontal heterogeneity 

but γ2 = 0. In this case the cost of running a jurisdiction is the same regardless of the number 
of residents. We see that here core partitions in the decentralized game are very close to 

the partition that would have been chosen by the central planner: inefficiency reported in 

Column IV of Table 5 is less than half of the already tiny amounts reported in Column III. 
The intuition for this result is that, with only a fixed cost of providing services, adding 

any member to a coalition will decrease the contribution required from existing members. If 
there were no horizontal differentiation, this case would correspond exactly to one considered 

in Farrell and Scotchmer [1988] where there is no inefficiency. The presence of horizontal 
heterogeneity creates a theoretical potential for inefficiency, but empirically this turns out 
not to be important. Thus, in an environment in which public goods can be provided with 

only a fixed cost, it appears that decentralized mergers are unlikely to cause any particular 
problems. Congestibility of the public good is key to our inefficiency results, further under-
scoring the importance of obtaining parameters based on data. A pure public good yields 
very different simulation results; however, even the most casual empiricism suggests that the 

vast majority of local government spending is not on pure public goods. 
A potential objection at this point is that the different results we obtain for γ2 = 0 
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might suggest that our simulation results in general are sensitive to changes γ2, which is not 
identified in the main econometric model of Section 4 but was rather calibrated to auxiliary 

spending data in Section 6. To deal with this concern we perform a Monte Carlo exercise 

where we randomly generate games with N = 7 players, and then compute the core of 
these games at different parameter values. Appendix Figure B.10 presents inefficiency over 
a two dimensional parameter space of potential values for γ1 and γ2. We see there is little 

inefficiency when either γ1 or γ2 is small. If γ1 is small then there is little cost to forming 

additional jurisdictions, and the all-singleton partition is both the decentralized outcome 

and the central planner’s optimum. If γ2 is small then even if a potential merger partner is 
poor the post-merger per capita cost of running the jurisdiction will still be lower, and thus 
vertical stratification is largely avoided: this replicates the result in Column IV of Table 5. 
The values of γ1 and γ2 corresponding to our choice in Section 6.1 are shown in Figure B.10 

by the black triangle. We see that at this point, the inefficiency gradient is such that γ1 is 
much more important in determining total inefficiency than γ2. This is reassuring, because 

γ1 is part of the planner’s problem in Equation 11 and can thus be estimated as part of the 

model in Section 6.1. In contrast, γ2 is calibrated from auxiliary data. Figure B.10 shows 
us that it is important that γ2 is not zero (or tiny), but that beyond that, at our value of 
γ1 the precise value of γ2 is not particularly important. Appendix Figure B.11 shows that 
this result does not appear to depend on the number of players N used in our Monte Carlo 

simulation. 
We chose to analyze data from the Meiji period in part because there was no transfer 

scheme from the national government to municipalities, and this lack of transfers allowed 

for a particularly simple model in Section 2. An intergovernmental transfer system was 
developed later, however, in the post-war period. At the risk of oversimplification, this 
scheme originated mainly as a subsidy on the variable cost of providing public services, 
reducing γ2 from the perspective of municipalities. Over several decades, this scheme mutated 

into one that instead subsidized the fixed cost of providing public services, reducing γ1 

(instead of γ2) from the perspective of municipalities. These two periods correspond with 

the two post-Meiji waves of municipal mergers in Japan: the “Showa” mergers occurred when 

variable cost was subsidized, and the “Heisei” mergers, fixed cost. The transfer situation in 

the Showa period corresponds roughly to the simulations shown in Column IV. We perform 

a final set of simulations, shown in Column V, to see how the change in subsidy scheme 

would have changed the pattern of decentralized mergers. The number of coalitions is far 
higher than in any of the other columns, and indeed reaches the resolution of the data, in the 

sense that most municipalities remain as singletons, with only the smallest participating in 

mergers at all. Appendix G provides details about the transfer schemes during these periods, 
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and the simulations performed. 
The intuition for the result shown in Column V is straightforward: a transfer payment 

scheme equivalent to part of the fixed cost γ1 reduces the incentive to merge from the 

perspective of the municipality. In contrast, a transfer payment scheme equivalent to part of 
the variable cost γ2 reduces the importance of the differences in per capita tax base. Thus, the 

former case results in municipalities choosing a decentralized merger pattern that is even less 
desirable, from the perspective of the social planner, while the latter case results in mergers 
that are quite close to the social optimal. Qualitative evidence from the merger waves in 

question supports these results: In the official government evaluation of the Heisei mergers,16 

the reluctance of municipalities to merge is noted. In contrast, in the Showa mergers, the 

number of municipalities was reduced by 6152, very close to the targeted reduction of 6273 

[Yoshitomi 1960].17 It thus appears that, in contrast to the equalization payments offered 

during the Showa period, the type of subsidy provided during the Heisei period results in 

substantial problems when considering decentralized mergers. 

7.3 Economic Significance 

A quantitative interpretation of the amount of inefficiency displayed in Table 5 is challenging, 
because local government during the Meiji period began as a very small portion of GDP but 
then grew quickly as Japan industrialized. Table 1 in Nishikawa, Hayashi, and Weese [2018] 
suggests that the units used in Table 5 correspond roughly to the annual salary of a senior 
government official. The inefficiency reported in Column V of Table 5 is equivalent to over 
20% of total administrative expenses throughout Gifu, or alternatively about 150% of the 

amount spent on the police by Gifu prefecture.18 The calculated amounts of inefficiency are 

thus important when considered in the context of the size of Meiji-era local governments, 
even though they are not large in absolute terms. 

An alternative interpretation could be obtained by scaling up the inefficiency reported in 

Table 5 by the difference in expenditures on public services between the Meiji period and the 

present. The fixed costs γ1 for 289 municipalities represent 11.75% of the total expenditures 
on local public services in Gifu predicted by our model, and the inefficiency reported in 

Column II of Table 5 is 1.2 times as large as this (equivalent to 13.5% of local government 
spending). Local government spending as a percentage of GDP in Japan is difficult to 

16“Heisei no Gappei” no Hyouka-Kenshou-Bunseki (“Evaluation, Inspection, and Analysis of the ’Heisei 
Mergers”’).

17This result also suggests why there it is still unresolved whether the Showa mergers were centralized 
or decentralized: it does not matter, because the outcome would have been the same. See Appendix G for 
discussion. 

18See Tables 9 and 5 of Nishikawa, Hayashi, and Weese [2018], respectively. 
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calculate due to the extremely large transfer system. The OECD reports that subnational 
government spending was 17% for Japan in 2014, coincidentally equal to the average across 
all OECD countries. Taking this number as given, multiplication then suggests annual 
inefficiency of 2.25% of GDP. 

8 Conclusion 

In this paper we showed that a decentralized process of jurisdiction formation in an envi-
ronment with both vertical and horizontal heterogeneity results in smaller coalitions as well 
as (socially) suboptimal matching on the horizontal characteristics. On the other hand, a 

pattern of boundaries very similar to what would be chosen by a utilitarian social planner 
emerges when players differ only in horizontal characteristics. We obtained these results 
using historical data on Japanese municipal mergers, a model that expresses the merger pro-
cess as a fractional hedonic game, a new method for estimating the preference parameters 
of a single decision maker choosing a partition, and a new method that makes it possible to 

calculate solutions for large fractional hedonic games through binary integer programming. 
The external validity of simulations regarding 19th century Japanese farming villages is 

open to debate, and we did not attempt a formal extension of our results to the interna-
tional arena. Consider very briefly, however, the stance of various countries regarding the 

existence of a “right to self-determination”. In the United Kingdom, it is generally accepted 

that Scotland can hold an independence referendum. In Canada, a supreme court decision 

and federal legislation has established that a successful Quebec independence referendum 

would force the rest of Canada to negotiate a separation agreement. On the other hand, the 

Spanish government denies the existence of any such rights for the autonomous communities 
of Spain. Perhaps not coincidentally, the potentially separatist regions of the United King-
dom and Canada are by most calculations not particularly rich, while the Basque Country 

and Catalonia are substantially better off than the remainder of Spain. Our results sug-
gest that the positions regarding self-determination held by each of these countries may be 

welfare-maximizing: decentralized decision-making results in partitions that are very close 

to the social optimum when inequality between regions is low, but not when inter-regional 
inequality is high. 

We believe that fractional hedonic games are an appropriate way of modelling mergers and 

splits of political jurisdictions. Fractional hedonic games have attracted interest both inside 

and outside of economics, but suffer from the potential non-existence of stable partitions 
in the same way as many other hedonic games. In this paper we considered a particular 
form of fractional hedonic game, and found that empty cores are observed at a less than 

42 



five per million rate in random games on a plane, even when the parameters for these games 
are most favourable for non-existence. This suggests that the particular type of fractional 
hedonic game that we are considering, while still theoretically at risk of having an empty 

core, has a stable partition with probability very close to one. 
Thus, despite potential theoretical difficulties with the “right to self-determination” as 

operationalized in this paper empirically there is almost always a non-empty core. Further-
more, core partitions can be reached by a sequence of myopic deviations. The ongoing legal 
and philosophical debates regarding self-determination are thus relevant, as the existence of 
such a right would not result in instability and endless cycling, but would instead lead to 

stable partitions. 
Using the techniques developed in this paper, it may now be possible to analyze quanti-

tatively some open questions that previously seemed amenable only to theoretical analysis. 
For example, it is frequently asserted that because Londoners are not a “people”, London 

and other such urban agglomerations should not possess a right to self-determination. Con-
sider a model in which at the beginning of time a constitutional rule must be set for what 
units are allowed to exercise a right to self-determination: one possibility is that only units 
corresponding to a historical geographic region (or ethnic group) have this right, while an-
other possibility is that any arbitrary geographic unit can exercise this right. We could then 

use historical data on changes in population and per capita income across space and time, 
and consider how these two different rules would perform across time. Based on the re-
sults presented above, it seems likely that areas that become wealthy would frequently want 
to secede from their surroundings, and that more reasonable boundaries (and thus higher 
welfare) would be obtained by restricting the right to self-determination to predefined large 

geographic regions. 
In addition to political jurisdictions, with some modification it may also be possible 

to analyze other phenomena using the fractional hedonic model of this paper. Ethnic or 
linguistic groups, for example, could be considered in this framework, and have recently 

received extensive theoretical analysis (e.g. Ginsburgh and Weber [2011]). Empirical analysis 
of choice of language or ethnicity has often focussed on individual decisions,19 but reduced-
form results such as those in Michalopoulos [2012] suggest that analysis of identity formation 

at the group level might also be informative. Weese [2016] provides an early attempt at this 
sort of analysis. 

Even further afield, fractional hedonic games might also be used to model the formation 

of students into schools or classes, workers into unions, or public employees into different 
pension funds. In these cases substantial changes to the model presented in this paper would 

19See Clingingsmith [2014] for example, or Jia and Persson [2015] and the references therein. 

43 



likely be required, but the basic approach presented should still be applicable. 
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Online Appendices – Not For Publication 

A Simulation Details 

A.1 Derivation of Equation 8 

For coalition S ′ to be a blocking coalition for the partition π, it must be the case that 
vi(π) < vi(S ′ ) for all i in S ′ . For a given π, we are interested in finding such an S ′ , or 
proving that none exists and thus π is in the core. Leaving vi(π) as is, and using Equation 

5 to expand vi(S ′ ), we obtain 

yi 
vi(π) < − (γ1 + γ2

YS ′ 

∑ 

i ′ ∈S ′ 

pi) − yi 
∑ 

i ′ ∈S ′ 

yi ′ 
d(i, i ′ ). 

YS ′ 
(22) 

Both terms on the right in this inequality have a yi/YS ′ term. We divide both sides by this, 
obtaining ∑ ∑ 

vi(π) 
YS ′ 

< −(γ1 + γ2 pi) − yi ′ d(i, i 
′ ), (23) 

yi 
i ′ ∈S ′ i ′ ∈S ′ 

which (after rearrangement) is the constraint in (8). 
Now let z be a vector of binary variables of length N , with zi = 1 if i ∈ S ′ , and zero 

otherwise. In Inequality 23, the expression YS ′ = 
∑ 

yi ′ can then be rewritten as 
∑ 

zi ′ yi ′ .i ′ ∈S ′ i ′ ∑ ∑ ∑ ∑
Similarly, pi = zi ′ pi ′ and yi ′ d(i, i ′ ) = zi ′ yi ′ d(i, i ′ ). The only variable in i ′ ∈S ′ i ′ i ′ ∈S ′ i ′ 

Inequality 23 that is not known is then z. Consider the following set of (pairs of) disjunctive 

constraints: 
∀i either Inequality 23 holds or zi = 0. (24) 

This is one pair of constraints per player, for a total of N pairs of constraints. 
The problem of finding a coalition S ′ that is a blocking coalition for the partition π is thus 

equivalent to the problem of finding a vector z that satisfies the restriction given in (24). By 

adding a vector of weights w to Inequality 23 and maximizing the sum 
∑ 

wi = 
∑ 

ziwi,i∈S ′ i 

we turn the problem of finding a blocking coalition into an optimization problem. If there 

are multiple potential blocking coalitions, different blocking coalitions can be selected by 

varying the choice of w: a very negative value for wi will select a blocking coalition that does 
not include i, whereas a very positive value for wi will select a blocking coalition that does 
include i. 
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A.2 Computation Notes for Algorithm 1 

To run Algorithm 1, we use CPLEX to compute solutions for the binary integer program 

given in 8: CPLEX considers this problem to be a binary program with “indicator con-
straints”. From a computational perspective, presolving the problem with about 1000 play-
ers is computationally costly. We thus first check sub-problems for each county in Gifu. 
Only if none of these have a blocking coalition do we check the whole problem. This reduces 
dramatically the amount of time spent in presolve. 

A further reduction in time required can be obtained by stopping the optimization prob-
lem at the first solution. Fully solving the optimization problem dramatically lengthens the 

time required to find the next blocking coalition, and does not appear to improve the time 

required to find a core partition. Stopping upon finding the first (integer feasible) solution 

results in different runs of the algorithm producing different solutions, as desired. 
The generalizability of the computational approach employed might appear limited be-

cause of the specific form required. The use of linear inequalities, however, is not as restric-
tive as it may first appear. Barros [1998] and others describe methods for expressing more 

complex restrictions in linear form by generating additional variables. Although using this 
approach may currently be computationally challenging, integer programming algorithms 
have seen enormous improvements in speed in recent years [Bixby 2012]. Combined with 

improvements in hardware performance, simulation of at least approximate versions of mod-
els with non-linear payoff structures may soon become feasible. The easiest of these would 

likely be an Alesina and Spolaore [1997] type model involving quadratic loss from some ideal 
point.20 

One might wonder what the “best” core partitions look like, where the planner can select 
a partitions out of those that are a decentralized solution. Unfortunately, it is difficult 
to modify Algorithm 1 to produce partitions that are desirable from a social perspective, 
because choosing the “best” myopic deviation in this case involves a non-linear objective 

and is thus computationally costly. Using the Dinkelbach [1967] approach is possible, but 
it appears that the increase in computation time is not rewarded by partitions that are 

particularly good from the social planner’s perspective. This provides suggestive evidence 

that there may be no partitions that are anomalously good. 
20Early results using a dataset based on the Heisei municipal mergers suggest that games of up to 100 

players can be simulated using quadratically constrained mixed integer programs. Although the increased 
numerical difficulty of the quadratic model reduces the number of players by an order of magnitude, 100 
players would still be sufficient for many applied models. 
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A.3 Computation of Centralized Solution πFB (Equation 10) k 

In order to compute πk 
FB, the central planner’s optimal partition conditional on there be-

ing exactly k coalitions, we must have already obtained estimates β̂  for the importance of 
different types of heterogeneity. We then combine all the types of distance present in our 
data: ∑ 

s(i, i ′ ) = a + β̂typed
type(i, i ′ ), (25) 

type 

where s(i, i ′ ) is similarity between i and i ′ , a is an arbitrary constant, and the types of 
distance are listed in the rows of Table 2. We use β̂  from Column XI of Table 2. In order to 

run the Hartigan and Wong [1979] algorithm, however, we must convert our problem into a 

standard k-means problem. We do so via the following steps, using the pairwise similarities 
between players that we just computed. 

A k-means problem can be described by giving the coordinates of each player in euclidean 

space. Alternatively, the problem can be described by giving a Gram matrix that allows the 

calculation of distances between players. The relation between these two forms is given by 

the definition of a Gram matrix: if z1, z2, and z3 are the locations of three points in a 

euclidean space of any dimension, then the associated Gram matrix is  
z1 · z1 z1 · z2 z1 · z3 z2 · z1 z2 · z2 z2 · z3 

 , 
z3 · z1 z3 · z2 z3 · z3 

where z1 ·z2 is the dot product. The distance between any two points can easily be computed 

by using the entries of this matrix: for example, the (squared) distance between points 1 and 

2 is z1 · z1 + z2 · z2 − 2z1 · z2. Any symmetric positive semi-definite matrix is a Gram matrix, 
and gives the distance between a set of points in euclidean space in the way just described. 

If the matrix   

s(1, 1) s(1, 2) · · · s(1, N) 
..s(1, 2) s(2, 2) . 

. .. . . . .. . 
s(1, N) · · · · · · s(N, N) 

 
G = (26) 

is a Gram matrix (i.e. if it is positive semi-definite), then we are done, and we use G as 
the input to Hartigan and Wong [1979]. The choice of the constant a has no effect on the 

distances described by G: the (squared) distance between players 1 and 2, for example, is 
given by s(1, 1) + s(2, 2) − 2s(1, 2) which does not depend on a. The choice of a, however, 
does change the eigen decomposition of G and thus is important to algorithmic performance. 
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We choose ∑∑∑−3 
a = 

N2 
β̂typed

type(i, i ′ ), (27) 
i i ′ type 

where the negative sign is necessary because the entries in β̂  are negative, but we wish a to 

be a positive constant. 
If G is not positive semi-definite, then we perform a Hathaway and Bezdek [1994] “spread 

transform” of G. If all players have the same income yi then we can perform this as follows. 
G must have negative eigenvalues because otherwise it would be positive semi-definite. Let 
λ be the most negative eigenvalue of G. Now construct G ′ = G + |λ|IN , where IN is 
the identity matrix. By construction G ′ will be positive semi-definite, and the (squared) 
distances between players have all increased by exactly 2|λ|. Since all pairwise distances 
have increased by this amount, the optimal solution to the k means problem described by 

G ′ is the same as the original problem described by G. The difference is that G ′ is a Gram 

matrix, and thus describes a clustering problem in euclidean space that can be solved via 

the Hartigan and Wong [1979] algorithm. 
For the case where yi is different for different players, construction proceeds as follows. 

Let λ be the most negative eigenvalue of D(y)1/2GD(y)1/2, where D(y) is the diagonal matrix 

with entries y on the diagonal. Then let 

G ′ = D(y)−1/2 
(
D(y)1/2GD(y)1/2 + |λ|IN 

) 
D(y)−1/2. (28) 

To see why this construction makes sense, consider the case where we begin with three 

players all with yi = 1, labeled 1a, 1b, and 2. Let these players have locations in euclidean √
space given by a spread transform away from the origin by |λ|: that is, z1a = ( |λ|, 0, 0),√ √ 
z1b = (0, |λ|, 0), z2 = (0, 0, |λ|). Now suppose we wish to create a new game by combining 

players 1a and 1b so that now the game consists of only two players. Due to the properties of 
k-means we only need to keep track of the centroids of the players. The centroid of the new √ √
player 1 is now located at[ z1 = ( ]|λ|/2, |λ|/2, 0). The Gram matrix associated with this 

|λ|/2 0 new game will thus be , illustrating why the spread transform must be scaled 
0 |λ|

by the inverse of the weight of the players. 
Some versions of the Hartigan and Wong [1979] require that input be provided in eu-

clidean form, rather than as a Gram matrix. This is not problematic: if G ′ is a Gram matrix, 
then it has a decomposition of the form G ′ = AAT, where A provides the locations of points 
in euclidean space. This decomposition is not unique, but the objective function of the algo-
rithm is defined in terms of distances between points and these are as specified in G ′ . The 
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precise choice of A is thus of limited importance: we create A via an eigen decomposition. 
The solution to a k-means problem is generically unique. On the other hand, the decen-

tralized coalition formation game can in general have multiple partitions in the core. We 

thus see that the central planner’s solution is qualitatively different from the decentralized 

solution: it is not possible to apply some modified version of k-means to generate core parti-
tions, because we would be generating a unique solution for a game that does not have that 
property. 

B Additional Tables and Figures 
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Appendix Figure B.1: Probability of Empty Core (Random Pairwise Distances) 
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Each line consists of 101 grid points, corresponding to values of γ1 in the [0,1] interval. 
Each grid point on each line is based on 1 million randomly generated games. 
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Appendix Figure B.2: Average Number of Partitions 
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Each line consists of 101 grid points, corresponding to values of γ1 in the [0,5] interval. 
Each grid point on each line is based on 100,000 randomly generated games where d(i, i ′ ) = 
d(i ′ , i) ∼ Normal(0, 1). Core partitions are counted via brute force enumeration (rather than 
Algorithm 1) to avoid any potential for undercounting. 
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Appendix Figure B.3: Average Size of Coalitions 
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Each line consists of 101 grid points, corresponding to values of γ1 in the [0,5] interval. Each 
grid point on each line is based on 100,000 randomly generated games. The average size 
of coalitions is calculated by using brute force enumeration to generate all core partitions 
for a given game, calculating the average coalition size in each of these partitions, averaging 
across all partitions, and then averaging across all randomly generated games. In this way 
random games that have more core partitions are not overweighted relative to games that 
have fewer. 
The “plateau” around γ1 = 1.5 corresponds to a partition with two (usually evenly sized) 
coalitions. The grand coalition begins appearing with high probability only at higher values 
of γ1. 
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Appendix Figure B.4: Probability of Empty Core (Random Euclidean Distances) 
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Each grid point on each line is based on 100 million randomly generated games. 
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Appendix Table B.5: Monte Carlo Simulation Results 

N = 10 N = 100 N = 1000 
True value -0.3 -0.3 -0.3 
Mean -0.60 -0.31 -0.33 
Bias -0.30 -0.01 -0.03 
Standard Deviation 0.48 0.26 0.11 
RMSE 0.57 0.26 0.11 
RMSE ratio 2.19 2.36√ 
3 10 2.15 2.15√ 
10 3.16 3.16 

For each choice of number of players N , we construct 1000 random datasets via the following 
technique. First, randomly choose locations for N players, uniformly in a square of side √
length N . Compute the “geographic” distance between each pair of players. Next, create 
a second type of heterogeneity (“religion”) by randomly assigning each player a 0-1 variable 
with probability 0.5 of either. Let β = (−1, −0.3) give the weight on geographic vs. religious 
heterogeneity. 
Next, we compute the optimal k-means partition following Equation 10, for k = N/3. We 
do not need to choose a value of γ1 and compute the “correct” socially optimal partition, 
because γ1 does not enter into the estimation process for β: all we need is that the players 
are divided correctly into a reasonable number of coalitions, and that, conditional on the 
number of coalitions, this partition is optimal for the central planner. 
Next, treat this optimal partition as the actually observed partition (like Column I in Table 
1), and generate a set of alternative partitions corresponding to the set of all pairwise permu-
tations (like Column II in Table 1). Run maximum score estimation on this artificial dataset 
in exactly the way described in Section 4.2. Estimates are for the relative importance of 
religious heterogeneity, with the importance of geographic heterogeneity fixed at -1. There 
is thus only one parameter being estimated, with a true value of -0.3. 
RMSE Ratio: to assess the convergence rate, we report RMSEN=10/RMSEN=100 and 
RMSEN=100/RMSEN=1000. 



58 

Appendix Figure B.6: Probability of Partitions under Algorithm 1 
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Probabilities that various core partitions will be generated by Algorithm 1 in a single ran-
dom game (this is the random game with the greatest number of partitions out of 10000 
games). We run Algorithm 1 10000 times on this random game, with random weights 
wi ∼ Normal(0, 1). All core partitions are generated at least once, but some are gener-
ated with much higher probability than other ones. Figure B.6a shows the case where 
d(i, i ′ ) ∼ Normal(0, 1), and Figure B.6b shows the case where players are randomly located 
in a square. 
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Appendix Figure B.7: Welfare vs. Frequency of Partition Being Generated by Algorithm 1 
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Each point represents a single partition in a single randomly generated game, where N = 10 
players are randomly assigned locations on a square. Each partition is assigned a rank based 
on how frequently it is generated by Algorithm 1. Each partition is also given a percentile 
relative to the social welfare across all individually rational partitions: this is an attempt 
to standardize across games, because some games may have more distant players, and thus 
lower payoffs, compared to other games. When we run a bivariate regression comparing the 
frequency rank of the partition with its social welfare percentile, we find that partitions that 
have a higher numeric rank have a higher social welfare (black line, t=7.0). However, when 
we add a dummy variable identifying each distinct game to this bivariate regression, we 
find that the statistical significance of the relationship disappears (red line, t=1.0). It thus 
appears that games that have many partitions have higher payoffs, but within a single given 
game, partitions that are more likely to be generated by Algorithm 1 do not systematically 
have higher or lower payoffs than those less likely to be generated. 
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Appendix Figure B.8: Change in Distance: WSS(πFB) − WSS(πFB )k k+1 
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Appendix Figure B.9: Constrained Generalized Additive Model Estimates 
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Computed
Fitted model (CGAM)

●

●

Blue dots are the computed differences WSS(πFB) − WSS(πFB ) taken from Figure B.8. k k+1 

Pink dots are the smooth increasing function that best fits the blue dots, computed via a 
Liao and Meyer [2019] constrained generalized additive model. 
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Appendix Figure B.10: Ratio of Welfare as a function of both γ1 and γ2 
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Average inefficiency in games with N = 7 players for a grid of 101 × 101 grid points, evenly 
spaced at parameter values between 0 and 500 for both fixed cost γ1 and variable cost γ2. 
We randomly generate 10000 games per grid point. 
We begin by randomly generating player locations from a uniform density on a square with 
side length 

√ 
6.8 × 7 km. This matches the density in our Meiji data: one player per 6.8 

sq. km. We do not generate different populations for players; instead, we let γ2 be the per 
player variable cost of running a jurisdiction. In our Meiji data, the average population of 
a village is 613 people, and we calibrated γ2 ≃ 0.58 in Section 6.1. This means that in this 
figure γ2 = 0.58 × 613 ≃ 355 has the same per player variable cost. A per jurisdiction fixed 
cost of γ1 ≃ 182 corresponds to our choice in Section 6.1. We place a black triangle in the 
figure at this (γ1, γ2) pair. We do not attempt to match the income dispersion in the Meiji 
data, but instead draw yi ∼ Uniform(0, 2 × 613), which matches the Gifu average of roughly 
1 koku per capita. 
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Appendix Figure B.11: Ratio of Welfare to Planner’s Optimum, γ1 + γ2 = 537 
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Average inefficiency in games with different numbers of players, for 101 points, with 10000 
random games per point. Each game is generated the same way as described in Appendix 
Figure B.10. 
The points used correspond to (γ1, γ2) pairs that satisfy the equation γ1 + γ2 = 537. This is 
a line that passes through the black triangle at (182, 355) and intersects the axes near then 
end of the plot area of Appendix Figure B.10. 
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Appendix Figure B.12: Decentralized mergers with equal per capita tax base 

Edges indicate members of the same coalition. Colours are the same within each coalition, 
but random across coalitions. This is a different core partition than that shown in Figure 5. 
There appear to be only two coalitions of “leftovers”, both involving only a pair of players. 



C Data Construction 

This appendix describes the exact method used to construct each of the variables listed in 

Table 1. The main data source is the Gifu-ken Chouson Ryakushi. The GKCR was originally 

digitized by Skinner [1988], but he does not appear to have used it in published work. The 

GKCR version used is courtesy of Tsunetoshi Mizoguchi and Kei Okunuki, based on an 

original version at the Skinner Data Archive. A bilingual codebook is available in Mizoguchi 
[2004]. 

The GKCR describes the feudal villages (shizen son) present in Minou province, which 

contains most of the population of Gifu. It omits villages in Hida province, further to the 

north. There is a lengthy debate in the domestic Japanese literature regarding the exact 
definition of a shizen son: Yamaoka [1977] provides detailed examples. We do not participate 

in this debate, as our definition of a shizen son is imposed on us by the data source. Each line 

in the GKCR becomes one player in our coalition formation game. This decision is defensible 

because the GKCR was collected for administrative purposes, and data is available for the 

units in question only because they were administratively important: the line items in the 

GKCR were the base level at which taxes were collected during the feudal period. 
Municipal mergers are not recorded directly in the GKCR. Our post-merger boundaries 

are based on official 1919 municipal boundaries provided by the Ministry of Land, Infras-
tructure, Transport, and Tourism. Two mergers and one split that occurred in 1903-05 were 

reversed (the next boundary change did not occur until 1921). The boundaries shown in 

Figure 1b are thus those of 1897, except for one minor boundary adjustment that does not 
affect any calculations.21 

C.1 Points 

The boundaries shown in Figure 1a describe each feudal village as a polygon. However, in 

most cases, the villages in the GKCR actually correspond to one or more clusters of houses, 
surrounded by the land worked by these households. Although a household level map is not 
available for Gifu, the Jinsoku Sokuzu (“Rapid Map”) of 1880 shows the precise location of 
households for part of eastern Japan. Appendix Figure C.13 shows a representative rural 
area: the households are clearly clustered, and the location of households could be reasonably 

accurately described using only a small number of points. We take advantage of this feature 

of the population distribution of this period, and create a new dataset based on points rather 
21The most comprehensive list of municipal changes appears to be that maintained by M. Higashide at 

http://uub.jp/. For Gifu, we cross-checked these with the Gifu-ken Chouson Gappeishi (“History of Town 
and Village Mergers in Gifu Prefecture”) and verified that they were correct. 
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than polygons. In most cases only one point is required to describe a village: this means 
that there is basically no within-village heterogeneity in terms of geography, and will allow 

for us to ignore potential within-village politics when we perform counterfactual simulations 
in Section 7. 

The specific method we use to construct this point data is as follows. We begin with 

geocoded gazetteer data on Meiji locations, courtesy of the Center for Integrated Area Studies 
at Kyoto University. This data is based on the 1891 and subsequent official maps of Gifu 

Prefecture. As with more modern maps, a variety of data was presented on these historical 
maps. There are two particularly important types of data for our purposes. The first of these 

is the “place” data: here a name was written on the map and an associated dot indicated 

the exact place on the map where the settlement with that name was located. The second 

type is where the name of a city, town, or village was written on the map without a dot 
indicating its exact location. These two different types of data, along with many other types, 
are coded separately in the gazetteer. The relevant subset of this data is shown in Appendix 

Figure C.14. The legend in this figure shows different types of points that are provided by 

the gazetteer. 
We reviewed a subset of this data to establish the relative geographic accuracy of these 

different types of points. The “place” points appear to have excellent geographic precision. 
In contrast, the “city”, “town” and “village” points appear to be based only on the location 

at which the name of the city, town, or village was written on the underlying 1891 paper 
map. In general, this does not appear to correspond to the physical location of houses, and 

thus these types of points are of substantially lower accuracy than the “place” points. About 
half of the feudal village polygons in our data have exactly one “place” point within their 
boundaries. For these villages, we use this point as their geographic location. If a feudal 
village has more than one “place”, then we keep track of all of these points, and will use 

them all (with equal weighting) for distance calculations. 
If a village has no “place” points within its boundaries, then we proceed to the next 

lower type listed in the “Order of use” legend in Figure C.14. This is “station”, which gives 
the location of a train station for the very small number of cases where one exists.22 If a 

village still has no points, we continue this process, looking for gazetteer points related to 

municipality names (“city”, “town”, “village”). We continue in the same fashion for schools, 
companies, structures, and plains. In all cases, only the first type shown in the “order of 
use” legend in Figure C.14 to have any associated points inside a feudal village polygon is 

22We place these lower in our order of use because train stations were generally built after the municipal 
merger period, and only show up in the gazetteer because some of the maps on which it is based come from 
the early 20th century. There are only 9 train stations in the gazetteer. 
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Appendix Figure C.14: Gazetteer Point Data 

Appendix Figure C.15: Points Used from Gazetteer 



Appendix Figure C.16: Points per Feudal Village 
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used as the location of that village. If this type has multiple associated points within the 

feudal village boundaries, then we keep track of all of these. 
There are 59 feudal villages for which no points are found via this method. After manual 

inspection, 29 of these are cases where an appropriately named point is located just outside 

of the village polygon: we assign these points to the appropriate village. In the remaining 

30 cases, we use the geographic centroid of the polygon for the location. 
Figure C.16 shows a histogram of the number of points per feudal village. For a majority 

of feudal villages, we have exactly one point associated with the village. In a small number 
of cases, there are a dozen or more points associated with a single feudal village. Appendix 

Figure C.15 shows the points that are used. 
In Appendix Figure B.12 we report simulation results graphically using a single point for 

each player. Here the location of this point is equal to the mean latitude and longitude for 
the points associated with that feudal village. These “display points” are shown in Appendix 

Figure C.17. This is purely for ease of presentation, however, and all calculations are done 

over multiple points for the feudal villages that have them. 
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Appendix Figure C.17: Players and Adjacencies 
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Appendix Figure C.18: Straight-line Distance 
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Appendix Figure C.19: Walking Distance 

Walking distance (in 1000s of seconds) to other player, by adjacent pairs of players
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C.2 Distance 

Straight-line distance is calculated using the great-circle distance formula, assuming that the 

earth is a sphere. For feudal villages represented by more than one point, this distance is 
calculated as the average distance across all relevant points. That is, if Ji is the set of points 
associated with feudal village i, and Ji ′ the set of points associated with feudal village i ′ , 
then the straight-line distance dSL(i, i ′ ) is calculated as 

dSL(i, i ′ ) = 
1 

|Ji||Ji ′ | 
∑ ∑ 

j∈Ji j ′ ∈Ji ′ 

dSL 
pt (j, j 

′ ) (29) 

where dSL 
pt (j, j 

′ ) is the straight line distance between point j and point j ′ . The result of re-
peated application of Equation 29 is a distance matrix dSL containing a straight line distance 

d(i, i ′ ) for each pair of feudal villages i and i ′ . 
For expositional purposes, we calculate a histogram of the straight line distances between 

adjacent feudal villages: these are dSL(i, i ′ ), with the (i, i ′ ) pairs used corresponding to the 

edges shown in Figure C.17. Figure C.18 reports these distances: the modal distance is bit 
less than 2km, but some distances are substantially longer. 

Straight line distance is likely inappropriate in the case of Gifu, however, because much of 
the prefecture is mountainous, and thus the actual path used to travel between two villages 
would not be a straight line, but rather a more complicated route that minimizes elevation 
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changes. For these calculations, we do not consider data on the road network in place during 

this period: this network was relatively primitive, and we assume that there are walking 

tracks located wherever our algorithm calculates that people will be travelling. Although 

trains were being introduced during this period, they were used for longer distance journeys, 
and are not relevant for distance calculations between a feudal village and its neighbour, or 
the next village over. Thus, we consider walking as the only mode of transport. 

Given the mountainous nature of the prefecture, we assume that the major determinant 
of walking time is elevation change.23 We use digital elevation data from the Geospatial 
Information Authority of Japan, at 10 meter grid square resolution. Figure C.20 shows this 
elevation data. 

To calculate walking time between two points based on this elevation data, we use the 

Fontanari [2000] implementation of Dijkstra’s shortest-path algorithm, applied to a raster 
version of the elevation data.24 The walking time returned is anisotropic: the cost of walking 

uphill is not simply equal to the benefit of walking downhill. Thus, the shortest path to a 

destination may be different from the shortest path returning from it. We use the roundtrip 

distance, following both of these paths, divided by two.25 In the case where feudal villages 
are associated with multiple points, the approach in Equation 29 is used. 

Figure C.19 reports the walking distances for adjacent feudal villages. The units used 

here are 1000s of seconds, because walking speed is approximately 1km per 1000sec, and 

thus with these units coefficient estimates will be of roughly comparable magnitudes when 

using the straight line distance data and the walking distance data. According to the figure, 
the modal walking time to an adjacent village is a bit less than two hours. 

23Rivers in Gifu are often seasonal, and generally small. A qualitative inspection of boundaries shows that 
they do not appear to follow rivers in a systematic way, and a preliminary quantitative analysis using GMM 
and the actual location of the boundary between two adjacent municipalities appeared to confirm this. We 
do not report these results because the standard errors were very high, and the econometric model used 
differs substantially from that presented in Section 4.

24This is the “walking distance” function r.walk in the GRASS GIS package. Parameters are left at their 
default values, which correspond to the Aitken [1977] and Langmuir [1984] adjustments to the Naismith 
[1892] walking time function. 

25One is reminded of hiking trails that split at certain points, offering both a steeper and a gentler route. 
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Appendix Figure C.20: Elevation 

Dark brown indicates low elevation, white higher elevations, and green highest. 
In mountainous regions, low elevations tend to correspond to river valleys. 
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Appendix Figure C.21: Most important product (by value) 

Appendix Figure C.22: Most important land type (by value) 

C.3 Other Covariates 

For non-geographic variables we will we use a discrete version of Equation 29. Within a 

given feudal village we may have villagers producing different types of products, farming 

different types of land, or practicing different religions. For exposition, consider the case 
where different villagers produce different products (rice, wheat, etc.). Let Ji be the set of 
villagers in feudal village i, and let Ji˜ be the set of villagers in feudal village i˜. The distance 
dprod(i, i˜) is then calculated as 

˜ ˜ 
dprod(i, i˜) =  dprod 1 1 

v (j, j˜) (30)
|Ji| |Ji˜ | 

j°Ji j˜°Ji˜ 



Appendix Figure C.23: Most important feudal lord 

Feudal lords (ryoushu) were a basic part of the tax collection and administration system during 
the feudal period. The lords are reported in the GKCR as historical data: they were removed early 
in the Meiji restoration, and thus cannot have any direct effect on municipalities during the Meiji 
period. Their historical legacy, however, could plausibly include cultural differences across feudal 
villages controlled by different lords. 

where dprod 
v (j, j˜) is equal to 0 if villager j and villager j˜ are producing the same product, and 

equal to 1 if they are producing different products. Now let t(j) denote the type of product 
prod produced by villager j, and let sti denote the share of product of type t in village i. We 

can then rewrite the above summations in terms of product shares rather than individual 
villagers: 

˜ ˜1 1 
dprod(i, i˜) =  (1 − 1(t(j) =  t(j˜)))

|Ji| |Ji˜ | 

˝ 

j°Ji j˜°Ji˜ 

= 

= 

˜ ° ˛1 prod 1 − st(j)i˜|Ji| 
j°Ji ˜ ° ˛ 
prod prod s 1 − sti ti˜ 

t 

= 1  − 
˜ 

prod prod s s .ti ti˜ (31) 
t 

In the case where i = i˜ the summation becomes 
˝ 

t 
2sti, the Herfindahl index for the 

2concentration of types, and thus 1 − t sti gives an index of the heterogeneity of types. This 
index is frequently used in political economy, for example in work on ethnic fragmentation 

following Easterly and Levine [1997]. We thus see that our functional form for non-geographic 
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Appendix Figure C.24: Religious sects 

Number of distinct religious sects, by player
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distance is equivalent to this popular measure of heterogeneity. 
Unless all production in village i is of a single type, we will have dprod(i, i) > 0, but we do 

not need d to be a true mathematical distance for any of the computations in our paper: it 
is sufficient that dprod(i, i ′ ) represents the dissimilarity in production between villages i and 

i ′ . 
In our data, we do not have micro-level information on the specific product being pro-

duced by each villager in each village. Instead, we have data on total production for each 

type of product in a village. Thus, when we compute sprod 
ti for each product type t village i, 

we do so by calculating the share of production value that product t accounts for in village 

i. There are 37 different types of products in the GKCR data, but even approximate price 

data only appears to be available for 21 of these, and thus only 21 products are used in our 
calculations: all of these 21 are agricultural, although some of the omitted 16 products are 

not. Figure C.21 shows the most important product in each feudal village by value, with 

the legend including data on the total share of each item. 
We use a similar method to calculate distances regarding the types of land present in each 

feudal village, the identity of the lord of the village during the feudal period, the identity of 
religious sects in the villages, and the distribution of land among landlords. Figures C.22 -
C.25 provide a summary of these data. 

In addition to agriculture, some areas of Gifu engaged in fishing. This was mainly along 
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Appendix Figure C.25: Landlord size 
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Feudal Villages 

Landlords in each village are counted by size of landholdings: greater than ¥100, 200, 300, 500, 
700, 1000, 1500, 2000, 5000, 10000, and 20000. Violet corresponds to small landlords, and red to 
large landlords. Villages are sorted by amount of total holdings. Because of data quality issues, no 
“less than ¥100” category is used. 

Appendix Figure C.26: Fishing 



Appendix Figure C.27: Koku per capita, by Feudal Village 
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the banks of rivers, although some ponds and lakes appear to also have been used. Figure 

C.26 shows the distribution of fishermen in Gifu. We calculate a distance measure for fishing, 
using two types: “fisherman” and “other”. 

Two important final variables of interest are income, y, and population, p. Population 

density data is shown in Figure C.28. We treat income as equivalent to tax base per capita. 
In our data, tax base is measured in koku: Figure C.27 shows the distribution of koku per 
capita in the data. The modal koku rating is close to 1 koku per capita. This is a plausible 

value, as the koku unit of measure was originally defined as the amount of rice required 

to feed a man for one year, and production in rural Japan during this period was close to 

subsistence levels. Gifu, like most of Japan during this period, was predominantly rural and 

agricultural. 
The GKCR contains many other variables that we do not use in the analysis. Most of 

these are ignored because they appear to be at best only tangentially related to municipal 
mergers: for example, there are very detailed reports of the calendar day when each of 
many crops are traditionally planted and harvested in each village. One additional variable 

that is of interest is that dealing with migration. In the GKCR, only 0.8% of individuals 
were classified as migrants. This classification is based on honseki (“registered domicile”), 
which should capture all individuals that migrated, and possibly also children of migrants. 
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Appendix Figure C.28: Population Density 

Villages with higher population density have municipalities with smaller surface area, while those 
areas with lower population density have jurisdictions with larger area. This pattern follows the 
“size density hypothesis” of Stephan [1977], which has been subjected to considerable study outside 
of economics. In Gifu, the pattern continues to hold for the post-merger municipalities. The pattern 
also holds across a wide selection of countries, and varieties of jurisdictions [Stephan 1984]. Suzuki 
[1999] provides additional citations along with an application to Japanese data. The pattern does 
not appear to be due to measurement error: this possibility was discussed in Vining, Yang, and 
Yeh [1979] and Stephan [1979]. 

Thus, migration does not appear to have been that substantial in Gifu during the period in 

question, although substantial urbanization was occurring elsewhere in Japan. This justifies 
the omission of migration in our model. 

C.4 Official Household Target Size (Column IX, Table 2) 

The official orders that resulted in the Meiji municipal mergers occurring explicitly mentioned 

a target size for amalgamated municipalities: they were supposed to be between 300 and 

500 households. Let HHS be the number of households in municipality S. Then ˜ 
xˆ,HH300 = 1(HHS > 300) 

S°ˆ˜ 
xˆ,HH500 = 1(HHS > 500). (32) 

S°ˆ 

Here mergers will be the “right” size when xˆ,HH300 is high and xˆ,HH500 is low. This means 
that xˆ,HH500 has the same direction (high is worse) as the many other distance variables, but 
the sense of xˆ,HH300 is reversed. As would then be expected, the sign on xˆ0 ,HH300 − x˘ˆ0 ,HH300 

78 



Appendix Figure C.29: Households (post-merger) 
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is the opposite of all other variables in Table 1. This variable is presented graphically in 

Figure C.29. 
The definition in Equation 32 only makes sense if all the partitions considered contain 

the same number of municipalities. It might be possible to rewrite Equation 32 as an average 

rather than a sum; however, we do not pursue this, and it is not obvious that it would lead 

to reasonable results. We thus do not include this variable in Columns X and XI of Table 2, 
because it is not defined in a way that could be used for counterfactual simulations. 

D Example 2, continued 

Let ψ be the permutation that exchanges players 3 and 4 while leaving players 1 and 2 

unchanged. The grand coalition and the all-singleton partition are left unmodified by ψ, 
and thus we exclude them from calculations below. Additional partitions left unchanged 

and thus excluded are {{1,3,4},{2}}, {{2,3,4},{1}}, {{1,2},{3,4}}, {{1},{2},{3,4}}, and 

{{1,2},{3},{4}}. We label the remaining partitions as follows, highlighting the players to be 
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permuted: 

π1 = {{1, 2, 3}, {4}} π2 = {{1, 2, 4}, {3}} 

π3 = {{1, 3}, {2, 4}} π4 = {{1, 4}, {2, 3}} 

π5 = {{1, 3}, {2}, {4}} π6 = {{1, 4}, {2}, {3}} 

π7 = {{1}, {2, 3}, {4}} π8 = {{1}, {2, 4}, {3}}. 

We have set v(π1) = 1 and v(πj ) = 0 for j ̸= 1. This yields the following probabilities that 
the decision maker will select each partition: 

Pr(π1) ≃ 0.275 Pr(π2) ≃ 0.050 

Pr(π3) ≃ 0.070 Pr(π4) ≃ 0.070 

Pr(π5) ≃ 0.038 Pr(π6) ≃ 0.066 

Pr(π7) ≃ 0.038 Pr(π8) ≃ 0.066. 

We see that Pr(π1) > Pr(π2) because the deterministic payoff for π1 is higher. Although the 

deterministic payoffs for all other partitions are the same, Pr(π5) < Pr(π6) and Pr(π7) < 

Pr(π8) because if ϵ13 or ϵ23 is positive then π1 will likely be chosen instead of π5 or π6. 
We now verify that the permutation rank ordering property holds. Expanding the sum-

mation in Inquality 16, we see that the first few terms are 

(Pr(π1) − Pr(π2)) · sign(v(π1) − v(π2)) + (Pr(π2) − Pr(π1)) · sign(v(π2) − v(π1)) + ... 

but sign(v(π1) − v(π2)) = −sign(v(π2) − v(π1)) and thus we can collect these, giving us 

2 (Pr(π1) − Pr(π2)) · sign(v(π1) − v(π2))+ 

2 (Pr(π3) − Pr(π4)) · sign(v(π3) − v(π4))+ 

2 (Pr(π5) − Pr(π6)) · sign(v(π5) − v(π6))+ 

2 (Pr(π7) − Pr(π8)) · sign(v(π7) − v(π8)) > 0 

for Inequality 16. We then see that Pr(π3) = Pr(π4), so this term vanishes. Replacing 
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Pr(π1), Pr(π2), and sign(v(π1) − v(π2)) with their values, we obtain 

2(0.275 − 0.050)+ 

2 (Pr(π5) − Pr(π6)) · sign(v(π5) − v(π6))+ 

2 (Pr(π7) − Pr(π8)) · sign(v(π7) − v(π8)) > 0, 

but Pr(π5) − Pr(π6) = Pr(π7) − Pr(π8) = 0.038 − 0.066 = −0.028. Regardless of any small 
changes to v(π5),v(π6),v(π7), and v(π8), then, Inequality 16 will be satisfied. 

E Proof of Proposition 1 

Proof. Begin by letting ψϵ be the permuted version of the idosyncratic shocks. It is easy to 

visualize this if we express ϵ as a matrix, with ψϵ flipping the relevant indices. For example, 
if N = 3 then we would have  

ϵ11 ϵ12 ϵ13  
ϵ = ϵ21 ϵ22 ϵ23 

ϵ31 ϵ31 ϵ33 

and  
ϵψ−1(1)ψ−1(1) 

ϵψ−1(2)ψ−1(1) 

  

ϵψ−1(1)ψ−1(2) ϵψ−1(1)ψ−1(3) ϵψ(1)ψ(1) ϵψ(1)ψ(2) ϵψ(1)ψ(3) 
 

ψϵ = ϵψ−1(2)ψ−1(2) ϵψ−1(2)ψ−1(3) ϵψ(2)ψ(1) ϵψ(2)ψ(2) ϵψ(2)ψ(3) = , 

ϵψ−1(3)ψ−1(1) ϵψ−1(3)ψ−1(1) ϵψ−1(3)ψ−1(3) ϵψ(3)ψ(1) ϵψ(3)ψ(1) ϵψ(3)ψ(3) 

where the later equality follows from ψ being self-inverse. 
Now let ψπ(ϵ|v) be the permuted version of the chosen partition π(ϵ|v). We will show 

that the inequality 

∑∫ 
f(ϵ) 

π0∈Π

(
1(π0 = π(ϵ|v)) − 1(ψπ0 = π(ψϵ|v))

)
· sign

(
v(π0) − v(ψπ0)

)
dϵ > 0 (33) 

holds unless v(π) = v(ψπ) for all partitions π. We will do this by examining every potential 
value for ϵ and its permuted version ψϵ. 

1. First, consider a “symmetric” value of ϵ such that ϵ = ψϵ. We are interested in the 

partition π1 = π(ϵ|v) = π(ψϵ|v), and its permutation ψπ1. Either ψπ1 = π1 or it does 
not. We consider these two cases separately: 
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(a) If ψπ1 = π1, then 

1(π1 = π(ϵ|v)) − 1(ψπ1 = π(ϵ|v)) = 0. 

(b) On the other hand, if ψπ1 ̸= π1, then it must be that v(π1) − v(ψπ1) ≥ 0 because 

the idiosyncratic components e(π1, ϵ) and e(ψπ1, ϵ) = e(ψπ1, ψϵ) are equal. Thus 

(
1(π1 = π(ϵ|v)) − 1(ψπ1 = π(ϵ|v))

) 
· sign 

(
v(π1) − v(ψπ1)

) 
≥ 0, 

and we will have the equivalent when considering the partition ψπ1: 

(
1(ψπ1 = π(ϵ|v)) − 1(π1 = π(ϵ|v))

) 
· sign 

(
v(ψπ1) − v(π1)

) 
≥ 0. 

Here the inequalities will be strict when v(π1)−v(ψπ1) > 0 . If v(π1) = v(ψπ1) for 
all partitions π1 then the partition rank ordering property is satisfied immediately 

and we are done. If not, then there will be some π1 such that v(π1) − v(ψπ1) > 0 

and the inequalities are strict. We have thus shown that the inequality in the 

rank ordering property holds strictly so long as it holds weakly in the remaining 

cases. 

2. Now, consider a value of ϵ such that ϵ ̸= ψϵ. Let π1 = π(ϵ|v). There are two possibili-
ties: 

(a) Suppose that v(π1) − v(ψπ1) ≥ 0. If so, then it follows immediately that 

(
1(π1 = π(ϵ|v)) − 1(ψπ1 = π(ϵ|v))

) 
· sign 

(
v(π1) − v(ψπ1)

) 
≥ 0 

and the equivalent when considering the partition ψπ1: 

(
1(ψπ1 = π(ϵ|v)) − 1(π1 = π(ϵ|v))

) 
· sign 

(
v(ψπ1) − v(π1)

) 
≥ 0. 

(b) Suppose that v(π1) − v(ψπ1) < 0. We are then interested in the nature of the 

partition π(ψϵ|v). There are two possibilities: 

i. If π(ψϵ|v) = ψπ1 then 

1(π1 = π(ϵ|v)) − 1(ψπ1 = π(ϵ|v)) = 0. 

ii. If π(ψϵ) ≠ ψπ1 then we need to again consider two different subcases. Let 
πa = π(ψϵ|v) be the alternative partition that was actually selected by the 
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decision maker instead of ψπ1. Compare v(πa) to v(ψπa): 
A. If v(πa) > v(ψπa) then 

(
1(π1 = π(ϵ|v)) − 1(ψπ1 = π(ϵ|v))

) 
· sign 

(
v(π1) − v(ψπ1)

) 
= −1 

but 

(1(πa = π(ψϵ|v)) − 1(ψπa = π(ψϵ|v))) · sign (v(πa) − v(ψπa)) = 1 

and thus this ϵ and ψϵ pair will cancel to zero in (33) because f(ϵ) = f(ψϵ) 

by exchangeability. 
B. If v(πa) ≤ v(ψπa) then we would be in trouble. We will show that 

this cannot occur by considering the choice between ψπa and π1 with 

idiosyncratic shocks ϵ. Begin by noting that 

e(ψπa, ϵ) + v(ψπa) = e(πa, ψϵ) + v(ψπa) 

because in Equation 15 permuting both the player labels in π and the 

labels in ϵ results in exactly the same sum as leaving both unpermuted, 
by the self-inverse property of ψ. Then 

e(πa, ψϵ) + v(ψπa) ≥ e(πa, ψϵ) + v(πa) 

because of the subcase we are in, and 

e(πa, ψϵ) + v(πa) ≥ e(ψπ1, ψϵ) + v(ψπ1) 

because πa was chosen over π1. But then 

e(ψπ1, ψϵ) + v(ψπ1) = e(π1, ϵ) + v(ψπ1) 

> e(π1, ϵ) + v(π1), 

and combining all of this we are left with 

e(ψπa, ϵ) + v(ψπa) > e(π1, ϵ) + v(π1), 

which is a contradiction because π1 was chosen over ψπa. Thus this 
subcase cannot occur. 
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F Smaller Players 

In Section 7.1, we find substantial inefficiency in cases where there is both horizontal and 

vertical heterogeneity. This is in contrast to the standard result in Kaneko and Wooders 
[1986], that games with a “large” number of players should see the efficient sorting that is 
assumed in Tiebout models. One might wonder whether our result is due to the fact that 
our players form coalition in relatively small groups: if the size of the players were smaller 
(with correspondingly more players per coalition) , would the partition that emerged have 

different sorting properties? It turns out that this appears to not be the case. 
Suppose that we wished to consider the “same” coalition formation game, except with 

smaller players. One way to do this, albeit in only an approximate sense, would be to start 
by halving the distance cost (e.g. α = 0.055 instead of α = 0.11), which is equivalent to 

halving all the distances d(i, i ′ ). Then, in order to retain population density at its original 
value, we reduce all populations pi and koku ratings yi of players by (1/2)2 = 1/4. This 
produces a “zoomed in” version of the original configuration. 

If the number of players is large, and their distribution fractal, then this “zoomed in” 

configuration will have the same characteristics as the original configuration. Relative to 

the social optimum, the resulting number of coalitions in core partitions should thus be the 

same, except in the case where the core partitions in the initial game were anomalously large 

because the initial player sizes were too big. We find, however, that this effect is in fact 
not particularly important: “zoomed in” core partitions have 105% more coalitions than 

the social optimum. Thus, it appears that dividing players more finely does not change the 

amount of inefficiency in the coalition formation game. 

G Post-Meiji Mergers (Col. IV and V, Tables 4 and 5) 

The comparison of Figure 4 and Figure 6 suggests that perhaps the model developed in this 
paper, although intended for the data from the Meiji period, could be used to perform a 

more general analysis of municipal mergers. Since the beginning of the modern municipal 
system described in Nishikawa, Hayashi, and Weese [2018], there have been three waves of 
mergers in Japan: Meiji, Showa, and Heisei. The Meiji mergers were centralized. The Heisei 
mergers were decentralized, with the national government offering a specific set of financial 
incentives (including both a “carrot” and a “stick”) in order to encourage municipalities to 
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merge.26 

The Showa mergers, however, appeared to have characteristics of both centralized and 

decentralized mergers. There was substantial involvement of higher levels of government, 
both national and prefectural. At the prefectural level, committees drew up formal merger 
plans for the entire prefecture: in the case of Aomori Prefecture, these plans were actually 

based on a formal matching model, complete with a payoff structure and an approximation 

algorithm. On the other hand, the final mergers had to be approved at the municipal 
level. One interpretation of this is that the municipal approval was mere window dressing, 
and municipalities could not refuse to participate in the national government plan. Our 
simulation results suggest another potential explanation for the seemingly contradictory 

“both centralized and decentralized” nature of the Showa mergers. 
As documented in Nishikawa, Hayashi, and Weese [2018], during the Meiji period there 

were effectively no transfers from the national government to municipalities, and only ex-
tremely limited assistance from prefectures. This allows for the simple model developed in 

Section 2. After World War II, however, the Shoup Report commissioned by occupation 

forces recommended revisions to the municipal finance system. This resulted in the Heikou 

Koufukin (later renamed the Chihou Koufuzei), a transfer system that would eventually grow 

to enormous size. Two stylized facts regarding this transfer system are important: during 

the Showa period, it was widely considered to provide inadequate equalization for capital 
costs, while in the Heisei period capital costs were seen as overstated, and the system was 
seen instead as providing inadequate equalization for larger cities. 

A stylized version of the transfer system in place throughout the post-war period is that 
it is based on lump-sum transfers.27 Previous analysis shows that these transfers can be 

modelled as a fixed plus variable amount: this is directly related to the fact that the cost 
of providing services can be modelled in this way. With these transfers, from the local 
perspective the cost of providing services becomes (γ1 − T1) + (γ2 − T2) 

∑ 
i∈S pi, where T1 is 

the fixed transfer amount, and T2 the variable transfer amount, depending on the population 

to which services need to be provided. 
A transfer scheme of this sort, from the perspective of the municipalities, is equivalent to 

26For a recent discussion of the Heisei mergers in the domestic literature, see Machida [2006]. The general 
consensus appears to be that mergers occurred democratically, subject to the financial incentives. The “stick” 
portion of the national government funding formula change in particular appears to have led many small 
municipalities to participate in mergers. This qualitative discussion agrees with the theoretical results in 
Weese [2015] regarding when the “stick” should be used. 

27The details of the system are quite complicated, and subsidies were also present. The appendix of Weese 
[2015] provides a brief English-language description. 
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Appendix Table G.30: Dependent variable is cost of providing services (’96-’97 fiscal year) 

I II III IV V 
(Intercept) 1294.6 808.4 834.3 792.2 902.7 

(23.0) (24.4) (25.2) (27.1) (21.2) 
POPULATION 136.4 136.0 136.6 142.3 142.5 

(0.3) (0.3) (0.3) (1.7) (1.3) 
AREA 4.3 3.6 3.8 2.9 

(0.1) (0.1) (0.1) (0.1) 
INCOME.INEQ 0.04 0.03 -20.9 -12.4 

(4.8) (4.9) (4.3) (3.3) 
INCOME -1070.4 -779.8 -164.9 -483.4 

(69.0) (104.3) (69.1) (79.8) 
IS.CITY 324.1 369.8 -16.2 295.4 

(54.9) (54.2) (59.2) (48.1) 
POP * INCOME.INEQ 1.1 0.2 

(0.1) (0.1) 
POP * INCOME -30.5 -8.6 

(1.0) (1.5) 
POP * IS.CITY 5.4 -1.7 

(2.2) (1.7) 
PREFECTURE X X 
N 3220 3216 3216 3216 3216 

Units: ¥1,000,000 (roughly $10,000) per year. POPULATION is in thousands of residents, AREA 
is in square kilometers, INCOME is in ¥1,000,000 per capita per year, INCOME.INEQ is the 
coefficient of variation of income, IS.CITY is a dummy variable coded as 1 if the municipality in 
question is a city, and zero if it is a village or town. PREFECTURE is a set of dummy variables for 
each of the 47 prefectures, with the restriction that the sum of the coefficients on these variables 
must equal zero. Designated cities and special wards are excluded from the regression because they 
have additional responsibilities devolved from the prefectural governments, and thus have higher 
(and non-comprable) expenditures per capita. 
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Appendix Table G.31: Dependent variable is cost of providing services 

96-97 06-07 
(Intercept) 899.9 582.2 

(43.9) (59.5) 
POPULATION 129.4 131.5 

(0.5) (0.6) 
AREA 4.6 4.6 

(0.2) (0.2) 
N 1194 1194 

Units: ¥1,000,000 (roughly $10,000) per year. POPULATION is in thousands of residents, AREA 
is in square kilometers, designated cities and special wards are excluded as in Table G.30. The 
sample is further restricted to those municipalities that did not participate in a merger in order 
to have the same sample in both periods. Thus, the change in coefficients represents a change 
in national government transfer policy on the same group of municipalities during the period in 
question. Inflation during this period was negligible. 

Appendix Figure G.32: Predicted and actual Standard Fiscal Need, Heisei data 

"Standard Financial Need" of Japanese Municipalities
('96−'97 fiscal year)
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a change in the fixed and variable costs to γ̃1 = γ1 − T1 and γ̃2 = γ2 − T2, respectively. Thus, 
to simulate the results that would occur in a decentralized set of mergers with a certain 

equalization transfer scheme, we need only to change the parameters γ1 and γ2 to γ̃1 and γ̃2 

when running the decentralized simulations, but then retain the original γ1 when calculating 

the optimal partition from the perspective of the social planner. We can thus ask what the 

effect of an equalization system of various sorts might have been on municipal mergers, by 

asking what the core of the decentralized coalition formation game would look like under 
different parameters for the cost function. 

We first consider the case where the variable cost is fully subsidized, with T2 = γ2. This is 
a situation often considered in the theoretical literature, and corresponds very roughly to the 

case of the equalization payments in the Showa period. Column IV of Tables 4 and 5 show 

that in this case the number of mergers is very close to that of the social planner’s optimal 
partition, and there is very little inefficiency. This result provides a potential explanation for 
the contradictory nature of the Showa mergers, which were apparently both centralized and 

decentralized at the same time.28 With an equalization system of the sort in place during 

the Showa period, decentralized coalitions were very similar to those that the social planner 
would have selected. Thus, during the Showa period, there was close to no contradiction 

between the centrally planned merger pattern, and one that municipalities would have wanted 

to carry out.29 

Now, consider a transfer scheme of the sort in use in the Heisei period. As documented 

by DeWit [2002] and others, the transfer system by this point had changed into one that 
was exceedingly generous with respect to capital investments, which were large for smaller 
municipalities, but did not really adequately compensate municipalities for the variable costs 
incurred. The extreme case of such a transfer scheme would be one in which the fixed 

cost is completely subsidized, in which case no players would be interested in any mergers 
in the decentralized case. In order to cause decentralized mergers to occur, the national 
government offered a set of financial incentives, both rewarding those municipalities that 
chose to participate in mergers, and penalizing those that did not. In an extremely rough 

28Tanaka and Kadotami [1963] summarizes the view of the Showa mergers as centralized, citing Kawaguchi 
[1960b], Kawaguchi [1960a], Kawaguchi [1961], Oshima [1958], Oshima [1959], and Fukutake [1959]. Steiner 
[1965], however, gives a case study where local politics played a key role in the merger process. More recent 
research includes Ichikawa [2011], who emphasizes the importance of both local governments and the national 
government in the merger process, and Arakaki [2010], who argues that the large number of municipal splits 
is evidence of central control. 

29One might imagine, for example, the central planner began by creating a partition. This was either then 
modified to ensure that it corresponded to a core partition, or (more likely, given the anecdotal evidence) 
the small number of reluctant municipalities were bludgeoned into accepting the proposed partition, even 
though blocking coalitions existed. An explanation of this sort does not appear anywhere in the literature, 
but instead arises from the simulations performed based on the model in this paper. 
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sense, these incentives correspond to municipalities becoming responsible for a portion of 
the fixed cost. 

We calculate the fraction of the fixed cost based on a simplification of the calculations in 

Weese [2015]. Appendix Table G.30 shows that the transfers during this period correspond 

roughly to the fixed cost plus variable cost system in place since the Showa period. Appendix 

Table G.31 shows that the changes in the transfer system during the merger period, designed 

to provide incentives for merging, correspond roughly to a decrease in transfers of a lump 

sum of about ¥300 million per municipality, but the transfer corresponding to the variable 

cost component did not change. The merger “incentive” thus corresponds to roughly a third 

of the fixed cost, as the remaining two thirds was subsidized by the transfer scheme. Column 

V of Table 4 and 5 thus reports the case with municipalities considering a cost equal to only 

one third of the fixed cost. 
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