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ABSTRACT

We explore the implications of no-envy (Foley 1967) in the context of
queueing problems. We identify an easy way of checking whether a rule
satisfies efficiency and no-envy. The existence of such a rule can easily be
established. Next, we ask whether there is a rule satisfying efficiency and no-
envy together with an additional solidarity requirement: every agent should
be affected in the same direction as a consequence of changes in the waiting
costs. However, there is no rule satisfying efficiency, no-envy, and either one
of two cost monotonicity axioms. To remedy the situation, we propose two
modifications of no-envy, backward/forward no-envy and adjusted no-envy.
Also, we discuss whether three fairness requirements, no-envy, the identical
preferences lower bound, and egalitarian equivalence, are compatible in this
context.

Journal of Economic Literature Classification Numbers: D63, D71.

Key Words: queueing problem, no-envy, cost monotonicity, identical prefer-
ences lower bound, egalitarian equivalence.



1. Introduction

Consider a group of agents who must be served in a facility. The facility
can handle only one agent at a time and agents incur waiting costs. We
are interested in finding the order in which to serve agents and the (positive
or negative) monetary compensations they should receive. We assume that
an agent’s waiting cost is constant per unit of time, but that agents differ
in their waiting costs. Each agent’s utility is equal to his monetary com-
pensations minus his total waiting cost. This queueing problem has been
studied extensively from the incentive perspective (Dolan 1978, Suijs 1996,
Mitra 2001, 2002). However, it has received only a limited attention from
the normative perspective. The only exceptions are recent works, Maniquet
(2003) and Chun (2004), which discuss the properties of rules obtained by
applying the Shapley value (1950).

In this paper, we investigate the implications of no-envy in queueing prob-
lems. No-envy, introduced by Foley (1967), requires that no agent should
end up with a higher utility by consuming what any other agent consumes.
Although its implications have been studied for a wide class of problems, it
has not been the object of any study in queueing problems.

We identify an easy way of checking whether a rule satisfies efficiency and
no-envy. It can be described in a simple way: choose any efficient queue, and
then check the difference of transfers between any two neighboring agents. If
the difference is not greater than the higher waiting cost of the two agents
and is not smaller than the lower waiting cost of the two agents, then it passes
the no-envy test. Of course, it is an immediate consequence of no-envy that
an agent served earlier should receive a smaller transfer than an agent served
later. The existence of such a rule can easily be established.

Next, we investigate whether there is a rule satisfying efficiency and no-
envy together with an additional solidarity requirement: all agents should
gain together or lose together as a consequence of changes in the waiting
costs. Negative cost monotonicity (Maniquet 2003) requires that an increase
in an agent’s waiting cost should cause other agents to weakly lose together.
On the other hand, positive cost monotonicity (Chun 2004) requires that
it should cause other agents to weakly gain together. We show that if the
society consists of more than two agents, then there is no rule satisfying
efficiency, no-envy, and either negative cost monotonicity or positive cost
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monotonicity.1

Faced with the impossibility results, we suggest two modifications of no-
envy which can be applied to queueing problems. Our first modification of
no-envy requires that an agent should not envy the other agents at least in
one direction. More specifically, backward no-envy requires that an agent
should not envy the agents with lower waiting costs, whereas forward no-
envy requires that an agent should not envy the agents with higher waiting
costs. Our second modification of no-envy considers that when one agent
is evaluating the other agent’s consumption bundle, he should have in mind
that the rule will assign different transfers if he is in another agent’s position
since their waiting costs are different. Adjusted no-envy requires that an
agent should not envy the other agents after accommodating this differences
in transfers.

For each of these modifications, we show that the impossibility results
do not hold any more. In fact, the Maniquet rule (2003) satisfies efficiency,
negative cost monotonicity, backward no-envy, and adjusted no-envy, and
the reverse rule (Chun 2004) satisfies efficiency, positive cost monotonicity,
forward no-envy, and adjusted no-envy.

Other fairness requirements widely discussed in the literature are: the
identical preferences lower bound requires that each agent should be at least
as well off as he would be, under efficiency and equal treatment of equals, if all
other agents had the same preferences, and egalitarian equivalence requires
that there should be a reference bundle such that each agent enjoys the
same welfare between his bundle and that reference bundle. We investigate
whether the three requirements are compatible in the current context. First,
it is easy to show that efficiency and no-envy together imply the identical
preferences lower bound. Also, we can show an existence of a rule satisfying
efficiency, egalitarian equivalence, and the identical preferences lower bound.
However, if we have more than three agents, then there is no rule satisfying
efficiency, egalitarian equivalence, and no-envy together.

The paper is organized as follows. Section 2 contains some preliminar-
ies and introduces rules. Section 3 explores the implications of efficiency

1As we show later, if the society consists of only two agents, then the Maniquet rule
satisfies efficiency, no-envy, and negative cost monotonicity, and the reverse rule satisfies
efficiency, no-envy, and positive cost monotonicity. Moreover, the rules can be character-
ized by these axioms if Pareto indifference is additionally imposed. See Remarks 2 and 3
for details.
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and no-envy, and Section 4 studies their implications together with cost
monotonicity axioms. Section 5 introduces two modifications of no-envy,
backwarad/forward no-envy and adjusted no-envy, and investigates their im-
plications. Section 6 discusses whether three fairness requirements, no-envy,
the identical preferences lower bound, and egalitarian equivalence, are com-
patible in this context. Concluding remarks follow in Section 7.

2. Preliminaries

Let I ≡ {1, 2, . . .} be an (infinite) universe of “potential” agents, and let N
be the family of non-empty subsets of I. Each agent i ∈ I is characterized
by his unit waiting cost, θi ≥ 0. Given N ∈ N , each agent i ∈ N is assigned
a position σi ∈ N in a queue and a positive or negative transfer ti ∈ R. The
agent who is served first incurs no waiting cost. If agent i ∈ N is served
in the σth

i position, his waiting cost is (σi − 1)θi. Each agent i ∈ N has a
quasi-linear utility function, so that his utility from consuming the bundle
(σi, ti) is given by u(σi, ti; θi) = ti − (σi − 1)θi.

A queueing problem is defined as a list q = (N, θ) where N ∈ N is the set
of agents and θ is the vector of unit waiting costs. Let QN be the class of all
problems for N and Q = ∪QN . An allocation for q ∈ Q is a pair z = (σ, t),
where for each i ∈ N, σi denotes agent i’s position in the queue and ti
the monetary transfer to him. An allocation is feasible if no two agents are
assigned the same position and the sum of the transfers is not positive. Thus,
the set of feasible allocations Z(q) consists of all pairs z = (σ, t) ∈ N ×RN

such that for all i, j ∈ N, i 6= j implies σi 6= σj and
∑

i∈N ti ≤ 0.
Given q = (N, θ) ∈ QN , an allocation z = (σ, t) ∈ Z(q) is queue-efficient

if it minimizes the total waiting cost, that is, for all z′ = (σ′, t′) ∈ Z(q),∑
i∈N(σi − 1)θi ≤

∑
i∈N(σ′

i − 1)θi. As noted in Maniquet (2003), the efficient
queue of a problem does not depend on the transfers. Moreover, it is unique
except for agents with equal waiting costs, who will be next to each other in
the queue and can be permuted. The set of efficient queues for q ∈ QN is
denoted by Eff(q). Also, an allocation z = (σ, t) ∈ Z(q) is budget balanced
if

∑
i∈N ti = 0, and efficient if it is queue-efficient and budget balanced. A

rule is a mapping ϕ : Q → ∪N∈NZ(q), which associates with each problem
q ∈ QN a non-empty subset ϕ(q) of feasible allocations. The pair ϕi(q) =
(σi, ti) represents the position of i in the queue and his transfer in q. Given
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q = (N, θ) ∈ QN , z = (σ, t) ∈ Z(q), and i ∈ N, let Pi(σ) be the set of agents
preceding agent i and Fi(σ) the set of agents following him.

Now we introduce axioms which we will impose on rules. Efficiency re-
quires that the rule should choose an efficient allocation. Pareto indifference
requires that if an allocation is chosen by a rule, then all other allocations
which assign the same utilities to each agent should be chosen by the rule.
Finally, equal treatment of equals requires that two agents with the same
waiting cost should end up with the same utilities.

Efficiency: For all q = (N, θ) ∈ QN and all z = (σ, t) ∈ ϕ(q), σ ∈ Eff(q)
and

∑
i∈N ti = 0.

Pareto indifference: For all q = (N, θ) ∈ QN , all z = (σ, t) ∈ ϕ(q), and
z′ = (σ′, t′) ∈ Z(q), if for all i ∈ N, u(σ′

i, t
′
i; θi) = u(σi, ti; θi), then z′ ∈ ϕ(q).

Equal treatment of equals: For all q = (N, θ) ∈ QN , all z = (σ, t) ∈ ϕ(q),
and all i, j ∈ N, if θi = θj, then u(σi, ti; θi) = u(σj, tj; θj).

Next are two rules studied in Maniquet (2003) and Chun (2004). The
Maniquet rule selects an efficient queue and transfers to each agent a half of
his unit waiting cost from each of his predecessors minus a half of the unit
waiting cost of each of his followers.

Maniquet rule, ϕM : For all q = (N, θ) ∈ QN ,

ϕM(q) = {(σM , tM) ∈ Z(q)| σM ∈ Eff(q), and ∀i ∈ N,

tMi = (σM
i − 1)

θi

2
−

∑
j∈Fi(σM )

θj

2
}.

Chun (2004) introduces the rule that selects an efficient queue and trans-
fers to each agent a half of the unit waiting cost of each of his predecessors
minus a half of his waiting cost to each of his followers.

Reverse rule, ϕR: For all q = (N, θ) ∈ QN ,

ϕR(q) = {(σR, tR) ∈ Z(q)| σR ∈ Eff(q), and ∀i ∈ N,

4



tRi =
∑

j∈Pi(σR)

θj

2
− (|N | − σR

i )
θi

2
}.

As shown in Maniquet (2003) and Chun (2004), the Maniquet rule and
the reverse rule can be obtained by applying the Shapley value (1950). To
do this, the queueing problems should be mapped into cooperative games in
which the worth of a coalition is appropriately defined. For the Maniquet
rule, the worth of a coalition is defined to be the minimum waiting cost
incurred by its members under the assumption that they are served before
the non-coalitional members. For the reverse rule, it is defined to be the
minimum waiting cost incurred by its members under the assumption that
they are served after the non-coalitional members.

If some agents have equal waiting costs, then the efficient queue is not
unique, and consequently, the allocations specified by the rule are not unique
either. However, the Maniquet and reverse rules are essentially single-valued
in the sense that all agents end up with the same utilities at the allocations
that they select.

3. Efficiency and no-envy

Now we explore the implications of no-envy in queueing problems. No-envy,
introduced by Foley (1967), requires that no agent should end up with a
higher utility by consuming what any other agent consumes. It is a standard
requirement in the studies of fairness for a wide class of problems (Thomson
and Varian 1985, Thomson 2003b). Given q = (N, θ) ∈ QN , an allocation
z = (σ, t) ∈ Z(q) is envy-free if for all i, j ∈ N, u(σi, ti; θi) ≥ u(σj, tj; θi). Let
F (q) be the set of all envy-free allocations for q ∈ QN .

No-envy: For all q = (N, θ) ∈ QN and all z = (σ, t) ∈ ϕ(q), z ∈ F (q).

We present a simple way of checking whether a rule satisfies efficiency
and no-envy. First, efficiency requires that the sum of total waiting costs be
minimized and that the sum of transfers be zero, that is, for all q = (N, θ) ∈
QN such that N = {1, . . . , n} and all z = (σ, t) ∈ Z(q), θσ1 ≥ · · · ≥ θσn and∑

i∈N ti = 0.
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Theorem 1. A rule ϕ satisfies efficiency and no-envy if and only if for
all q = (N, θ) ∈ QN such that N = {1, . . . , n} and all z = (σ, t) ∈ ϕ(q),
σ ∈ Eff(q),

∑
i∈N ti = 0, and for all i = 1, . . . n− 1, θσi

≥ tσi+1
− tσi

≥ θσi+1
.

Proof. Let ϕ be a rule satisfying the two axioms. Let q = (N, θ) ∈ QN and
z = (σ, t) ∈ ϕ(q) be such that N = {1, . . . , n}. By efficiency, σ ∈ Eff(q)
and

∑
i∈N ti = 0.

To simplify notation, we assume that θ1 ≥ θ2 ≥ · · · ≥ θn and for all
i ∈ N, σi = i. Let i, j ∈ N. We may also assume, without loss of generality,
that j = i + k for k ∈ N.

First, for i not to envy j,

u(σi, ti; θi) ≥ u(σj, tj; θi),

which is equivalent to

ti − (i− 1)θi ≥ tj − (j − 1)θi

or

kθi ≥ tj − ti.

In particular, if j = i + 1, this inequality becomes

θi ≥ ti+1 − ti,

the desired expression.
Applying this inequality recursively, for all ` = i, . . . , i + k − 1, we have

θ` ≥ t`+1 − t`.

Summing these inequalities,

i+k−1∑
`=i

θ` ≥ ti+k − ti.

Since efficiency implies that kθi ≥
∑i+k−1

`=i θ`, we have

kθi ≥ tj − ti.

Therefore, it is sufficient to check the inequality between neighboring agents.
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Similarly, for j not to envy i,

tj − ti ≥ kθi+1.

In particular, if j = i + 1, this inequality becomes

ti+1 − ti ≥ θi+1.

Once again, by the same reasoning, we obtain the desired conclusion.

Example 1: The Maniquet and reverse rules do not satisfy no-envy. Let
q = (N, θ) ∈ QN be such that N = {1, 2, 3} and θ = (6, 4, 2). Then, ϕM(q) =
(σM , tM) is obtained by setting σM = (1, 2, 3) and tM = (−3, 1, 2). Note that
agent 3 envies agent 2 since u(σM

2 , tM2 ; θ3) = −1 > u(σM
3 , tM3 ; θ3) = −2. On

the other hand, ϕR(q) = (σR, tR) is obtained by setting σR = (1, 2, 3) and
tR = (−6, 1, 5). Note that agent 1 envies agent 2 since u(σR

2 , tR2 ; θ1) = −5 >
u(σR

1 , tR1 ; θ1) = −6.

Example 2: Rules satisfying efficiency and no-envy. Let q = (N, θ) ∈ QN

be such that N = {1 . . . , n}. To simplify our notation, we suppose that θ1 ≥
· · · ≥ θn and σi = i. First, let t1 = α1. We will determine α1 after considering
the budget constraint. Now, for i = 2, . . . , n, we choose αi ∈ [θi, θi−1] and
ti =

∑i
j=1 αj. Finally, we choose α1 such that

∑
i∈N tj = 0. An alternative rule

can be given starting from n. Once again, let tn = −βn. We will determine
βn after considering the budget constraint. Now, for i = n − 1, . . . , 1, we
choose βi ∈ [θi+1, θi] and ti = −∑n

j=i βj. Finally, we choose βn such that∑
i∈N tj = 0. Clearly, these processes lead to rules satisfying efficiency and

no-envy.

Remark 1: As shown in Svensson (1983), in economies with indivisible
goods, no-envy implies efficiency. Also, no-envy is equivalent to group no-
envy,2 and the set of envy-free allocations coincides with the set of equal

2Given two groups of the same size, suppose that a group redistributes among its
members what is available to the other group. If a rule selects an allocation which is
impossible to make every agent in the group better off, with at least one agent strictly
better off, even after considering the possibility of redistribution, then the rule satisfies
group no-envy.
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income Walrasian allocations.3 Similar observations can be made for queue-
ing problems. If we restrict our attention to rules selecting budget balanced
allocations, then no-envy implies efficiency. Also, no-envy is equivalent to
group no-envy, and the set of envy-free allocations coincide with the set of
equal income Walrasian allocations.

4. No-envy and cost monotonicity

We investigate whether there is a rule satisfying efficiency and no-envy to-
gether with an additional solidarity axiom: as a consequence of changes in
the external environment, all agents should gain together or lose together. In
our model, the axiom can be formulated in the following way. Suppose that
the waiting cost of an agent increases. One could take two positions with
regards to how the allocation should be affected by this change: (i) one may
feel that he deserves greater compensation for having to wait if he is served
at the same time, which will affect the other agents in a negative direction.
Alternatively, (ii) one may feel that he should be required to pay more if he
is served earlier, which will affect the other agents in a positive direction.
Negative cost monotonicity (Maniquet 2003) requires that this should cause
all other agents to weakly lose together. On the other hand, positive cost
monotonicity (Chun 2004) requires that the increase should cause all other
agents to weakly gain together. The Maniquet rule satisfies negative cost
monotonicity, and the reverse rule satisfies positive cost monotonicity.

Negative cost monotonicity: For all q = (N, θ) and q′ = (N, θ′) ∈ QN , all
z = (σ, t) ∈ ϕ(q), all z′ = (σ′, t′) ∈ ϕ(q′), and all k ∈ N, if for all i ∈ N\{k},
θi = θ′i and θk < θ′k, then for all i ∈ N\{k}, u(σi, ti; θi) ≥ u(σ′

i, t
′
i; θ

′
i).

Positive cost monotonicity: For all q = (N, θ) and q′ = (N, θ′) ∈ QN , all
z = (σ, t) ∈ ϕ(q), all z′ = (σ′, t′) ∈ ϕ(q′), and all k ∈ N, if for all i ∈ N\{k},
θi = θ′i and θk < θ′k, then for all i ∈ N\{k}, u(σi, ti; θi) ≤ u(σ′

i, t
′
i; θ

′
i).

Now we ask whether there is a rule satisfying efficiency, no-envy, and
negative cost monotonicity together. The answer is no.

3Allocations that can be supported as Walrasian equilibrium with the equal implicit
income.
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Theorem 2. Let |N | ≥ 3. Then, there is no rule satisfying efficiency, no-
envy, and negative cost monotonicity.

Proof. Let ϕ be a rule satisfying the three axioms. Let q = (N, θ) ∈ QN and
z = (σ, t) ∈ ϕ(q) be such that N = {1, . . . , n} with n ≥ 3 and θ1 > θ2 >
· · · > θn. By efficiency, for all i ∈ N, σ(i) = i. Moreover, from Theorem 1,
for all i = 1, . . . , n− 1, θi ≥ ti+1 − ti ≥ θi+1.

Case 1: There exists i ∈ N\{n} such that θi ≥ ti+1 − ti > θi+1. Let α ∈]0, 1]
be such that ti+1 − ti = αθi + (1− α)θi+1 = θi+1 + α(θi − θi+1). Let ε > 0 be
such that ε < α(θi− θi+1) and θ′i = θi+1 + ε. Let θ′ be the waiting cost vector
obtained from θ by replacing θi with θ′i, q′ = (N, θ′), and z′ = (σ′, t′) ∈ ϕ(q′).

By negative cost monotonicity, all agents except i weakly gain. Since the
decrease of θi to θ′i does not change the efficient queue, that is, for all i ∈ N,
σ′(i) = i, this is possible only if for all j 6= i, t′j ≥ tj. By efficiency, t′i ≤ ti.
Altogether, t′i+1 − t′i ≥ ti+1 − ti = θi+1 + α(θi − θi+1) > θi+1 + ε = θ′i > θi+1,
which contradicts the conclusion of Theorem 1.

Case 2: For all i = 1, . . . , n − 1, ti+1 − ti = θi+1. Let i ∈ N\{1, n} and θ′i
be such that θi > θ′i > θi+1. Let θ′ be the waiting cost vector obtained from
θ by replacing θi with θ′i, q′ = (N, θ′), and z′ = (σ′, t′) ∈ ϕ(q′). By negative
cost monotonicity, all agents except i weakly gain. Since the decrease of θi

to θ′i does not change the efficient queue, this is possible only if for all j 6= i,
t′j ≥ tj. By efficiency, t′i ≤ ti. Altogether, t′i+1 − t′i ≥ ti+1 − ti = θi+1. If
t′i+1 − t′i > θi+1 = θ′i+1, then we go back to Case 1 and obtain the desired
conclusion. If t′i+1 − t′i = θi+1, by efficiency, we deduce that for all j ∈ N,
t′j = tj. In particular, t′i − t′i−1 = θi. Since θi−1 = θ′i−1 > t′i − t′i−1 > θ′i, we go
back to Case 1 and obtain the desired conclusion.

Remark 2: For n = 2, it is clear from the proof that there is only one
rule satisfying efficiency, Pareto indifference, no-envy, and negative cost
monotonicity.4 It is obtained by setting t1 = − θ2

2
and t2 = θ2

2
, which is

the allocation chosen by the Maniquet rule. The conclusion follows by not-
ing that for n = 2, the Maniquet rule satisfies the four axioms.

Next, we ask whether a possibility result can be obtained by replacing

4If Pareto indifference is not imposed, then it is possible to choose only one efficient
queue when two agents have equal waiting costs.
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negative cost monotonicity with positive cost monotonicity. Once again, the
answer is no.

Theorem 3. Let |N | ≥ 3. Then, there is no rule satisfying efficiency, no-
envy, and positive cost monotonicity.

Proof. Let ϕ be a rule satisfying the three axioms. Let q = (N, θ) ∈ QN and
z = (σ, t) ∈ ϕ(q) be such that N = {1, . . . , n} with n ≥ 3 and θ1 > θ2 >
· · · > θn. By efficiency, for all i ∈ N, σ(i) = i. Moreover, from Theorem 1,
for all i = 1, . . . , n− 1, θi ≥ ti+1 − ti ≥ θi+1.

Case 1: There exists i ∈ N\{n} such that θi > ti+1− ti ≥ θi+1. Let α ∈ [0, 1[
be such that ti+1 − ti = αθi + (1− α)θi+1 = θi+1 + α(θi − θi+1). Let ε > 0 be
such that θi > θi+1 + ε > θi+1 +α(θi− θi+1) and θ′i+1 = θi+1 + ε. Let θ′ be the
waiting cost vector obtained from θ by replacing θi+1 with θ′i+1, q′ = (N, θ′),
and z′ = (σ′, t′) ∈ ϕ(q′).

By positive cost monotonicity, all agents except i + 1 weakly gain. Since
the increase of θi+1 to θ′i+1 does not change the efficient queue, that is, for all
i ∈ N, σ′(i) = i, this is possible only if for all j 6= i+1, t′j ≥ tj. By efficiency,
t′i+1 ≤ ti+1. Altogether, t′i+1− t′i ≤ ti+1− ti = θi+1 + α(θi− θi+1) < θi+1 + ε =
θ′i+1 < θi, which contradicts the conclusion of Theorem 1.

Case 2: For all i = N\{n}, ti+1 − ti = θi. Let i = N\{1, n}, and θ′i be such
that θi−1 > θ′i > θi. Let θ′ be the waiting cost vector obtained from θ by
replacing θi with θ′i, q′ = (N, θ′), and z′ = (σ′, t′) ∈ ϕ(q′). By positive cost
monotonicity, all agents except i weakly gain. Since the increase of θi to θ′i
does not change the efficient queue, this is possible only if for all j 6= i, t′j ≥ tj.
By efficiency, t′i ≤ ti. Altogether, t′i−t′i−1 ≤ ti−ti−1 = θi−1. If t′i−t′i−1 < θi−1,
then we go back to Case 1 and obtain the desired conclusion. On the other
hand, if t′i − t′i−1 = θ′i = θi−1, by efficiency, we deduce that for all j ∈ N,
t′j = tj. In particular, t′i+1 − t′i = ti+1 − ti = θi. Since θ′i > t′i+1 − t′i > θi+1, we
go back to Case 1 and obtain the desired conclusion.

Remark 3: For n = 2, it is clear from the proof that there is only one rule
satisfying efficiency, Pareto indifference, no-envy, and positive cost mono-
tonicity. It is obtained by setting t1 = − θ1

2
and t2 = θ1

2
, which is the allo-

cation chosen by the reverse rule. The conclusion follows by noting that for
n = 2, the reverse rule satisfies the four axioms.
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Next, we introduce two independence requirements: a change in an agent’s
waiting cost should not affect the agents following him or preceding him.
More specifically, suppose that an agent’s waiting cost changes. One could
take two positions with regards to how the allocation should be affected by
this change: (i) if his waiting cost increases, then one may feel that he de-
serves greater compensation for having to wait, which is more likely not to
affect the agents following him, and (ii) if his waiting cost decreases, then
one may feel that he deserves less payment for having the service, which is
more likely not to affect the agents preceding him.

Independence of preceding costs (Maniquet 2003) requires that an increase
in an agent’s waiting cost should not affect the agents following him. On
the other hand, independence of following costs (Chun 2004) requires that
a decrease in an agent’s waiting cost should not affect the agents preceding
him. The Maniquet rule satisfies independence of preceding costs, and the
reverse rule satisfies independence of following costs.

Independence of preceding costs: For all q = (N, θ) and q′ = (N, θ′) ∈
QN , all z = (σ, t) ∈ ϕ(q), all z′ = (σ′, t′) ∈ ϕ(q′), and all k ∈ N, if for all
i ∈ N\{k}, θi = θ′i and θk < θ′k, then for all j ∈ N such that σj > σk,
u(σj, tj; θj) = u(σ′

j, t
′
j; θ

′
j).

Independence of following costs: For all q = (N, θ) and q′ = (N, θ′) ∈
QN , all z = (σ, t) ∈ ϕ(q), all z′ = (σ′, t′) ∈ ϕ(q′), and all k ∈ N, if for all
i ∈ N\{k}, θi = θ′i and θk > θ′k, then for all j ∈ N such that σj < σk,
u(σj, tj; θj) = u(σ′

j, t
′
j; θ

′
j).

We ask whether there is a rule satisfying either one of two independence
requirements together with efficiency and no-envy. Once again, we obtain
negative results.

Theorem 4. Let |N | ≥ 3. Then, there is no rule satisfying efficiency, no-
envy, and independence of preceding costs.

Proof. Let ϕ be a rule satisfying the three axioms. Let q = (N, θ) ∈ QN

and z = (σ, t) ∈ ϕ(q) be such that N = {1, . . . , n} with n ≥ 3 and θ1 >
θ2 > · · · > θn. By efficiency, for all i ∈ N, σ(i) = i. From Theorem 1, for all
i = 1, . . . , n− 1, θi ≥ ti+1 − ti ≥ θi+1.

Now let θ′ be such that θ′1 = θ′2 and that for all i = 3, . . . , n, θ′i = θi.
Let q′ = (N, θ′) and z′ = (σ′, t′) ∈ ϕ(q′). Furthermore, we assume that θ′2 >
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2(t3 − θ3)− (t1 + t2). By independence of preceding costs, for all i = 3, . . . , n,
t′i = ti. First, we consider the case σ1 = 1 and σ2 = 2. By efficiency and
no-envy, t′2 − t′1 = θ′2. Altogether, t′2 − t′3 = θ′2 > 2(t3 − θ3)− (t1 + t2). Since
t′1 + t′2 = t1 + t2, we have θ3 > t3 − t′2 = t′3 − t′2, contradicting the conclusion
of Theorem 1.

The case σ1 = 2 and σ2 = 1 can be handled in a similar way.

Theorem 5. Let |N | ≥ 3. Then, there is no rule satisfying efficiency, no-
envy, and independence of following costs.

Proof. Let ϕ be a rule satisfying the three axioms. Let q = (N, θ) ∈ QN

and z = (σ, t) ∈ ϕ(q) be such that N = {1, . . . , n} with n ≥ 3 and θ1 =
θ2 ≥ θ3 ≥ · · · ≥ θn, and that θ3 > 0. By efficiency, for all i ∈ N\{1, 2},
σ(i) = i. First, we consider the case σ1 = 1 and σ2 = 2. From Theorem 1,
for all i = 1, . . . , n − 1, θi ≥ ti+1 − ti ≥ θi+1. In particular, t2 − t1 = θ1 and
tn ≥ · · · ≥ t3 > t2.

Now let θ′ be such that θ′1 = θ1 and θ′2 = · · · = θ′n = 0. By independence
of following costs, t′1 = t1. By efficiency and no-envy, for all i = 2, . . . , n,
t′i = 1

n−1

∑n
j=2 tj, which implies that t′2 > t2. Altogether, t′2 − t′1 > t2 − t1 =

θ1 = θ′1, which contradicts the conclusion of Theorem 1.
The case σ1 = 2 and σ2 = 1 can be handled in a similar way.

Remark 4: As before, these impossibility results do not hold if the society
consists of only two agents. For |N | = 2, the Maniquet rule satisfies effi-
ciency, no-envy, and independence of preceding costs, and the reverse rule
satisfies efficiency, no-envy, and independence of following costs. Moreover,
by imposing Pareto indifference additionally, the rule can be characterized.
In fact, the proofs can be obtained from Maniquet (2003) and Chun (2004)
by noting that no-envy implies equal treatment of equals.

5. Backward/forward no-envy and adjusted

no-envy

Given the negative results presented in the previous section, we propose two
modifications of no-envy, which can be imposed in the context of queueing
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problems. As we show here, these modifications have a significant effect since
we can recover positive results.

First, we propose a weakening of no-envy, which require that an agent
should not envy other agents at least in one direction. Backward no-envy
requires that an agent should not envy the agents with lower waiting costs
(therefore, following him in the efficient queue with the possible exception of
agents with the same waiting cost), whereas forward no-envy requires that
an agent should not envy the agents with higher waiting costs (therefore,
preceding him in the efficient queue with the possible exception of agents
with the same waiting cost).

Backward no-envy: For all q = (N, θ) ∈ QN , all z = (σ, t) ∈ ϕ(q), and all
i, j ∈ N, if θi ≥ θj, then u(σi, ti; θi) ≥ u(σj, tj; θi).

Forward no-envy: For all q = (N, θ) ∈ QN , all z = (σ, t) ∈ ϕ(q), and all i,
j ∈ N, if θi ≤ θj, then u(σi, ti; θi) ≥ u(σj, tj; θi).

In the language of Theorem 1, backward no-envy, together with efficiency,
requires that for all i = 1, . . . , n − 1, θi ≥ ti+1 − ti. On the other hand,
forward no-envy, together with efficiency, requires that ti+1 − ti ≥ θi+1. As
it turns out, the Maniquet rule satisfies backward no-envy, while the reverse
rule satisfies forward no-envy.

Proposition 1. The Maniquet rule satisfies backward no-envy and the re-
verse rules satisfies forward no-envy.

Proof. Let q = (N, θ) ∈ QN and z = (σ, t) ∈ ϕ(q) be such that N =
{1, . . . , n} and θ1 ≥ θ2 ≥ · · · ≥ θn. To simplify notation, for all i ∈ N, we
set σM

i = i. Also, we do not attach the superscript M to σ and t. Since the
Maniquet rule satisfies efficiency and equal treatment of equals, it is enough
to show that for i = 1, . . . , n− 1, if θi > θi+1, i does not envy i+1. From the
definition of the Maniquet rule,

u(σi, ti; θi) = −(σi − 1)θi + ti = −(i− 1)θi + (i− 1)
θi

2
−

n∑
j=i+1

θj

2
,

and
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u(σi+1, ti+1; θi) = −(σi+1 − 1)θi + ti+1 = −iθi + i
θi+1

2
−

n∑
j=i+2

θj

2
.

Therefore,

u(σi, ti; θi)− u(σi+1, ti+1; θi) = (i + 1)(
θi

2
− θi+1

2
) ≥ 0,

as desired.
Similarly, we can show that the reverse rule satisfies forward no-envy.

Now we introduce our second modification of no-envy. For i, j ∈ N,
if i and j interchange their positions, then the transfers assigned by the
rule to each agent will be revised accordingly, since their waiting costs are
different. After accommodating the changes in transfers, if i and j do not
envy each other, then we say that the rule satisfies adjusted no-envy. To
state the requirement formally, we introduce some notation. Given q ∈ Q,
z = (σ, t) ∈ ϕ(q), and i, j ∈ N, let σij be the queue obtained from σ by
interchanging σi and σj, and tij be the transfer vector obtained when the
rule is applied to σij. Since this queue is not efficient in general, strictly
speaking, we need to generalize our notion of a rule so that it be applicable
to any, not necessarily efficient, queue. For simplicity, we abuse our definition
and apply the rule to any queue.

Adjusted no-envy: For all q ∈ QN , all z = (σ, t) ∈ ϕ(q), and all i, j ∈ N,
u(σi, ti; θi) ≥ u(σij

i , tiji ; θi).

It is interesting to note that both the Maniquet and the reverse rules satisfy
this requirement.

Proposition 2. The Maniquet rule satisfies adjusted no-envy.

Proof. Let q = (N, θ) ∈ QN and z = (σ, t) ∈ ϕ(q) be such that N =
{1, . . . , n} and θ1 ≥ θ2 ≥ · · · ≥ θn. To simplify notation, for all i ∈ N, we set
σM

i = i. Also, we do not attach the superscript M to σ and t. Let i, j ∈ N.
We may assume, without loss of generality, that j = i + k for some k ∈ N.

First, we show that i does not envy j = i + k if the adjustment is made.
Note that

14



u(σi, ti; θi) = (i− 1)
θi

2
−

n∑
`=i+1

θ`

2
− (i− 1)θi,

and

u(σij
i , tiji ; θi) = (i + k − 1)

θi

2
−

n∑
`=i+k+1

θ`

2
− (i + k − 1)θi.

Therefore,

u(σi, ti; θi)− u(σij
i , tiji ; θi) = k

θi

2
−

i+k∑
`=i+1

θ`

2
≥ 0,

as desired.
Similarly, we can show that j = i + k does not envy i if the adjustment

is made.

Proposition 3. The reverse rule satisfies adjusted no-envy.

Proof. Let q = (N, θ) ∈ QN and z = (σ, t) ∈ ϕ(q) be such that N =
{1, . . . , n} and θ1 ≥ θ2 ≥ · · · ≥ θn be given. To simplify notation, for all
i ∈ N, we set σR

i = i. Also, we do not attach the superscript R to σ and t.
Let i, j ∈ N. We may assume, without loss of generality, that j = i + k for
some k ∈ N.

First, we show that i does not envy j = i + k if the adjustment is made.
Note that

u(σi, ti; θi) =
i−1∑
`=1

θ`

2
− (n− i)

θi

2
− (i− 1)θi,

and

u(σij
i , tiji ; θi) =

i+k−1∑
`=1

θ`

2
− θi

2
+

θj

2
− (n− i− k)

θi

2
− (i + k − 1)θi.

Therefore,

u(σi, ti; θi)− u(σij
i , tiji ; θi) = −θj

2
−

i+k−1∑
`=i+1

θ`

2
+ k

θi

2
≥ 0,
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as desired.
Similarly, we can show that j = i + k does not envy i if the adjustment

is made.

Note that each of these modifications, backward no-envy, forward no-
envy, and adjusted no-envy, implies equal treatment of equals. Consequently,
we could impose these axioms instead of equal treatment of equals in the
characterizations of the Maniquet rule (2003) and the reverse rule (Chun
2004).

6. Other fairness requirements

Although no-envy plays an important role in the literature on the fairness,
there are other interesting concepts. The main ones are: the identical pref-
erences lower bound and egalitarian equivalence. The identical preferences
lower bound (Moulin 1990) requires that each agent should be at least as
well off as he would be, under efficiency and equal treatment of equals, if all
other agents had the same preferences. Egalitarian equivalence (Pazner and
Schmeidler 1978) requires that there should be a reference bundle such that
each agent enjoys the same utility between his bundle and that reference bun-
dle. Now we formally introduce these axioms. Given q = (N, θ) ∈ QN , an al-
location z = (σ, t) ∈ Z(q) satisfies the identical preferences lower bound if for

all i ∈ N, u(σi, ti; θi) ≥ − |N |−1
2

θi. It is egalitarian equivalent if there is a ref-
erence bundle z0 = (σ0, t0) such that for all i ∈ N, u(σi, ti; θi) = u(σ0, t0; θi).
Let Bid(q) be the set of all allocations meeting the identical preferences
lower bound and EE(q) be the set of all egalitarian equivalent allocations
for q ∈ QN .

Identical preferences lower bound: For all q = (N, θ) ∈ QN and all
z = (σ, t) ∈ ϕ(q), z ∈ Bid(q).

Egalitarian equivalence: For all q = (N, θ) ∈ QN and all z = (σ, t) ∈ ϕ(q),
z ∈ EE(q).

Remark 5: In economies with indivisible goods, when there are as many
objects as agents, no-envy implies the identical preferences lower bound (Be-
via 1996, 1998). Moreover, if there are only two agents, then efficiency and
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identical preferences lower bound together imply no-envy. A similar obser-
vation can be made for queueing problems if budget balance is additionally
imposed.

Now we investigate whether a rule can satisfy efficiency, egalitarian equiv-
alence, and no-envy together. If there are only two agents, then any rule
satisfying efficiency and egalitarian equivalence satisfies no-envy. Moreover,
if there are only three agents, then by choosing the middle position as a part
of the reference bundle, we can establish the existence of a rule satisfying
efficiency, egalitarian equivalence, and no-envy. However, the positive result
does not generalize to problems with more than three agents, as shown in
the following.

Proposition 4. Let |N | ≥ 4. Then, there is no rule satisfying efficiency,
egalitarian equivalence, and no-envy together.

Proof. The proof is by means of an example. Let N ≡ {1, 2, 3, 4} and θ ≡
(10, 8, 4, 2). In this problem, there are four efficient and egalitarian equivalent
allocations:

(i) z1 ≡ ((σ1,−5.5), (σ2, 2.5), (σ3, 2.5), (σ4, .5)) with reference bundle (σ1,−5.5);
(ii) z2 ≡ ((σ1,−9.5), (σ2, .5), (σ3, 4.5), (σ4, 4.5)) with reference bundle (σ2, .5);
(iii) z3 ≡ ((σ1,−12.5), (σ2,−1.5), (σ3, 6.5), (σ4, 8.5)) with reference bundle
(σ3, 6.5);
(iv) z4 ≡ ((σ1,−17.5), (σ2,−3.5), (σ3, 8.5), (σ4, 12.5)) with reference bundle
(σ4, 12.5).

However, none of these allocations is envy-free. At z1, agent 3 envies
agent 2 (and agent 4 envies agents 2 and 3); at z2, agent 4 envies agent 3;
at z3, agent 1 envies agent 2; and at z4, agent 1 envies agents 2 and 3 (and
agent 2 envies agent 3). The generalization of the example to more than four
agents is obvious.

In economies with the indivisible goods, there is no rule satisfying ef-
ficiency, egalitarian equivalence, and the identical preferences lower bound
(Thomson 2003a). However, in queueing problems, we can construct a rule
satisfying efficiency, egalitarian equivalence, and the identical preferences
lower bound.
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Proposition 5. If there is an odd number of agents, then there is at least
one efficient and egalitarian equivalent allocation meeting the identical pref-
erences lower bound. If there is an even number of agents, then there are at
least two efficient and egalitarian equivalent allocations meeting the identical
preferences lower bound.

Proof. Let N ≡ {1, . . . , n} be such that n is an odd number, and θ ≡ (θi)i∈N

be such that θ1 ≥ θ2 ≥ · · · ≥ θn. To simplify notation, for all i ∈ N, we set
σi = i. Let i ≡ n+1

2
and zi ≡ (σi, ti). We will determine the value of ti later

after considering the budget constraint.
For each j ∈ N, let zj ≡ (σj, ti +(j− i)θj). Now we calculate ti by solving

nti +
∑

j∈N(j − i)θj = 0. It gives:

ti = − 1

n

∑
j∈N

(j − i)θj.

Since θ1 ≥ θ2 ≥ · · · θn, then ti ≥ 0. It is obvious that z ≡ (zj)j∈N is efficient.
Since for all j ∈ N, zjIjzi, it is also egalitarian equivalent.

To prove that z satisfies the identical preferences lower bound, we need
to show that for each j ∈ N, u(zj; θj) ≥ −n−1

2
θj. For each j ∈ N,

uj(zj; θj) = −(j − 1)θj + ti + (j − i)θj

≥ −(i− 1)θj

= −(
n + 1

2
− 1)θj

= −n− 1

2
θj,

as desired.
On the other hand, if N ≡ {1, . . . , n} is an even number, then we choose

either n
2

or n
2
+1 as reference positions. If i = n

2,
, we can show that ti ≥ −1

2
θn.

Therefore, for each i ∈ N,

uj(zj; θj) = −(j − 1)θj + ti + (j − i)θj

≥ −(i− 1)θj −
1

2
θn

≥ −(i− 1)θj −
1

2
θj
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= −(
n

2
− 1 +

1

2
)θj

= −n− 1

2
θj,

as desired.
If n = n

2
+ 1, we can show that for each j ∈ N, ti ≥ 1

2
θ1 ≥ 1

2
θj. From a

similar calculation, we obtain the desired conclusion.

7. Concluding remarks

By investigating the implications of no-envy in queueing problems, we estab-
lish various results. Our main negative results are: there is no rule satisfying
efficiency, no-envy, and either one of two cost monotonicities. These re-
sults should be compared with the impossibility result in Moulin and Thom-
son (1988): in the classical economies, there is no rule satisfying Pareto
optimality,5 no-envy, and resource monotonicity.6 Since our problem is very
different from theirs, there is no direct logical implications between two re-
sults. However, at least conceptually, we are faced with the same difficulties:
axioms of efficiency, no-envy, and monotonicity are not compatible.

To remedy this situation, two modifications of no-envy are proposed as
fairness requirements in queueing problems. Although the implications of
backward and forward no-envy are clear, it is an open question what the
implications of adjusted no-envy in queueing problems are. In particular, its
relation to no-envy needs to be analyzed.

5Pareto optimality requires that there is no feasible allocation which makes every agent
better off and at least one agent strictly better off.

6Resource monotonicity requires that an increase in resources should not hurt any
agent.
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