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Abstract. We consider a dynamic process of coalition formation in which a principal
bargains sequentially with a group of agents. This problem is at the core of a variety of
applications in economics and politics, including a lobbyist seeking to pass a bill, an en-
trepreneur setting up a start-up, or a firm seeking the approval of corrupt bureaucrats. We
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favor of the principal.
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1. Introduction

In this paper, we study how bargaining power affects the efficiency of collective decisions in

dynamic processes of coalition formation with externalities.

We focus on problems in which a principal bargains bilaterally with members of a group to

obtain their agreement. Consider for example the President seeking to influence legislators

of his own party to pass a policy proposal, a firm negotiating with buyers the adoption of

a new technology with network externalities, an entrepreneur seeking to form a start-up,

a raider attempting to takeover a target firm, or a firm or political candidate seeking the

endorsement of opinion leaders.

A salient feature of these problems is that the principal typically bargains with agents se-

quentially. As a result, the offers the principal makes to, or receives from, an agent, will

generally depend on how advanced the negotiation process is. This consideration becomes

important when agents are farsighted, or fully rational, because the principal’s ability to suc-

cessfully transact with each agent depends on their expectations about the nature of future

trades.

In this context, we study how the allocation of bargaining power between principal and

agents affects whether good proposals are undertaken and bad ones rejected, whether good

proposals are adopted with or without delay, and how rents are distributed between principal

and agents. Would legislators be better off if each of them has a stronger bargaining position

against a lobbyist or the executive? Would this lead to a less efficient policy-making pro-

cess? Would markets with network externalities in which buyers have a stronger bargaining

position delay innovation to better technologies?

Conventional wisdom suggests that in the absence of asymmetric information, increasing

agents’ bargaining power relative to the principal would improve agents’ welfare and have

no impact on the efficiency of collective decisions. We show, however, that both of these

assertions are generally false. In particular, we show that when the principal’s willingness

to pay is high, redistributing bargaining power from the principal to the agents first induces

and then increases delay, and reduces agents’ welfare. As a result, agents are better off

conceding substantial bargaining power to the principal.
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In our model, a principal negotiates with a group of n agents bilaterally and sequentially.1

There is no deadline for reaching an agreement, and no asymmetric information. In each

meeting, the principal bargains with an agent over the terms by which the agent would

commit his support to the principal. If an agreement is reached, the agent commits his

support to the principal and exits negotiations. Otherwise, the agent remains uncommitted.

The principal needs to obtain the agreement of q < n agents to implement a reform, action,

or policy change which affects the payoffs of all agents.2 When this happens, the principal

obtains a payoff v > 0, agents who committed their support to the principal obtain z > 0, and

agents who remained uncommitted obtain w ∈ R, where w > 0 (w < 0) implies that there

are positive (negative) externalities on uncommitted agents, and w = 0 implies that there

are no externalities on uncommitted agents. All players have a discount factor δ ∈ (0, 1).

To consider arbitrary allocations of bargaining power between the principal and each agent

while maintaining the structure of the game fixed, we assume that in a bilateral meeting

the principal makes an offer with probability φ ∈ [0, 1], and the agent makes an offer with

probability 1−φ.3 We then solve for Markov perfect equilibria of the game for each allocation

of bargaining power φ ∈ [0, 1], where strategies depend on the number of agents the principal

still needs in order to win. A well known feature in models of this kind is that if the principal

can use discriminatory contracts, one can generate equilibria in which the principal obtains a

large profit by exploiting coordination failures among agents (this point is made in Genicot

and Ray (2006); see Segal and Whinston (2000), Cai (2000), Chowdhury and Sengupta

(2012)). To rule this out, we focus on symmetric equilibria of the game.

We prove existence and uniqueness of equilibrium outcomes, and provide a complete char-

acterization for the case in which the principal’s willingness to pay is large. We show that,

irrespective of the direction of the externalities, if the principal has enough bargaining power

in bilateral negotiations the equilibrium is efficient, and agents’ welfare increases with their

bargaining power in bilateral negotiations. When agents have enough bargaining power,

1This contrasts with decentralized processes of coalition formation in the absence of a principal, a-la Gul
(1989), Baron and Ferejohn (1989), Banks and Duggan (2000) or Gomes (2005).
2This can be taken as a particularly simple way to micro-found the source of potential externalities, but also
appears quite literally in some applications, such as the approval of a bill requires a majority of senators
(or some supermajority of a party), takeovers requires a majority of shares, or technology adoption with
increasing returns to scale requires some q buyers to be on board.
3This formulation is formally equivalent to nesting an infinite horizon bilateral bargaining in our game, where
one of the sides decides whether to enter in negotiations or not, and in any period of the negotiation phase
after a proposal is rejected the principal (agent) makes offers with probability φ (respectively, 1− φ).
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instead, the equilibrium is inefficient, and agents’ welfare decreases with their bargaining

power in bilateral negotiations.

The inefficiency we identify is due to what we call a collective hold-up problem. When agents

have the upper hand over the principal in bilateral negotiations, the principal anticipates

that agents trading late in the process will extract a large fraction of the surplus, and is not

willing to pay much to agents trading early on. This first part of the mechanism we identify

corresponds to the standard hold-up problem, in which trading partners negotiate to divide

their trade surplus after making relationship specific investments, in this case obtaining the

support of other agents (Williamson (1979), Klein, Crawford, and Alchian (1978), Grossman

and Hart (1986)).4

The key point here, however, is that by refusing to trade, agents can meet the principal

later. This gives agents who meet early with the principal an incentive to hold-out, which

more than compensates for the loss induced by delaying completion when the principal’s

willingness to pay is high. Holding out indefinitely cannot be an equilibrium, however, for

this would destroy the incentives to hold out in the first place. But consistency is restored

if the agent negotiating with the principal expects the right amount of delay in the event

of not reaching an agreement with the principal. This is because delay in a given state

of the bargaining process affects the value of holding out, but not the continuation value

after agreement. In this way, the collective action problem among agents complements the

principal’s hold-up problem and creates delay and inefficiency.

Equilibrium outcomes for large v have three interesting features. First, we show that for a

given allocation of bargaining power φ inducing delay, delay is front-loaded, in the sense that

it occurs in the first k transactions. In these first k transactions, the expected delay for each

deal increases as the process moves forward. But once the principal obtains the support of k

agents, the remaining transactions occur without delay. Second, the number of transactions

with positive expected delay is decreasing in φ, so that redistributing bargaining power from

the principal to the agents expands the number of states in which transactions fail with

positive probability. Third, we show that both the number of states in which there is delay

with positive probability and the expected length of delay are increasing in the number of

4The hold-up problem led to a large literature in modern contract and organization theory, exploring insti-
tutional remedies against hold-up (see the articles cited in Che and Sákovics (2004)). In many situations,
however, investments must be sunk before agents meet (e.g. Acemoglu and Shimer (1999), Cole, Mailath,
and Postlewaite (2001)), or contracting is limited, as is often the case in political economy.
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agents q whose approval is required for completion. This conforms to the intuition that more

stringent majority rules are costly because they induce more delay.

For any given allocation of bargaining power for which there is delay in more than one

transaction, the expected delay is increasing in the principal’s willingness to pay. In fact, in

the limit as v goes to infinity, the expected time for completion goes to infinity, and agents’

payoffs go to zero. Thus, when agents anticipate that the collective hold-up problem would

be severe, they prefer to grant considerable bargaining power to the principal, to the point

of reducing significantly the number of transactions with delay.

It is important to clarify that delay can arise with positive externalities, no externalities,

or even negative externalities on uncommitted agents. All else equal, a larger negative

externality on uncommitted agents lowers the value of the lottery induced by holding-out.

But when the principal’s willingness to pay is sufficiently large and agents have sufficient

bargaining power, holding out can still be attractive, and the main logic for delay is unaltered.

In the second part of the paper we consider the case in which an agent who committed his

support to the principal obtains a non-positive payoff, as in corporate takeovers (z = 0) or

vote buying with audience costs (z < 0). We show that when there are positive externalities

on uncommitted agents, in any equilibrium in which the project is completed with positive

probability there can only be delay when the principal is trying to obtain the support of

the very first agent. With this exception, equilibrium either has no delay, or is such that

there are no transactions in the initial state. Moreover, we show that when agents have large

bargaining power, the equilibrium is inefficient, and there are no transactions even when

agreement would be optimal.

The rest of the paper is organized as follows. In section 2 we place our paper in the context

of the literature, and in section 3 we describe the model. In section 4 we present the result

in a simplified setting. We fix z = w > 0 and analyze the two extreme cases in which either

the principal or the agents have full bargaining power in bilateral meetings. In section 5 we

present the main result in the general model. We conclude in section 6. All proofs are in

the Appendix.

2. Related Literature

Our paper builds on the literature on contracting with externalities (see Grossman and

Hart (1980), Rasmusen, Ramseyer, and Wiley Jr (1991), Rasmusen and Ramseyer (1994),
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Segal (1999, 2003), Segal and Whinston (2000), Genicot and Ray (2006)). These papers

explore problems in which a single principal contracts with a group of agents in the presence

of externalities among agents (e.g., corporate takeovers, exclusive contracts, public goods,

lobbying).

A standard assumption in the literature is that the principal has full bargaining power.5 As

a result, we know very little about how the allocation of bargaining power affects equilibrium

outcomes in this context. The one exception we are aware of is Galasso (2008), who considers

a problem in which there are negative externalities across agents and trade is inefficient, but

the principal benefits from trading. In this context, Galasso shows that when agents are

sufficiently patient, the principal prefers to enter a finite horizon bargaining game in which

she is the last mover, to a one shot game in which she makes a take-it-or-leave-it offer to

agents. This happens because the repeated game allows the principal to profit from breaking

coordination among agents.6

Our contribution is to consider arbitrary allocations of bargaining power between the prin-

cipal and the agents while maintaining the structure of the game fixed. To do this, we build

on the single principal version of Iaryczower and Oliveros (2017). We show that when the

principal’s willingness to pay is high, giving more power to the agents induces delay and

reduces agents’ welfare.

The emergence of delay in this context is noteworthy. Although delay with incomplete

information is well studied, the possibility of inefficient delay in bargaining models with

complete information is rare. Chatterjee, Dutta, Ray, and Sengupta (1993), Ray and Vohra

(1999), Banks and Duggan (2006) and Gomes (2005) provide examples featuring delay in

general bargaining models, and Iaryczower and Oliveros (2016) show existence of an equilib-

rium with delay in a model of decentralized legislative bargaining, where one agent emerges

endogenously as an intermediary.7

Jehiel and Moldovanu (1995b) consider a model in which a seller tries to sell a single object

to one of several potential buyers, where non-buyers suffer a negative externality that is

dependent on the identity of the actual buyer. The seller meets agents randomly, and has

5This is also true in Iaryczower and Oliveros (2017), where we consider the effect of competition among
principals on agents’ welfare.
6With negative externalities, each agent wants to avoid being the last agent left to receive an offer from the
principal, and as a result has an incentive to trade early at more favorable terms for the principal.
7In a general version of the Baron Ferejohn model, Banks and Duggan (2006) show that a stationary equilib-
rium with delay can only exist if the status quo is in the core, which is generally empty in multidimensional
policy spaces, or when transfers are possible.
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to sell the good to a buyer in less than T < ∞ periods. Jehiel and Moldovanu show that

under some conditions there is a unique equilibrium with delay, in which transactions take

place only a few stages before the end of the game. Delay appears here because as the

deadline approaches, the threat that the seller sells the object to the agent who induces a

larger negative externality on other agents increases (because the seller has to get rid of the

object). This makes it optimal for the seller to wait in order to extract high prices from

other agents, willing to avoid this negative outcome (note this is not necessarily inefficient).8

Closer to our paper, Cai (2000) considers a model in which a principal bargains with n

agents sequentially, meeting the agents in a pre-specified order. The principal needs to get

unanimous support from agents, and the bargaining protocol in each bilateral meeting is a

single round of alternating offers. Cai shows that when players are sufficiently patient, there is

a multiplicity of subgame perfect NE, including equilibria with and without delay. These two

equilibria remain even after imposing the refinement that offers cannot depend on previously

rejected offers. Differently than in our paper, delay here appears as a result of discriminating

offers (Segal and Whinston (2000), Genicot and Ray (2006)) which can be constructed using

the predetermined order of meetings. We explicitly rule this out by focusing on symmetric

MPE, and show that delay appears (uniquely) when agents have enough bargaining power

in bilateral meetings, even in the absence of discriminating contracts.

Other explanations for delay with complete information, less directly related to this paper,

have been proposed. Fershtman and Seidmann (1993) show that if a player that rejects

an offer is subsequently committed not to accept any poorer proposal, deadlines can lead

to delay in bilateral bargaining (with large discount factor). Ma and Manove (1993) show

that deadlines can also lead to delay if we assume that (i) a player is permitted to postpone

the implementation of his move without losing his turn and (ii) after each offer is made,

a random length of time elapses before the other player can respond. Merlo and Wilson

(1995) show that efficient delay can emerge when the size of the surplus to be divided

evolves stochastically over time. Yildiz (2004) and Ali (2006) show delay in bargaining with

heterogeneous priors, and Acharya and Ortner (2013) show that delay can arise in bargaining

over multiple issues with partial agreements.

8Jehiel and Moldovanu (1995a) extend the model to allow for positive externalities, and an infinite horizon.
They show that with negative externalities, delay can also arise without deadlines, but that with positive
externalities (as in our paper) delay can only arise in equilibria of the finite horizon model. In our paper,
delay can emerge independently of the nature of externalities on non-traders.
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3. The Model

There is a principal and a group of n agents who interact in an infinite horizon, t = 1, 2, . . ..

We say the principal wins if and when she obtains the support of q < n agents. In each

period t before the principal wins, any one of the k(t) agents who remain uncommitted at

time t meets the principal with probability 1/k(t) > 0. In a meeting between the principal

and an agent, principal and agent bargain over the terms of a deal by which i would support

the principal. With probability φ ∈ [0, 1] the principal makes an offer p ∈ R to the agent,

and with probability 1 − φ the agent makes an offer b ∈ R to the principal. In both cases,

the offer is a transfer from the principal to the agent (which can be positive or negative). If

the recipient of the offer accepts it, i commits his support for the principal and the transfer

takes place; if the offer is rejected, i remains uncommitted. Upon completion, the principal

gets a payoff v ∈ R+, committed agents get z ∈ R+, and uncommitted agents get w ∈ R.

In any period before completion, all players get a payoff of zero, not including any transfer

they have received or paid. Principal and agents have a discount factor δ ∈ (0, 1).

The solution concept is symmetric Markov perfect equilibria (MPE). The restriction to sym-

metric MPE rules out discriminatory contracts, in the spirit of Genicot and Ray (2006). In

particular, the strategies of principal and agents only condition on the number of agents

m ≤ q the principal still needs to obtain for completion. We let the state space be

M ≡ {1, . . . , q}. Offers when the principal and agents propose in state m are p(m) and

b(m), respectively. We let w(m) and wout(m) denote the continuation values of an uncom-

mitted and a committed agent in state m∈M , and v(m) denote the principal’s continuation

value in state m∈M .

Although quite simple, the model has a number of applications. To fix ideas, we sketch some

of these here.

Corruption. We consider a simple model of bribes to corrupt bureaucrats, in the spirit of

Olken and Barron (2009). Olken and Barron observe bribes paid by truck drivers to police,

soldiers, and weigh station attendants in Indonesia. They model checkpoints as a chain of

vertical monopolies, where the sequence of meetings is given, and the agreement of each

checkpoint is needed for completion. In our model, instead, a firm needs to get the approval

of q out of n bureaucrats, and does not have to get these approvals in a given sequence. This

is as in McMillan and Zoido (2004), who document the details of corruption in Peru in the
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1990s under President Alberto Fujimori, observing the bribes Fujimori’s secret police chief

Vladimiro Montesinos paid to bribe judges, politicians and the news media.9 An interesting

fact that emerges from both of these papers is that there is substantial bargaining for bribes.

Olken and Barron (2009) show that prices are in part set through ex post bargaining rather

than being fully determined ex ante, while Montesinos’ videotapes show him haggling with

the bribe takers (McMillan and Zoido (2004)). We assume that if the project is greenlighted,

the firm gets an expected payoff v > 0, and the bureaucrat who supports the project obtains

z > 0 (possibly due to more benefits down the line), while w ≥ 0 or w ≤ 0 depending on

whether the project benefits or hurts the population at large.

New Technologies with Increasing Returns to Scale. Consider exclusive deals con-

tracts for the introduction of a new product with network externalities (Katz and Shapiro

(1992), Segal and Whinston (2000)). Suppose there are n buyers and an incumbent produc-

ing with an old technology, in a market that can accommodate at most one supplier due to

increasing returns to scale or network externalities. Under the incumbent supplier, buyers

obtain a per period payoff which we normalize to zero. A challenger P can supply the market

with a new technology, but entry is profitable only if it can serve at least q buyers. In each

period, the challenger negotiates with a potential buyer an exclusive deal contract, which

can include some advantage in service or tailored design. If q buyers sign exclusive deals, the

challenger enters and the incumbent drops out. In this case the challenger firm gets a payoff

v > 0, buyers who didn’t sign get w > 0 and buyers who signed agreements get z ≥ w.

Start-Ups. A firm needs to hire q specialized workers to produce a new product. Upon

starting production, the firm obtains an expected payoff of v > 0, while each of the workers

gets profit participation leading to an expected value z > 0. To sign the workers to the

company, the firm negotiates with each worker a sign-up bonus. Workers that are not hired

by the firm do not benefit (or suffer) from the company’s activities, so w = 0.

Organization of a Protest. A national union wants to set up a large protest against the

government. To do this, the union leadership can offer concessions to convince each of the

local or industry chapters to mobilize their members against the government. The protest

is successful if the national leadership secures the agreement of q of the local bosses. If

organized, the union gets v > 0, the local chapters participating get z > 0 and the chapters

not participating get w > z (a similar logic holds with the organization of a coup, with the

9As this paper documents, to form a winning coalition in the Congress, Montesinos had to bribe only some
of the opposition politicians. Similarly, “In the Supreme Court, decisions are made by majority vote, so
three of the five Supreme Court judges were enough.” (McMillan and Zoido (2004))
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rebel elite bargaining with the commander of each regiment).

In Section 5.3 we consider the case z ≤ 0. This allows us to extend our analysis to other

applications, including corporate takeovers (z=0) or vote buying with audience costs (z<0).

4. Benchmarks

To convey the key insights of the paper in the simplest way possible, we begin by analyzing

the two extreme cases in which either the principal or the agents have full bargaining power

in bilateral meetings (φ = 1 and φ = 0 respectively), with z = w > 0.

4.1. Principal has Full Bargaining Power. The case in which the principal has all the

bargaining power (φ = 1) was analyzed in Iaryczower and Oliveros (2017). Here we briefly

review the equilibrium characterization.

Consider an arbitrary state m∈M . Note that the agent meeting the principal will accept an

offer p(m) only if δwout(m − 1)+ p(m) ≥ δw(m), and will accept the offer with probability

one if this inequality holds strictly. Thus, whenever the principal makes an offer to agent i

in state m, she offers

(1) p(m) = −δ[wout(m− 1)− w(m)].

The principal is willing to make the offer p(m) in state m if p(m) ≤ δ[v(m− 1)− v(m)], or,

substituting, if and only if the bilateral surplus of moving forward is nonnegative; i.e.,

(2) s(m) ≡ [v(m− 1)− v(m)] + [wout(m− 1)− w(m)] ≥ 0

Equilibrium strategies can differ in the probability of trade in each state. Let γm ∈ [0, 1] and

αm ∈ [0, 1] denote, respectively, the probability that the principal makes an offer p(m) and

that the agent accepts the offer p(m) in state m, and let λm ≡ γmαm denote the probability

of trade in state m. We argue that the strategy profile in which there is trade in every state,

or λm = 1 for all m ≤ q, is an equilibrium (we call this a full trading equilibrium, of FTE

for short). Moreover, this equilibrium is unique.

Proposition 4.1. The game with φ = 1 and z = w has a unique MPE, a full trading

equilibrium. In this equilibrium, the payoff of an agent is given by

(3) wP (m) =

[
m∏
k=1

r(k)

]
δmw with r(k) ≡

(
n− q + k − 1

n− q + k − δ

)
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The intuition for why the FTE exists is as follows. First, fix the proposed equilibrium. Since

v > 0 and w > 0, when the principal needs to collect the support of only one additional

agent (m = 1), principal and agent can create a positive surplus by moving forward. Thus,

given full information, there is a price at which this transaction occurs. And since the

principal makes the proposal, the solution gives the principal a positive rent. Now consider

the situation in which there are m agents remaining. Since in equilibrium there is trade

whenever the principal needs to secure the support of t < m additional agents, in state m

the principal and the selected agent can also realize a positive surplus if they move forward.

Therefore there is again a price at which trade can occur, which gives the principal a positive

rent.

To check more formally whether a particular strategy profile is a MPE we need to check

consistency with (2).10 In a FTE, in particular, we need to verify that s(m) ≥ 0 for all

m ≤ q when w(·), wout(·) and v(·) are computed for a FTE.

Consider the value of an uncommitted agent i in state m in a FTE, w(m). With probability

β(m) ≡ 1/(n − q + m), i meets the principal, who offers him a transfer satisfying (1),

leading to a continuation payoff δw(m). With probability 1 − β(m), some agent j 6= i

meets the principal and ultimately agrees to support her, leaving i with a continuation value

δw (m− 1). Solving the difference equation with initial condition w(0) = w gives (3). If

instead the agent is already committed in state m, wout (m) = δwout (m− 1), and thus

(4) wPout (m) = δmw.

Using (3) and (4) we can compute the equilibrium transfer as a function of primitives,

and then solve for the principal’s value function, which obeys the recursive representation

v(m) = δv(m − 1)− p(m). Using vP (·), wP (·) and wPout(·) in the surplus condition (2), we

have that

s(m) = (1− δ)δm−1
[
v + w

m∑
l=1

(
1− δ

l∏
k=1

r(k)

)]
≥ 0 ∀m ≤ q.

Uniqueness can be established via an induction argument. Consider any MPE and suppose

that there is trade whenever the principal needs to secure the support of t < m additional

agents. If in equilibrium there were no trade with positive probability, principal and agent

10In particular, we must have s(m) ≥ 0 when λm = 1, s(m) ≤ 0 when λm = 0, and s(m) = 0 when
λm ∈ (0, 1). To see this last point, suppose that in equilibrium s(m) > 0. Then it must be that αm = 1, for
otherwise the principal could obtain a discrete gain in payoffs by increasing her offer slightly, as any such
offer would be accepted. And then it must be that γm = 1. It follows that if λm ∈ (0, 1) then s(m) = 0.
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would obtain a lower combined payoff in state m than in the FTE. Hence the gain from

moving forward would be higher than in the FTE, and thus positive. It follows that the

principal will make an offer, which the agent will accept (for a formal proof of uniqueness,

see Iaryczower and Oliveros (2017)).

Proposition 4.1 implies that in equilibrium the principal cannot extract all surplus from

the agents. The reason for this is similar to the logic behind under-provision of a public

good. Note that since the agents benefit from implementing the alternative to the status

quo and they cannot obtain a higher terminal payoff by remaining uncommitted (z = w),

the principal actually charges them to move on. By rejecting the offer, however, an agent

can rely on others to pay the bill. This generates an outside option that gives each agent

some bargaining power over the principal. Since the cost of deferring implementation of the

proposal decreases with δ, the value of the outside option is increasing in δ, and so is agents’

equilibrium payoff. In fact, as δ approaches 1, r(m)→ 1 and wP (m)→ w.11

4.2. Agents have Full Bargaining Power. We now consider the case in which agents

have full bargaining power in bilateral negotiations with the principal; i.e., φ = 0. We show

that this shift in bargaining power dramatically changes the nature of equilibrium outcomes,

inducing inefficient delay, due to the fact that agents trading later with the principal can

extract a disproportionate fraction of the surplus generated by the completion of the project.

We call this a collective hold-up problem.

The nature of the collective hold-up problem is particularly transparent when agents have

full bargaining power. Note that as in the previous case, the offer b(m) that an agent makes

to the principal in state m is uniquely pinned down: since the principal accepts an offer b(m)

in state m ∈M iff δv(m − 1) − b(m) ≥ δv(m), whenever the agent makes an offer to the

principal he offers

(5) b(m) = δ[v(m− 1)− v(m)].

By (5), the continuation value of the principal in state m is δv(m) independently of whether

the agent makes an offer or not. It follows that v(m) = δv(m), which implies that v(m) = 0

for all m ≥ 1. Because the critical agent trading in state m = 1 extracts all the principal’s

11An indirect consequence of the assumption that w = z > 0 is that when φ = 1, transfers from principals
to agents are negative, a feature that can be unappealing in some applications. In the general version of the
model where we allow payoffs to depend on whether each agent supported the principal or remained uncom-
mitted, most relevant applications involve positive transfers from the principal to agents under reasonable
assumptions on parameters, even when the principal has full bargaining power.
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surplus from completion of the project with his offer b(1) = δv, the principal is not willing to

pay in previous states to move the process forward. Substituting in (5), equilibrium transfers

from the principal to the agents are

(6) b(m) =

{
δv if m = 1
0 for m ≥ 2.

The fact that agents meeting the principal in earlier states m > 1 cannot extract additional

rents from the principal gives them an incentive to hold out their support, which increases

with v. This individual behavior, of course, is not consistent with equilibrium. If the agent

meeting the principal in state m never agrees to give his support to the principal the process

does not move forward, and the critical state m = 1 is never reached in the first place. As

we show below, consistency is restored with delay in reaching agreements.

Let λ̂m denote the probability of trade in state m when the agents have full bargaining

power.12 In equilibrium s(m) ≥ 0 when λ̂m = 1, s(m) ≤ 0 when λ̂m = 0, and s(m) = 0 when

λ̂m ∈ (0, 1), where s(m) is given by (2) as before. Note that since v(m) = 0 for all m∈M ,

for any state m > 1, s (m) ≥ 0 if and only if wout(m − 1) ≥ w(m). In the absence of side

payments, the probability of trade depends on the relative value for an agent of moving the

process along supporting the principal for free, wout(m−1), versus holding out support with

the goal of extracting the rent δv in late trading, w(m).

The values wout(m) and w(m) for a committed and uncommitted agent depend on expec-

tations of the probability of trade in states m′ ≤ m. Since once committed, agents do not

engage in further negotiations, the payoff of a committed agent i in state m is

wout(m) = λ̂mδwout(m− 1) + (1− λ̂m)δwout(m),

and solving recursively,

(7) wout(m) =

[
m∏
j=1

δλ̂j

1− δ(1− λ̂j)

]
w,

On the other hand, the payoff of an uncommitted agent in state m > 1 is

w(m) = λ̂m [β(m)δwout(m− 1) + (1− β(m)) δw(m− 1)] + (1− λ̂m)δw(m),

where as before β(m) ≡ 1/(n − q + m) denotes the probability that an agent i meets the

principal in state m ∈ M . Whether agent i or another agent j 6= i negotiates with the

12We let γ̂m ∈ [0, 1] denote the probability that an agent makes the offer b(m) in state m, α̂m ∈ [0, 1] the

probability that the principal accepts the offer b(m) in state m, and let λ̂m ≡ γ̂mα̂m denote the probability
of trade in state m.
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principal, an unsuccessful meeting implies that the system stays put at m, which gives i a

discounted continuation payoff δw(m). A successful meeting, instead, moves the process to

state m− 1 with the agent being committed to the principal with probability β(m). Solving

recursively,

(8) w(m) =

[
m∏
j=1

δλ̂j

1− δ(1− λ̂j)

]
(w + β(m)v) .

Given v(1) = 0, the surplus in the critical state m = 1 is given by s(1) = v+w−w(1). Now,

note that w(1) is maximized at λ̂1 = 1, where it attains the value w̃(1) = δ (w + β(1)v) < v+

w. Thus s(1) > 0 for any λ̂1 ∈ [0, 1], and in equilibrium there is no delay in m = 1. Using (7)

and (8), the condition for trade with positive probability at m > 1 that wout(m− 1) ≥ w(m)

boils down to

(9) w ≥

[
δλ̂m

1− δ(1− λ̂m)

]
(w + β(m)v)

For delay to occur with positive probability at m, we need (9) to hold with equality. Now,

note that since w(m) is increasing in the probability of trade in state m, λ̂m, while wout(m−1)

is independent of λ̂m, the right hand side is a continuous increasing function f(·;m) of λ̂m

such that f(0;m) = 0 and f(1;m) = δ (w + β(m)v).

Since (9) is satisfied with λ̂m = 0, this implies that in equilibrium there is always trade with

positive probability in all states m > 1: if an agent i who is in the position to trade with the

principal in state m anticipates that no agent would ever trade with the principal in that

position, i has incentives to trade. Thus no trading in m cannot be part of an equilibrium.

On the other hand, there exists a (unique) solution λ̂m ∈ (0, 1) satisfying (9) with equality

if and only if

(10) w < δ (w + β(m)v) ⇐⇒ m <
δ

(1− δ)
v

w
− (n− q) ≡ m

It follows immediately from this that:

Lemma 4.2. There exists a unique cutpoint m ∈ {2, . . . , q + 1} such that, in equilibrium,

there is delay in each state m : 2 ≤ m < m, and trade with probability one in any m ≥ m.

From eq. (10), the set of states in which there is delay is weakly increasing in v/w, which

captures the relative value of holding out, and for any m∈M there is a v/w large enough

such that m < m. The ratio v/w also increases the probability of delay in states below the
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cutpoint. In fact, note that when there is delay in state m, the probability of trade is given

by the λ̂m ∈ (0, 1) solving wout(m− 1) = w(m), or

(11) λ̂m =

(
1− δ
δ

)
w

v

1

β(m)

Note that from (11), the probability of trade is increasing in m. Therefore, we expect

transactions to occur at a faster pace initially, with the process of negotiations slowing down

as it goes along. Similarly, note that both the set of states in which there is delay and the

probability of delay in states below the threshold are increasing in the size of the coalition

required to win. This corresponds well to the intuition that more stringent supermajority

requirements are costly because they induce delay.

Remark 1. The expected time for completion increases with the stringency of the q-rule. �

The previous discussion fully characterizes equilibria of the game in which agents have all

the bargaining power up to the precise determination of the threshold m. This threshold, in

turn, is pinned down uniquely for given parameters by (10). We are interested in particular in

equilibrium for large v, where the collective hold-up problem is severe. The next proposition

summarizes our discussion focusing on this case.

Proposition 4.3. Consider the game with φ = 0 and z = w > 0. Suppose v ≥ (1−δ)
δ
nw ≡ v.

Then there is an (essentially) unique equilibrium with trading at m = 1 and delay in all

m : 2 ≤ m ≤ q, given by (11).13

Agents’ payoffs are

wA(q) =

(
q−1∏
j=2

w

w + β(j)v

)
δw, and lim

v→∞
wA(q) = 0

As Proposition 4.3 shows, when the collective hold-up problem is severe, there is delay in

all but the critical state m = 1. Moreover, delay is increasing in v. This poses a tradeoff for

agents’ welfare: a larger v increases the total surplus from transacting, but also leads to larger

delay. As the proposition shows, in equilibrium the larger delay more than compensates for

the increase in total surplus and leads to a loss of welfare for the agents. Proposition 4.3

13We say that the equilibrium is essentially unique because any pair (γ̂mα̂m) such that λ̂m = γ̂mα̂m satisfies
(11) is an equilibrium. What matters for equilibrium is the expectation of delay, and not whether this occurs
because of a lower probability that the agent makes a proposal, γ̂m or a lower probability that the principal
accepts this offer, α̂m.
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thus has the direct implication that when the principal’s valuation for winning is sufficiently

large, if able to choose, agents would prefer the situation in which the principal has full

bargaining power to that in which the agents have full bargaining power.

Corollary 4.4. For v sufficiently large, agents are better off when the principal has full bar-

gaining power than when agents have full bargaining power: wP (q) > wA(q).

We should point out that the result above (Corollary 4.4) does not hold under unanimity,

which is the classic railroad-farmers example considered by Coase (see Cai (2000), Olken

and Barron (2009), Chowdhury and Sengupta (2012)). With unanimity, all the analysis

of the game in which agents have full bargaining power remains unchanged, and results

are essentially unaltered. While the analysis of the game in which the principal has full

bargaining power also remains unchanged, agents’ equilibrium payoffs in this case are zero,

wPun(q) = 0. To see this, note that with q = n, β(1) = 1, so in the critical state the

agent cannot free ride on others. Thus w(1) = δw(1), which implies w(1) = 0. But then,

recursively, w(m) = 0 for all m∈M . Since wAun(n) approaches 0 as v →∞ but doesn’t attain

zero, with unanimity, wPun(n) < wAun(n).

To sum up our analysis so far, we have shown that when principal and agents interact

sequentially with bilateral binding agreements and agents are the only ones making offers,

a collective hold-up problem emerges, which gives agents incentives not to trade with the

principal. When the potential rent extraction is too tempting, the incentives to hold out

generate delay in equilibrium, reducing agents’ welfare. In this situation, agents are better

off structuring negotiations so that the principal has sole bargaining power.

5. Main Results

In the previous section we studied how outcomes and welfare change in the two polar cases

in which either the principal or the agents have full bargaining power in bilateral meetings.

These extreme allocations of bargaining power are useful as a benchmark, but often unreal-

istic. Moreover, the extreme allocations of bargaining power are special in the sense that one

side extracts the entire surplus generated by the transaction, while in general principal and

agent both benefit from the exchange. This implies that in general the system of difference

equations characterizing equilibrium payoffs can not be decoupled as we have done in the

previous sections.
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To tackle this problem more generally, we introduce counteroffers in a way that allows us to

vary smoothly the power of agents: we assume that with probability φ ∈ (0, 1) the principal

makes an offer to the selected agent, and with probability 1− φ the agent makes an offer to

the principal. Note that this is formally equivalent to nesting an infinite horizon bilateral

bargaining in our game, where one of the sides decides whether to enter in negotiations or

not, and in any period of the negotiation phase after a proposal is rejected the principal

(agent) makes offers with probability φ (respectively, 1−φ). In fact, in any meeting between

the principal and an agent in a state m∈M , both games give the principal a value φs(m),

and the agent a value (1 − φ)s(m), conditional on trading. We also allow the payoffs of

committed and uncommitted agents upon completion to be different. In particular, we allow

arbitrary z ∈ R+ and w ∈ R, as in the applications we described.14

5.1. Preliminaries. We begin by establishing some key properties of equilibrium payoffs.

Recall that λ̂m ≡ γ̂mα̂m and λm ≡ γmαm denote the probability of trade when the agents

propose and when the principal proposes, respectively, and let µm ≡ φλm+(1−φ)λ̂m denote

the ex ante probability of trade in state m.

Consider the value of the principal in state m, v(m). With probability φλm, the principal

has agenda setting power and makes an offer that is accepted by the agent, getting a payoff

δv(m − 1) − p(m). With probability 1 − φλm either there is no transaction in m or there

is a transaction following a proposal by the agent, and the principal obtains a discounted

continuation value δv(m). Thus

v(m) = φλm (δv(m− 1)− p(m)) + (1− φλm)δv(m).

Using (1), and subtracing φλmδv(m) on both sides, we have

(12) v(m) =

(
δ

1− δ

)
φs+(m),

where s+(m) = max{s(m), 0}. Equation (12) says that the value of the principal in state m

is proportional to the surplus in state m whenever this is positive, and zero otherwise. The

expression eliminates the dependency on the probability of trade λm using the fact that if

s(m) > 0 then λm = 1, if s(m) < 0 then λm = 0, and that s(m) = 0 when λm ∈ (0, 1). A

key implication of (12) is that the principal’s equilibrium payoff in state m is proportional

to the surplus s(m) by a factor that increases with the principal’s nominal bargaining power

φ. Because delay can only occur in equilibrium if s(m) = 0, this means that if there is delay

in state m in equilibrium, then v(m) = 0.

14In Section 5.3 we consider the case of z ≤ 0. We show that in this case there is a breakdown of negotiations.
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Consider instead the value of an uncommitted agent i in state m, w(m), recalling that

β(m) ≡ 1/(n + m − q) denotes the probability that agent i meets the principal. With

probability β(m)(1 − φ)λ̂m, agent i meets the principal, has agenda setting power, and

makes an offer b(m) (which is accepted), leading to a payoff δwout(m − 1) + b(m). With

probability (1− β(m))µm another agent j 6= i meets the principal, and the meeting results

in a transaction, leading to a payoff δw(m − 1) for player i. In all other cases (i meets the

principal but either the principal has agenda setting power or the transactions falls through,

or some other agent j 6= i meets the principal but the transaction falls through), agent i gets

a continuation payoff δw(m):

w(m) = β(m)(1− φ)λ̂m [δwout(m− 1) + b(m)] + (1− β(m))µmδw(m− 1)

+
[
β(m)[φ+ (1− φ)(1− λ̂m)] + (1− β(m)) (1− µm)

]
δw(m)

Using (5) for the transfer b(m) and simplifying, we have that for all m ≥ 2,15

(13) w(m) =

[
δβ(m)

1− δβ(m)

]
(1− φ)s+(m) +

[
1 +

(
1− δ

1− β(m)

)
1

δµm

]−1
w(m− 1).

The agent’s equilibrium payoff in statem has two components. The first is proportional to the

surplus s(m) whenever this is positive, by a factor that increases with the agents’ bargaining

power 1−φ. Differently to the principal’s value, the agent’s value w(m) is positive even when

s(m) = 0, with the second component being a positive fraction (increasing in the probability

of trade in state m, µm) of the state m− 1 value w(m− 1).

The value of a committed agent, instead, only depends on the probability that the process

moves forward or not: if there is a transaction (with probability µm) the committed agent

gets a continuation payoff δwout(m − 1), and otherwise gets δwout(m). Solving recursively,

we obtain

(14) wout(m) =

[
m∏
k=1

(
δµk

1− δ(1− µk)

)]
z

We can now prove our first result of this section. We show that equilibrium exists, and

is unique up to the probability of trade µ. Moreover, we show that in equilibrium trade

never collapses, in the sense that in all non-terminal states m ∈ M , the principal transacts

with an agent with positive probability; i.e., µm > 0 for all m ≤ q. We also characterize

15As before, we have used the fact that if s(m) > 0 then λ̂m = µm = 1, if s(m) < 0 then λ̂m = µm = 0, and
that s(m) = 0 when µm ∈ (0, 1).
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the probability of trade in each state m ≤ q as a function of continuation values wout(m −
1), v(m− 1) and w(m− 1). For any m ≥ 1, let Γ(m) ≡ w(m)/(v(m) + wout(m)). Then

Proposition 5.1. There exists an essentially unique equilibrium, characterized by trade prob-

abilities

(15) µm = min

{
1,

(
1− δ
δ

)(
1

1− β(m)

)(
1

Γ(m− 1)− 1

)}
> 0 ∀m ∈M.

To see the logic for this result, note first that with v, z > 0, a critical meeting (m = 1)

must have trade with positive probability (Lemma A.2), and thus v(1) + wout(1) > 0. Now

suppose that for all k < m there are transactions with positive probability, and take the

implied continuation values wout(m − 1), v(m − 1) and w(m − 1) as given. Note that since

µk > 0 for all k < m, then wout(m − 1) > 0 and v(m − 1) > 0. Thus inaction at m is not

an equilibrium, for then v(m) = w(m) = 0 and s(m) = v(m− 1) + wout(m− 1) > 0, giving

principal and agent an incentive to trade. We then show that the “one-shot” game in state

m has a unique SPE, which has no delay if Γ(m− 1) is sufficiently small, and otherwise has

delay with positive probability.16 The result then follows by induction.

5.2. Bargaining Power and Equilibrium Outcomes. We now turn to our main goal of

studying how the allocation of bargaining power among principal and agents affects delay

and agents’ welfare. A natural starting point is to study the conditions under which the

equilibrium involves no delay. To do this, we begin by characterizing agents’ equilibrium

payoffs in a FTE as a function of primitives. We then use the characterization of FTE

payoffs w†(m) to obtain a necessary and sufficient condition for no delay in equilibrium.

Differently to the polar cases we analyzed before, the fact that here both principal and

agents make proposals with positive probability means that principal and agents can mu-

tually extract rents from one another. This implies that the system of difference equations

characterizing equilibrium payoffs can not be decoupled as in Section 4.1, where we could

solve for agents’ values independently, use these values to express transfers as a function of

primitives, and then solve for the principal’s equilibrium payoffs. To tackle this difficulty,

in the proof we use a transformation to express the system of difference equations as a sec-

ond order difference equation, which we then solve. Proposition 5.2 is in fact a corollary

16The ratio of w(m − 1) to wout(m − 1) + v(m − 1) is relevant for delay because both v(m) and the first
component of w(m) vanish with s(m) = 0. This means that for any given value of wout(m− 1) + v(m− 1),
we can only have s(m) = 0 for some µm ∈ (0, 1) if w(m− 1) (the only source of positive value for the agents
when s(m) = 0) is large enough so that w(m) = wout(m− 1) + v(m− 1) for such µm ∈ (0, 1).



COLLECTIVE HOLD-UP 19

of Lemma A.3 in the Appendix, where we solve the agents’ value function for any trade

probabilities ~µ.

Proposition 5.2. In a FTE of the subgame starting at m ≤ q, w(m) = w†(m), where letting

θkm ≡
∏m

j=k

(
δφ

1−δ+δφ(1−β(j))

)
, for any m ≤ q, w†(m) is given by

(16)
w†(m)

β(m)
≡ θ1m(n− q)w +

m∑
k=1

1− δ
δ

1− φ
φ

θkmδ
k (v + kz + (n− q)w)

and

v†(m) =

(
δφ

1− δ(1− φ)

)m
v −

(
m∑
r=1

(
δφ

1− δ(1− φ)

)r)
(w†(m)− δm−1z)

The FTE value w†(m) is increasing in the terminal payoffs of the principal v, as well as

committed and uncommitted agents, (z, w). Establishing the effect of φ on w†(m) from (16)

is more involved because for any m > 1, increasing φ has two distinct effects on w†(m). On

the one hand, reducing φ directly increases the fraction of the surplus that the agent trading

with the principal in m can obtain. On the other hand, precisely because of this direct effect,

reducing φ reduces the principal’s value in earlier states, and thus the surplus available in

states m′ > m. However, we can show that w†(m) is in fact decreasing in φ whenever the

equilibrium of the m-subgame is a FTE. Note that from (12), v(m) =
(

δ
1−δ

)
φs+(m). Since

in a FTE the surplus s(m) does not change with φ, it follows that v†(m) is increasing in φ.

Now, total welfare in state m is

J(m) ≡ v(m) + (n− q +m)w(m) + (q −m)wout(m)

Since in a FTE both J(m) and wout(m) are constant on φ, it follows that

v†(m;φ)− v†(m;φ′) = −(n− q +m)[w†(m;φ)− w†(m;φ′)]

and thus w†(m) is decreasing in φ whenever the equilibrium of the m-subgame is a FTE.

Using the characterization of FTE payoffs w†(m), we obtain a necessary and sufficient con-

dition for no delay in equilibrium. Moreover, we show that for large v (when the hold-up

problem has bite), the unique equilibrium of any m-subgame is efficient if the principal has

sufficient bargaining power, but exhibits delay if the agents have sufficient bargaining power.

Here and in the rest of the paper, we write the statement “for v large, [A] is true” to mean

that for fixed parameters other than v, there exists a v > 0 such that if v ≥ v, [A] is true.
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Proposition 5.3 (No Delay). (i) There exists a FTE in the subgame starting in state m′, with

agents’ equilibrium payoffs w†(m′) iff

(17) T †(m) ≡ w†(m)

β(m)
− δm (v +mz + (n− q)w) ≤ 0 ∀m ≤ m′.

Moreover, for large v the following is true: for any m ≤ q, (ii) there exists φ(m) ∈ (0, 1)

such that if φ > φ(m), the unique MPE of the m-subgame is a FTE, and (iii) there exists

φ(m) ∈ (0, 1) such that if φ < φ(m), the unique MPE of the m-subgame entails delay.

Part (ii) of the proposition generalizes the result of Proposition 4.1, which showed that the

unique equilibrium with w = z and φ = 1 is a FTE. This is true as long as the principal has

enough bargaining power, for any z ∈ R+ and w ∈ R.

When instead the agents have enough bargaining power, the equilibrium involves delay. In

fact, part (iii) of the proposition says that for any m∈M \{1} there is a sufficiently low φ

such that the unique MPE of the m-subgame entails delay. Taking the intersection of these

conditions, this implies that there is a φ low enough for which there is delay in all but the

critical state, as in Proposition 4.3 of the benchmark model.

Proposition 5.3 indicates when we can expect delay along the bargaining process, but is

silent about the features of expected delay. We could have cycles of trade, as in Jehiel and

Moldovanu (1995a), or the probability of trade could be monotonic, as it is the case for all

m ≥ 2 in Proposition 4.3. We could have delay at the beginning of the bargaining process,

at the end, or in some interior subset of states. Our next result sheds some light on the

first of these questions. We show that in any equilibrium in which there is delay in states

{m, . . . ,m}, for any state m ≥ m + 1, the probability of trade is monotonic. In particular,

we show that the probability of trade grows with m at a rate equal to β(m), independent of

the allocation of bargaining power φ, the discount factor δ, or the valuations v, w and z.

Lemma 5.4. Suppose in equilibrium µm ∈ (0, 1) for all m ∈ {m, . . . ,m}. Then

µm+1 − µm
µm

= β(m) ∀m ∈ {m+ 1, . . . ,m− 1},

and thus in particular µm+1 > µm for all m ∈ {m+ 1, . . . ,m− 1}.

As we saw in Proposition 5.3, when agents have enough bargaining power, there is delay

in all states m ≥ 2. In this case the previous lemma characterizes equilibrium completely,

with the exception of the rate of delay at m = 2. Delay at m = 2, in turn, is given by the



COLLECTIVE HOLD-UP 21

expression 0 = s(2) = v(1) + δz − w(2), or using (13) with s(2) = 0, δµ2(
1−δ

1−β(2)

)
+ δµ2

 =
v(1) + δz

w(1)
.

Since in equilibrium with large v there is full trading in m = 1, it is easy to compute v(1)

and w(1) and show that 0 < ∂v(1)
∂v

< ∂w(1)
∂v

, so that µ2 (and then all µk) is decreasing in v,

and goes to zero as v →∞.17

Lemma 5.4 pins down the growth rate of the probability of trade in any equilibrium in which

delay occurs in a connected set of states {m, . . . ,m}. Our next result assures that for large

v, all equilibria with delay have this property. In fact, we show that if in equilibrium there

is delay in a state m′ < q, then there is delay in all m > m′. Thus, for large v, delay is

frontloaded.

Lemma 5.5. For large v, µm′ ∈ (0, 1) for m′ < q ⇒ µm ∈ (0, 1) ∀m > m′.

The proof of Lemma 5.5 involves three steps:

(1) First, in Lemma A.3, we characterize agents’ payoffs in each state m as a function

of primitives, for any given probability of trade in each state in the continuation,

(µ1, . . . , µm−1).

(2) Using this result, in Lemma A.4 we provide a necessary and sufficient condition for

full trade in any state m for an arbitrary probability of trade of the m− 1 subgame.

In particular, we obtain an expression T (m) which generalizes T †(m) in Proposition

5.3, and show that s(m) ≥ (≤)0 given µm ∈ [0, 1] if and only if T (m) ≤ (≥)0.

(3) In the proof of Lemma 5.5 we then show that for large v, T (m) ≤ 0⇒ T (m−1) < 0.

Using Lemmas 5.4 and 5.5 (together with uniqueness of equilibrium outcomes, Proposition

5.1), we provide a complete characterization of equilibria for large v.

Theorem 5.6 (Characterization for large v). For any φ ∈ [0, 1] there exists a unique cutpoint

m(φ) ∈M such that, in equilibrium, there is delay in each state m∈M s.t. m > m(φ), and

17Note also that for large v and small φ, w(1) > 0 even if w < 0. Since delay at q and q − 1 implies that
w(q) = wout(q − 1), by (14) in this equilibrium w(q) is decreasing in v, and w(q)→ 0 as v →∞. �
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full trading in any m ≤ m(φ). The cutpoint m(·) is weakly increasing in φ and has range

M . Moreover, for any m > m(φ) + 1,

µm =

(
n+m− q

n+m+ 1− q

)(
1− δ
δ

)(
δmz

(1− β(m+ 1))(w†(m)− δmz) + β(m+ 1)(v†(m))

)
is decreasing in v and goes to zero as v → +∞.

Theorem 5.6 unifies our previous results when the collective hold-up problem is severe. For

a given allocation of bargaining power φ inducing delay, delay is front-loaded, in the sense

that it happens in the first q −m transactions. In the first q −m −1 of these transactions,

the expected delay for each transaction increases as we move further along the process. But

once the principal obtains the support of q − m agents, the remaining transactions occur

without delay.

The number of transactions with positive expected delay is decreasing in φ and increasing

in q, so that giving more power to the agents or raising the number of agents needed for

success increases the number of states in which transactions fail with positive probability.

Moreover, for any given φ for which there is delay in more than one state, expected delay

grows continuously with v and in the limit with v → ∞, the expected time for completion

goes to infinity.
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Figure 1. Trade probability, equilibrium payoffs, surplus in an example (v = 300, z =
w = 30, δ = 0.95, n = 51, q = 26, φ = 0.2.)

Using (13) we can express the equilibrium payoff of an uncommitted agent as

w(q) =

[
q∏

k=m+1

(
1 +

(
1− δ

1− β(k)

)
1

δµk

)−1]
w†(m)
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Thus, for large enough v, any φ such that m(φ) ≤ q−2 leads to lower equilibrium payoffs for

agents than giving complete bargaining power to the principal, φ = 1. In turn, since w†(q)

is decreasing in φ when a FTE exists, agents prefer the smallest φ such that a FTE exists

to φ = 1. It follows that for large enough v, agents prefer φ such that either m(φ) = q − 1

or m(φ) = q, granting considerable bargaining power to the principal.

Remark 2 (Low v). Most of our results apply generically, for all values of v. In particular,

there is still trade with positive probability in all states, the equilibrium exists and is still

essentially unique, the characterization of values is unchanged, as is the condition for no

delay, and the growth of the probability of trade in contiguous states. The result that holds

for large v but does not hold in general is Lemma 5.5, which says that if there is delay in a

state m′∈M there is delay in any state m > m′. In fact, we have constructed examples in

which, for low v, there is delay in an intermediate set of states D = {d, . . . , d}, with d > 1

and d < q. This complements the results of Lemma 4.2 in Section 4, which showed that

when agents have full bargaining power there is delay in all but the critical state for high v,

but for low v, delay is backloaded. �

Remark 3 (Equilibrium for δ → 1). In Theorem 5.6, we characterized equilibrium outcomes

for fixed δ < 1, and sufficiently large v. A natural question is how does equilibrium behave

for fixed v as frictions vanish. From the expression for the trading probability µm in the

theorem one might be tempted to conclude that as δ → 1, the probability of trade goes to

zero, so negotiations slow down almost to a halt. This would be incorrect. In fact, making

the dependence of each m(φ) on δ explicit, as long as z ≥ w, mδ(φ)→ q as δ → 1. Thus for

any given φ ∈ (0, 1] and v > 0 there is a δ > 0 such that if δ ≥ δ, the unique equilibrium is

a FTE. Note that from Proposition 5.2, for any m ∈M ,

lim
δ→1

w†(m) = β(m)

[
m∏
j=1

(
1

1− β(j)

)]
(n− q)w = w,

and

lim
δ→1

v†(m) = v −m(w†(m)− z) = v +m(z − w).

Thus, from proposition 5.3, the condition for existence of a FTE boils down to

v ≥ −m(z − w) ∀m ∈M.

Consider the critical state m = 1. Note that p(1) = −[z − w(1)] = −(z − w), so that when

the principal can make an offer, she keeps v and can extract the differential z −w > 0. But
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even when the agent proposes, he gets b(1) = v− v(1) = −(z−w) = p(1). Thus, the critical

agent cannot extract δv from the principal, and there are no incentives to hold out, and no

collective hold-up problem. The result is due to simple economics. When both principal

and agents do not discount the future, both principal and agents are willing to wait to get a

better deal, but the principal is a monopolist, while the agent faces competition from other

agents. This means that the critical agent cannot extract any surplus from the principal.

Because agents are willing to wait, all agents are guaranteed w. But the principal, being

the short side of the market, gets the differential z − w entirely. And once this happens in

m = 1, then by the same logic b(m)=p(m) = −(z − w) for all m∈M , and thus w†(m) = w

and v†(m) = v +m(z − w), independently of φ, provided that φ > 0. �

5.3. Breakdown of Negotiations. Up to this point, we maintained the assumption that

in the event the principal obtains the support of q agents, an agent who committed his

support to the principal obtains a positive payoff z > 0. In some applications, however, it is

reasonable to assume that z = 0 (e.g., corporate takeovers) or even z < 0 (e.g., vote buying

with audience costs). Here we consider the case z ≤ 0.

Consider for example a dynamic version of corporate takeovers model of Grossman and Hart

(1980) (GH). GH analyze a problem in which a company (the raider) acquires shares of a

target company to control its board of directors. It is assumed that the raider can improve

the value of the company. To capture this feature, we assume that under the raider’s control,

the value of a share is w > 0, and we normalize the value of a share under the incumbent

management to zero. We distinguish the payoff that a shareholder obtains when the raider

wins if the shareholder does not sell to the raider (w > 0) from the payoff he obtains if he

does sell to the raider (z = 0).18

We show that whenever there are positive externalities on uncommitted agents (w > 0), the

condition z > 0 is necessary for robust delay. In particular, we show that when contracting

with the principal leads to a negative payoff for the agent when the principal wins, in

equilibrium there can only be delay in the initial state m = q, a result which holds for a

“small” (but not measure zero) set of parameter values. With this exception, equilibrium is

either a FTE or is such that there are no transactions in the initial state and thus w(q) = 0.

The result follows from Proposition 5.7 below. In it we establish two results. First we show

that if z ≤ 0 < w, there cannot be cycles of trade with probability one and trade failure

18As in GH and Segal (2003), we assume that shareholders are homogeneous. Unlike GH, we suppose that
shareholders are fully aware of the effect of their action on the outcome of the raid attempt.
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with positive probability; in fact, if in equilibrium there is trade with probability one in a

state m′, then this also has to be the case in all states m < m′. The second part of the

proposition establishes that there cannot be delay in two contiguous states m and m + 1.

Together, the two results imply that with the exception of possibly mixing in the initial

state, the equilibrium is either a FTE, involves no transactions in any state, or has a FTE

in a m′-subgame off the equilibrium path for some m′ < q, with no trade for m > m′, which

implies that the process of transactions never starts.

Proposition 5.7. Suppose z ≤ 0 < w. Then (i) s(m− 1) ≤ 0⇒ s(m) ≤ 0. Moreover, (ii) if

s(m′) ≤ 0 for some m′ < q, then µm = 0 for all m > m′ and w(q) = v(q) = 0.

Why no delay in contiguous states? Suppose there is delay in m′ in equilibrium. Since

s(m′+1) ≤ 0, either trade collapses in m′+1 or again there is delay. If there is delay in both

m′ and m′+1, v(m′) = v(m′+1) = 0, so s(m′+1) = 0 if and only if w(m′+1) = wout(m
′). But

w(m′ + 1) ≥ 0, while wout(m
′) =

[∏m′

k=1

(
δµk

1−δ(1−µk)

)]
z < 0, so this is impossible. With no

possible payments from the principal, all incentives to trade have to come from diminishing

the value of holding out through delay. But delay can only lower the value of not trading,

and thus by itself is insufficient to induce agents to trade when z ≤ 0.

The next proposition provides a necessary and sufficient condition for the emergence of delay

with z ≤ 0. To do this, we first show – using a similar argument as in the proof of uniqueness

in the benchmark model with φ = 1 – that if there exists a FTE, this is the unique MPE. We

then provide a necessary and sufficient conditions for existence of a FTE. The second part of

the proposition follows as a corollary of previous results. Indeed, we know from Proposition

5.7 that when z ≤ 0, s(m) > 0⇒ s(m− 1) > 0. Thus, a necessary and sufficient condition

for a FTE is that at the FTE profile, s(q) > 0. From Proposition 5.3, this is if and only if

the condition in (17) holds for m = q.

Proposition 5.8. Suppose z ≤ 0 < w. There exists a FTE iff

(18) w†(q) ≤ δq

n
(v + qz + (n− q)w) ,

and in this case this equilibrium is unique.

From Proposition 5.7 we know that if (18) doesn’t hold there are two possibilities: either

trade stops at some m < q and then w(q) = v(q) = 0, or there is a FTE in the (q − 1)-

subgame and delay in the initial state q. The first case holds if condition (17) does not hold
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for (q − 1), and the latter in the intermediate case in which (17) holds for q − 1 but not for

q. This completely characterizes equilibria with z ≤ 0.

Note that it is efficient to form a coalition in support of the project iff v+ qz+ (n− q)w ≥ 0.

We know from Proposition 5.3 that for large v, there is a φ < 1 such that if φ > φ, the

unique MPE of the m-subgame is a FTE. So here the coalition should form, and it does form

in equilibrium for high φ. In general, however, outcomes are not efficient. In fact, we know

from the same proposition that for large v there exists φ ∈ (0, 1) such that if φ < φ a FTE

does not exist, even when this would be efficient.

The main point of the GH paper is that externalities across shareholders can prevent

takeovers that add value to the company. The idea is that since shareholders that do not sell

can capture the increase in value brought by the raider, no shareholder will tender his shares

at a price that would allow the raider to profit from the takeover. GH work with a static

model, and assume that shareholders ignore the impact of their actions on the outcome of

the bid. In our version of the GH model – where the principal buys shares one at a time and

shareholders are fully forward looking and strategic – efficient takeovers are not prevented

by externalities when δ < 1 as long as the raider has enough nominal bargaining power.19

But when agents do have enough bargaining power, efficient takeovers can fail to occur due

to the collective hold-up problem: with z ≤ 0 the collective hold-up problem still exists, but

leads not to delay but to breakdown of negotiations.

6. Conclusion

In this paper, we consider a dynamic process of coalition formation in which a principal bar-

gains sequentially with a group of agents. We study how institutional changes affecting the

allocation of bargaining power between principal and agents affect the distribution of rents

and the efficiency of collective decisions. We give a complete characterization of equilib-

rium outcomes when the principal’s willingness to pay is high. We show that redistributing

bargaining power from the principal to the agents generates delay and reduces agents’ wel-

fare, even in the absence of informational asymmetries or discriminatory offers, and even

with negative externalities on uncommitted agents. Concentrating bargaining power on the

19Holmstrom and Nalebuff (1992) show that when shareholdings are divisible the free-riding problem does
not prevent the takeover process in the GH model. In our model with φ = 1, the raider’s profit goes to
zero as δ → 1. Thus, with fixed costs, efficient raids would be prevented in the limit. This result is similar
to that of Harrington and Prokop (1993), who consider a dynamic version of GH in which the raider can
re-approach the shareholders who have not sold (taking all offers at the posted price in each period).
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principal, instead, leads to efficient collective decision-making and, for any non-unanimous

decision rule, does not lead to complete rent extraction by the principal.

Our results have implications for a number of diverse applications in economics and politics,

including lobbying, exclusive deals, start-ups, endorsements and corruption. While the model

abstracts away from some of the details pertinent to each application, the results shed light

on a common idea behind these apparently diverse problems: bargaining institutions that

decentralize power to agents can be detrimental to agents’ welfare by making the coalition

formation process inefficient.

The source of the inefficiency has two parts. The first is a form of the traditional hold-

up problem: when agents have significant bargaining power relative to the principal, the

principal anticipates that agents trading late in the process will extract a large fraction of

the surplus, and as a result is not willing to pay much to agents trading early on. This

is similar to Blanchard and Kremer (1997) and Olken and Barron (2009), where sequential

bargaining under unanimity leads to increasing prices. The point we make here, however,

is that given this hold-up problem, competition among agents leads to delay if and only if

agents have too much bargaining power. This is what we call a collective hold-up problem.

The collective hold-up problem emerges in our model in the absence of discriminatory con-

tracts or asymmetric equilibria, and do not require a particular form of externalities on

uncommitted agents (non-traders). While we do not allow the principal to bargain with

multiple agents simultaneously, we can show that this is not crucial for our results. In fact

it is sufficient to assume that the principal cannot contract with q agents at once. Other

extensions of the model are more challenging. In particular, our model does not allow for

more general payoff structures in which payoffs depend on the size of the coalition that sup-

ports the principal, and can accrue before the coalition is formed. For example, in industries

in which new technologies have a component of learning by doing, earlier sales affect later

payoffs. Here the incentives to hold out compete with the benefits of joining early. This

presents an interesting problem, where the principal may optimally front payments and sell

at a loss. In that sense, collective hold-up may manifest itself in delayed learning. We leave

this problem for future work.
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Appendix A. Proofs

We begin with an observation and a lemma which will be useful later.

Remark A.1. In section 5.1 we showed that

w(m) =

[
δβ(m)

1− δβ(m)

]
(1− φ)s+(m) +

[
1 +

(
1− δ

1− β(m)

)
1

δµm

]−1
w(m− 1). (eq.13)

Using (13), we can express the current value for an uncommitted agent as a function of the

final payoff w and the sequence of surpluses [sk] for k ≤ m:

(19) w(m) = (1− φ)
m∑
k=1

(
β(k)

1− β(k)

)
ekms

+(k) + e1mw ∀m ≥ 1,

where we have defined

ekm ≡

[
m∏
j=k

(
1 +

(
1− δ

1− β(j)

)
1

δµj

)]−1

Lemma A.2 (Equilibrium Trade in state m = 1). The equilibrium probability of trade in state

m = 1 obeys the following characterization:

(1) If v + z ≤ 0, µ1 = 0 (no trade at m = 1),

(2) If 0 < v + z < δ
(

n−q
n−q+(1−δ)

)
w, µ1 ∈ (0, 1) (probabilistic trade at m = 1),

(3) If v + z ≥ δ
(

n−q
n−q+(1−δ)

)
w, µ1 = 1 (trade w.p. 1 at m = 1).

Proof of Lemma A.2. Fix a MPE σ. Since the principal only makes an offer if s(m) ≥ 0,

(12) implies v(m) ≥ 0 for all m, and in particular v(1) ≥ 0. Similarly, since the agent only

makes an offer if s(m) ≥ 0, if s(m) < 0 then λ̂m = 0. Therefore (19) implies w(m) ≥ 0, and

in particular w(1) ≥ 0. Since s(1) = v + z − v(1)−w(1), w(1), v(1) ≥ 0 imply s(1) ≤ v + z.

It follows that if v + z < 0 then s(1) < 0 and there is no trade in equilibrium at m = 1.

Now suppose v + z = 0. Then s(1) = −[v(1) + w(1)]. If µ1 > 0, then v(1), w(1) > 0, and

thus s(1) < 0, which implies µ1 = 0, a contradiction. Thus µ1 = 0 and v(1) = w(1) = 0. It

follows that if v + z ≤ 0, in equilibrium there is no trade in state m = 1.

Now suppose v + z > 0. If µ1 = 0 (no trade), then v(1) = w(1) = 0 and s(1) > 0, which

implies λ1 > 0, a contradiction. Suppose µ1 = 1. Then (12) gives v(1) = δ
1−δφs(1) and (19)
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gives

w(1) =
δ(1− φ)β(1)

(1− δβ(1))
s(1) +

δ(1− β(1))

(1− δβ(1))
w

Substituting,

s(1)

[
1 +

δφ

1− δ
+

δ(1− φ)

(1− δβ(1))
β(1)

]
= v + z − δ(1− β(1))

(1− δβ(1))
w

Thus s(1) ≥ 0, consistent with equilibrium, iff

v + z ≥ δ(1− β(1))

(1− δβ(1))
w

If instead

(20) 0 < v + z ≤ δ(1− β(1))

(1− δβ(1))
w = δ

(
n− q

n− q + (1− δ)

)
w

we have µ1 ∈ (0, 1). Note that with s(1) = 0, (12) implies v(1) = 0, and (19) implies that

(21) w(1) =

 δµ1(
1−δ

1−β(1)

)
+ δµ1

w

Substituting in (2), the equilibrium probability of trade is given by

(22) µ1 =

(
1− δ
δ

)
1

1− β(1)

(
v + z

w − (v + z)

)
Note that the RHS of (22) ∈ (0, 1) iff (20) holds. �

Proof of Proposition 5.1. Fix an equilibrium in the subgame starting in state m − 1. This

produces continuation values ṽ(m− 1), w̃(m− 1) and w̃out(m− 1). Given these continuation

values, let v(m;µm) and w(m;µm) denote the values of the principal and uncommited agent

in state m when transaction probability µm, and let s(m;µm) denote the surplus in state m

when transaction probability µm.

From (12) and (13), v(m; 0) = w(m; 0) = 0. Thus s(m; 0) ≡ [ṽ(m−1)−v(m; 0)]+ [w̃out(m−
1) − w(m; 0)] = ṽ(m − 1) + w̃out(m − 1). It follows that if ṽ(m − 1) + w̃out(m − 1) ≥ 0,

inaction at m is not an equilibrium. But note that ṽ(m− 1) ≥ 0, and by (14), if z > 0 and

µk > 0 for all k < m, then wout(m) =
[∏m

k=1

(
δµk

1−δ(1−µk)

)]
z > 0. Thus µm = 0 is not part of

an equilibrium if µk > 0 for all k < m.
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Suppose µm = 1. Using the expression for the principal’s value (12) and the expression for

the uncommitted agent’s value (13) in the definition of the surplus (2), we have

s(m)

[
1 +

δ

1− δ
φ+

(
δ

1−δ

)
β(m)(1− φ)(

1 +
(

δ
1−δ

)
(1− β(m))

)] = w̃out(m−1)+ṽ(m−1)− 1[
1 +

(
1−δ
δ

) (
1

1−β(m)

)]w̃(m−1)

Equilibrium requires that s(m) > 0. From the previous expression, s(m) > 0 iff

(23) 1 +

(
1− δ
δ

)(
1

1− β(m)

)
>

w̃(m− 1)

w̃out(m− 1) + ṽ(m− 1)
.

Next, suppose µm ∈ (0, 1). Equilibrium then requires s(m) = 0, which in turn implies

v(m) = 0 and then w(m) = ṽ(m− 1) + w̃out(m− 1). Also with s(m) = 0, (13) gives

w(m) =

 δµm(
1−δ

1−β(m)

)
+ δµm

 w̃(m− 1)

Substituting in w(m) = ṽ(m− 1) + w̃out(m− 1), and then solving for µm gives

(24) µm =

(
1− δ
δ

)(
1

1− β(m)

)(
ṽ(m− 1) + w̃out(m− 1)

w̃(m− 1)− (ṽ(m− 1) + w̃out(m− 1))

)
,

which is the statement in the proposition. This is less than one iff (23) doesn’t hold.

We have shown that if µk > 0 for all k < m, equilibrium play in state m is uniquely

determined, and is either µm = 1 if (23) holds or µm ∈ (0, 1) given in (24) if (23) doesn’t

hold. Finally note that by Lemma A.2, if v, z > 0 then µ1 > 0. An induction argument then

completes the proof. �

Proof of Proposition 5.2. Follows from Lemma A.3 below, making µj = 1 for all j ∈M .

�

Lemma A.3. Let θkm ≡
∏m

j=k

(
δφµj

1−δ+δµjφ(1−β(j))

)
. In a MPE with trade probabilities µ, the

agents’ equilibrium payoff in each state m∈M is given by

(25)

w(m)

β(m)
= θ1m(n− q)w +

m∑
k=1

θkm

(
1− φ
φ

)(
1− δ
δ

)
1

µk

 k∏
j=1

δµj
1− δ(1− µj)

 (v + kz + (n− q)w)

Proof of Lemma A.3. The value functions of the principal and agents satisfy

(26) v(m) = µm
δ

1− δ
φs(m)

and

(27) w(m) =
δβ(m)(1− φ)µm

1− δ + δ(1− β(m))µm
s(m) +

δ(1− β(m))µm
1− δ + δ(1− β(m))µm

w(m− 1)
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Substituting (26) in the surplus condition (2) and using that 1−β(m)
β(m)

= 1
β(m−1) we have the

system of difference equations:

(1− φ)s(m) =

(
1− δ
δµm

+ 1− β(m)

)
w(m)

β(m)
− w(m− 1)

β(m− 1)
(28)

1− δ + δφµm
1− δ

s(m) = µm−1
δ

1− δ
φs(m− 1) + wout(m− 1)− w(m)

Solving the first equation for s(m) and substituting in the second equation, we transform

the system of first order difference equations into a second order difference equation. Letting

αm ≡ δµm
1−δ(1−µm)

, and defining

(29) H(m) ≡ φ

1− φ
δ

1− δ

[(
1− δ
δφ

+ µm(1− β(m))

)
w(m)

β(m)
− µm

w(m− 1)

β(m− 1)

]
,

we can write this recursion as

H(m) = αmH(m− 1) + αmwout(m− 1) for m : 3 ≤ m ≤ m′(30)

Solving recursively, and using that wout(m) = αmwout(m− 1) we have

H(m) =

(
m∏
j=3

αj

)
H(2) + (m− 2)wout(m)

Therefore, letting τm = 1−δ
1−δ+δµmφ(1−β(m))

for convenience,

w(m)

β(m)
=

1− δ(1− µm)

1− δ
φτmαm

w(m− 1)

β(m− 1)
+ τm(1− φ)

[(
m∏
j=3

αj

)
H(2) + (m− 2)wout(m)

]

The boundary conditions follow by (28) for m = 1, 2 and (29) for H(2), which give

H(2) = α2α1

(
v + 2z +

w

β(0)

)
w(2)

β(2)
= τ2

(
α2

1

τ1
+

δ

1− δ
µ2φ

)
w(1)

β(1)
− α2τ2µ1

δ

1− δ
φ
w

β(0)
+ α2τ2(1− φ)wout(1)

w(1)

β(1)
= τ1φ

[
δ

1− δ
µ1

w

β(0)
+ α1

1− φ
φ

(
v + z +

w

β(0)

)]

Using these initial conditions together with wout(m) =
(∏m

j=1 αj

)
z, we obtain a simple

recursive representation of the value functions

w(m)

β(m)
=

1− δ(1− µm)

1− δ
φτmαm

w(m− 1)

β(m− 1)
+ τm(1− φ)

(
m∏
j=1

αj

)
(v +mz + (n− q)w)(31)
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Solving recursively, we obtain

w(m)

β(m)
=

(
m∏
j=1

αj

)[
m∏
j=1

(
1− δ(1− µj)

1− δ
φτj

)]
(n− q)w(32)

+ (1− φ)

(
m∏
j=1

αj

)
m−1∑
k=1

{[
m∏

j=k+1

(
1− δ(1− µj)

1− δ
φτj

)]
τk (v + kz + (n− q)w)

}

+ τm(1− φ)

(
m∏
j=1

αj

)
(v +mz + (n− q)w) ,

which is equivalent to (25). �

Proof of Proposition 5.3. Part (i) of the Proposition follows immediately from Lemma A.4,

specializing for the case of a FTE. Part (ii) follows from Lemmas A.5 and A.6. �

Lemma A.4. Consider any m ≤ q. For any equilibrium µ1, . . . , µm−1 of the m− 1 subgame,

s(m) ≥ (≤)0 given µm ∈ [0, 1] if and only if

T (m) ≡ w(m)

β(m)
−

(
m∏
j=1

δµj
1− δ(1− µj)

)
(v +mz + (n− q)w) ≤ (≥)0

Proof of Lemma A.4. Using (31) we get that the surplus condition (28) is equivalent to

(28b)

(
δ

1− δ

)
φµms(m) =

(
m∏
j=1

δµj
1− δ(1− µj)

)
(v +mz + (n− q)w)− w(m)

β(m)

Therefore s(m) > (<)0 if and only if(
m∏
j=1

δµj
1− δ(1− µj)

)
(v +mz + (n− q)w) > (<)

w(m)

β(m)

�

Lemma A.5. Consider m ≤ q, and suppose v ≥ m(w − z). Then there is a φ(m) ∈ (0, 1)

such that if φ > φ(m), the unique MPE of the m-subgame is a FTE.

Proof of Lemma A.5. From expression (16),

lim
φ→1

w†(m)

β(m)
=

(
m∏
j=1

δ

1− δβ(j)

)
(n− q)w
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So in the limit T †(m) ≤ 0 iff(
m∏
j=1

δ

1− δβ(j)

)
(n− q)w ≤ δm (v +mz + (n− q)w)

or iff (
m∏
j=1

n+ j − q
n+ j − q − δ

)
≤
(
v +mz + (n− q)w

(n− q)w

)
Expanding the product, the LHS is smaller than n+m−q

n+1−δ−q <
n+m−q
n−q , so it is sufficient that

v ≥ m(w − z). Thus, for large φ, a sufficient condition for a FTE in the m-subgame is

v ≥ q(w − z). �

Lemma A.6. For any m ≤ q, there exists φ(m) ∈ (0, 1) and v(m) > 0 such that if φ < φ(m)

and v > v(m), the unique MPE of the m-subgame entails delay.

Proof of Lemma A.6. From expression (16),

w†(m)

β(m)
=

m∑
j=1

(
m∏
k=j

1
1−δ
δφ

+ 1− β(k)

)
1− δ
δ

(1− φ)

φ
δj (v + jz + (n− q)w)

+

(
m∏
j=1

1
1−δ
δφ

+ 1− β(j)

)
(n− q)w

Note that all terms are positive. Dropping the first m− 2 terms of the summation, and the

last term, we have

w†(m)

β(m)
>

(
δφ

1− δ + δφ(1− β(m− 1))

)(
(1− δ)(1− φ)

1− δ + δφ(1− β(m))

)
δm−1 (v + (m− 1)z + (n− q)w)

+

(
(1− δ)(1− φ)

1− δ + δφ(1− β(m))

)
δm (v +mz + (n− q)w)

So T †(m) ≡ w†(m)
β(m)

− δm (v +mz + (n− q)w) > 0 iff

(
(1− δ)(1− φ)

[1− δβ(m)]

)(
1

1− δ + δφ(1− β(m− 1))

)
(v + (m− 1)z + (n− q)w) ≥ (v +mz + (n− q)w)

Taking derivatives of both sides with respect to v, the LHS increases faster than the RHS iff

φ ≤ (1− δ)δβ(m)

(1− δ) + δ(1− δβ(m))(1− β(m− 1))
≡ φ(m)

It follows that if φ < φ, for v large enough T †(m) > 0. �
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Lemma A.7. Suppose T †(m′) ≤ 0 for all m′ ≤ m (i.e., there exists a FTE in the m-subgame).

Then w†(m′) is decreasing in φ for all m′ ≤ m.

Proof of Lemma A.7. For any m ≤ q, let

Ω(m;φ) ≡ w†(m)

β(m)
= π1m(n− q)w +

m∑
k=1

1− δ
δ

1− φ
φ

πkmδ
k (v + kz + (n− q)w)

Note that

Ω(m;φ) =

(
1− δ
δφ

+ 1− β(m)

)−1 [
Ω(m− 1;φ) +

1− δ
δ

1− φ
φ

δm (v +mz + (n− q)w)

]
Differentiating, and noting that T †(m) ≡ Ω(m;φ)− δm (v +mz + (n− q)w),

∂Ω(m)

∂φ
=

(
1− δ
δφ

+ 1− β(m)

)−1 [
1− δ
δφ2

(Ω(m)− δm (v +mz + (n− q)w)) +
∂Ω(m− 1)

∂φ

]
or equivalently, since T (m) ≡ Ω(m)− δm (v +mz + (n− q)w),

(33)
∂Ω(m;φ)

∂φ
=

(
1− δ
δφ

+ 1− β(m)

)−1 [
1− δ
δφ2

T (m) +
∂Ω(m− 1;φ)

∂φ

]
Note that since

Ω(1;φ) =

(
1− δ
δφ

+ 1− β(1)

)−1(
(n− q)w +

1− δ
δ

1− φ
φ

δ (v + z + (n− q)w)

)
then

∂Ω(1;φ)

∂φ
=

1− δ
δφ2

(
1− δ
δφ

+ 1− β(1)

)−1
T †(1).

Note T (m) ≤ 0 implies T (m′) ≤ 0 for any m′ < m, and thus T (1) ≤ 0, which from the

above equation then that T †(1) ≤ 0 implies ∂Ω(1)/∂φ < 0. This together with the fact that

T †(m′) ≤ 0 for any m′ < m implies by (33) that ∂Ω(m′;φ)/∂φ ≤ 0 for all m′ ≤ m. �

Proof of Lemma 5.4. Here we prove that if in equilibrium µm ∈ (0, 1) for all m ∈ J ≡
{m`, . . . ,mu}, then

µm+1 − µm
µm

= β(m) ∀m ∈ {m` + 1, . . . ,mu − 1},

and moreover

µm =

(
n+m− q
n+m` − q

)(
1− δ
δ

)(
1

w(m`)/wout(m`)− 1

)
∀m ∈ {m` + 1, . . . ,mu}

(This second result will be useful in the proof of Theorem 5.6).
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Suppose in equilibrium µm ∈ (0, 1) for all m ∈ J ≡ {m`, . . . ,mu}. Then s(m) = v(m) = 0

for all m ∈M . Since s(m) = 0 for all m ∈ J , by (13),

(34) w(m) =

 δµm(
1−δ

1−β(m)

)
+ δµm

w(m− 1) ∀m ∈ J

Note that for all m ∈ {m` + 1, . . . ,mu}, v(m) = v(m − 1) = 0, and then s(m) = 0 implies

w(m) = wout(m− 1). Then

w(m)

w(m− 1)
=
wout(m− 1)

wout(m− 2)
∀m ∈ {m` + 2, . . . ,mu},

Using (34) and (14), this is

(35)

 δµm(
1−δ

1−β(m)

)
+ δµm

 =

(
δµm−1

(1− δ) + δµm−1

)
∀m ∈ {m` + 2, . . . ,mu},

which implies that

(36) µm =

(
1

1− β(m)

)
µm−1 ∀m ∈ {m` + 2, . . . ,mu},

This gives the first result using the definition of β(m). This result directly implies

µm =

[
m∏

k=m`+2

(
1

1− β(k)

)]
µm`+1 ∀m ∈ {m` + 2, . . . ,mu}.

Now, by (15), and noting that v(m`) = 0,

µm`+1 =

(
1− δ
δ

)(
1

1− β(m` + 1)

)(
wout(m`)

w(m`)− wout(m`)

)
.

Substituting gives

µm =

[
m∏

k=m`+1

(
1

1− β(k)

)](
1− δ
δ

)(
1

w(m`)/wout(m`)− 1

)
∀m ∈ {m` + 1, . . . ,mu}

Noting that 1− β(k) = n+m−q−1
n+m−q , and simplifying, gives the result in the lemma. �

Proof of Lemma 5.5. In Lemma A.4 we showed that for any m ≤ q, and for any equilibrium

µ1, . . . , µm−1 of the m−1 subgame, s(m) ≥ (≤)0 given µm ∈ [0, 1] if and only if T (m) ≤ (≥)0.

We now show that for large v, T (m) ≤ 0⇒ T (m− 1) < 0. Note that

T (m− 1) =

(
1− δ + δµmφ(1− β(m))

φ[1− δ(1− µm)]

)
T (m) +

(
1− δβ(m)µm

1− δ(1− µm)

)
(v +mz + (n− q)w)

− (v + (m− 1)z + (n− q)w)
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so if T (m) ≤ 0, we have

T (m− 1) ≤
(

1− δβ(m)µm
1− δ(1− µm)

)
(v +mz + (n− q)w)− (v + (m− 1)z + (n− q)w)

Since the RHS is decreasing in v for any µm ∈ [0, 1] and goes to −∞ as v → ∞, it follows

that for sufficiently large v, T (m) ≤ 0⇒ T (m− 1) < 0. �

Proof of Theorem 5.6. By Lemma A.6 for any m ≤ q, there exists φ(m) > 0 and v(m) > 0

such that if φ < φ(m) and v > v(m), then T †(m|φ) > 0. From Lemma A.5, assuming

v ≥ m(w − z), we have that for any m ≤ q there is a φ(m) < 1 such that if φ > φ(m),

T †(m|φ) ≤ 0, and the unique MPE of the m-subgame is a FTE. Since T †(m|φ) is continuous

in φ, for any m there is a cm ∈ (0, 1) such that T †(m|cm) = 0 (for v large, fixed). By Lemma

5.5, for large v in equilibrium T (m′|cm) > 0 for all m′ > m. It follows that in the unique

MPE for φ = cm, we have µk = 1 for all k ≤ m and (provided m < q), µk ∈ (0, 1) for k > m.

We have shown before that T (m′|cm) > 0 = T †(m|cm) for all m′ > m. In addition, by

Lemma A.7, if T †(m|φ) ≤ 0 then T †(m′|φ) is decreasing in φ for all m′ ≤ m (also for v

large). This implies that cm+1 > cm for all m ≤ q − 1, and that for any φ ∈ (cm, cm+1),

T †(m + 1|φ) > 0 and T †(m|φ) ≤ 0. It follows that the equilibrium characterization above

for φ = cm applies unchanged to all φ ∈ [cm, cm+1).

Now take φ ∈ [0, 1] given, and let m ∈ M denote the cutpoint such that, in equilibrium,

there is delay in each state m∈M s.t. m > m, and full trading in any m ≤ m. In the proof

of Lemma 5.4 we show that if in equilibrium µm ∈ (0, 1) for all m ∈ J ≡ {m`, . . . ,mu}, then

µm =

(
n+m− q
n+m` − q

)(
1− δ
δ

)(
1

w(m`)/wout(m`)− 1

)
∀m ∈ {m` + 1, . . . ,mu}

It follows that here (with m` = m+ 1 and mu = q), we have

(37) µm =

(
n+m− q

n+m+ 1− q

)(
1− δ
δ

)(
1

w(m+ 1)/wout(m+ 1)− 1

)
∀m > m+ 1

Note that the probability of trade in each state where there is delay is decreasing in the ratio

w(m+ 1)/wout(m+ 1). We now argue that this ratio is increasing in v, and that µm → 0 as

v →∞. Note that by (14),

wout(m+ 1)

wout(m)
=

(
δµm+1

1− δ(1− µm+1)

)
,

and by Proposition 5.1,

δµm+1 = (1− δ)
(

1

1− β(m+ 1)

)(
v(m) + wout(m)

w(m)− (v(m) + wout(m))

)
.
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Substituting,

wout(m+ 1)

wout(m)
=

(
(v(m) + wout(m))

β(m+ 1)(v(m) + wout(m)) + (1− β(m+ 1))w(m)

)
.

Now, since µm+1 ∈ (0, 1), then v(m) + wout(m) = w(m + 1). Substituting, and noting that

the equilibrium of the m subgame is a FTE,

wout(m+ 1)

w(m+ 1)
=

w†out(m)

(1− β(m+ 1))w†(m) + β(m+ 1)[(v†(m) + w†out(m))]
.

It follows that for m > m+ 1,

µm =

(
n+m− q

n+m+ 1− q

)(
1− δ
δ

)(
w†out(m)

(1− β(m+ 1))(w†(m)− w†out(m)) + β(m+ 1)(v†(m))

)

Now, w†out(m) = δmz is independent of v, while both v†(m) and w†(m) are increasing in v,

and unbounded. Thus for m > m + 1, µm is decreasing in v and goes to zero as v → +∞.

This completes the proof. �

Proof of Proposition 5.7. Using (12), (19), (14) in (2) we obtain, for all m ≥ 2(
1 + φ

(
δ

1− δ

)
+ (1− φ)

δβ(m)

1− δβ(m)

)
s(m)(38)

= φ

(
δ

1− δ

)
s(m− 1) +

[
m−1∏
k=1

(
δµk

1− δ(1− µk)

)]
z − π(1)w

− (1− φ)
m−1∑
k=1

(
β(k)

1− β(k)

)
π(k)s(k)

Since w > 0, z ≤ 0, and π(k)s(k) ≥ 0, (38) implies

(39)

(
1 + φ

(
δ

1− δ

)
+ (1− φ)

δβ(m)

1− δβ(m)

)
s(m) ≤ φ

(
δ

1− δ

)
s(m− 1)

It follows that in any equilibrium, s(m−1) ≤ 0⇒ s(m) ≤ 0. So suppose s(m′) < 0 for some

m′ < q. Then µm′ = 0, and thus w(m) = v(m) = 0 for all m ≥ m′ with no transactions

in equilibrium for m ≥ m′. Suppose instead s(m′) = 0 for some m′ < q. If µm′ = 0, the

same conclusion holds, so suppose in equilibrium µm′ ∈ (0, 1). Because s(m′ + 1) ≤ 0, in

equilibrium either µm′+1 = 0 or s(m′ + 1) = 0 and µm′+1 ∈ (0, 1). If µm′+1 ∈ (0, 1), then

v(m′) = v(m′+1) = 0, and then s(m′+1) = 0 implies w(m′+1) = wout(m
′). But w(m′+1) ≥



38 MATIAS IARYCZOWER AND SANTIAGO OLIVEROS

0, while wout(m
′) =

[∏m′

k=1

(
δµk

1−δ(1−µk)

)]
z < 0 by (14), which is a contradiction. It follows

that if s(m′) ≤ 0 for some m′ < q, then µm = 0 for all m > m′ and w(q) = v(q) = 0. �

Corollary A.8. Suppose z ≤ 0. If v + z < δ
(

n−q
n−q+(1−δ)

)
w, then s(m) = w(m) = wout(m) =

v(m) = 0 for all m ≥ 2.

Proof of Corollary A.8. In Lemma A.2 we showed that a necessary condition for trade with

probability one at m = 1 is that v + z ≥ δ
(

n−q
n−q+(1−δ)

)
w. Thus, when this condition is

violated, µ1 < 1. The result then follows from Proposition 5.7. �

Proof of Proposition 5.8. Fix an equilibrium in the subgame starting in state m − 1. This

produces continuation values ṽ(m−1) and w̃out(m−1). Given these continuation values, let

v(m;µm) and w(m;µm) denote the values of the principal and uncommited agent in state

m when transaction probability µm, and let s(m;µm) denote the surplus in state m when

transaction probability µm. From (12) and (13), if ṽ(m− 1) > 0 and w̃out(m− 1) > 0, then

v(m;µm) and w(m;µm) are both increasing in µm, and therefore s(m;µm) = [ṽ(m − 1) −
v(m;µm)] + [w̃out(m − 1) − w(m;µm)] is decreasing in µm. It follows that if s(m; 1) > 0,

then s(m;µm) > 0 for any µm ∈ (0, 1), and as a result, any such µm ∈ (0, 1) would not be

consistent with equilibrium.

We finish the proof with an induction argument. First, note that if the conditions for

existence of a FTE are met, then by Lemma A.2 µ1 = 1 (the unique MPE of the subgame

starting at m = 1 is a FTE). Second, we argue that if the unique MPE of the subgame

starting in state m− 1 is a FTE, then µm = 1. The two conditions establish the result. To

prove the induction step, note that if the unique MPE of the subgame starting in state m−1

is a FTE, then existence of a FTE in m ≤ q (guaranteed by Lemma 5.7 given the existence

of a FTE) implies that s(m; 1) > 0. Then our previous argument implies that s(m;µm) > 0

for any µm ∈ (0, 1), and as a result we must have µm = 1. �
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