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1. Introduction

One of the main lessons of the literature on strategy-proof social choice is
that a social decision procedure must ignore most of the information about
individual preferences, otherwise it is sometimes possible for someone to ma-
nipulate the outcome by misreporting his preferences. A social choice func-
tion satisfies the tops-only property if the chosen alternative only depends
on each person’s report of his most-preferred alternatives on the range of
this function. On many domains, strategy-proofness implies the tops-only
property, provided that the range of the social choice function satisfies some
regularity condition. In his survey of strategy-proof social choice, Sprumont
(1995, p. 77) says that: “Proving this fact constitutes a key step in many
papers in the literature. Unfortunately, the proofs remain model specific and
are often quite complicated.”

In this article, I propose a proof strategy for showing that a strategy-
proof social choice function satisfies the tops-only property. This method-
ology presupposes that everyone has the same set of admissible preferences
on the set of alternatives. This assumption would not be satisfied if there
are private goods and individuals only care about their own consumption.
My methodology also assumes that for each admissible preference, there is
a unique most-preferred alternative on the range of the social choice func-
tion. When this condition is not satisfied, it is nevertheless possible in some
circumstances to characterize the structure of a strategy-proof social choice
function by first restricting attention to a subdomain in which this property
is satisfied. See, for example, Barberà and Peleg (1990) and Le Breton and
Weymark (1999). The proof strategy proposed here is based on the strategy
employed by Le Breton and Weymark (1999) to prove that the tops-only
property is implied by strategy-proofness when there is a product set of
alternatives, preferences are continuous and separable with a unique best al-
ternative, and the range of the social choice function is suitably restricted.
Their proofs (and a fortiori the proofs presented here) make use of argu-
ments first developed by Barberà and Peleg (1990) and Barberà and Jackson
(1994).

My approach to proving that strategy-proofness implies the tops-only
property employs the option-set methodology introduced by Barberà (1983),
Laffond (1980), and Satterthwaite and Sonnenschein (1981). The option
set facing a subgroup of the population is the set of alternatives that are
feasible for a social choice function given the reported preferences of the

1



rest of the population. The use of option sets by Barberà and Peleg (1990)
to prove a version of the Gibbard (1973)–Satterthwaite (1975) Theorem in
which preferences are required to be continuous is largely responsible for the
revival of interest in strategy-proof social choice over the past decade and a
half.1 For surveys of this literature, see Barberà (2001) and Sprumont (1995).

I illustrate my proof strategy with two examples. In my first example, the
set of alternatives is a subset of the real line, the domain of the social choice
function consists of all the single-peaked preferences on this set, and the
range of the social choice function is an interval. The analysis of strategy-
proofness on the domain of single-peaked preferences was initiated by the
seminal article of Moulin (1980). Versions of the tops-only result for this
domain have been established by Barberà and Jackson (1994), Barberà, Gul,
and Stacchetti (1993), and Ching (1997), but their proofs differ from mine
in a number of respects.2 In my second example, the set of alternatives is a
metric space and the domain is the set of continuous preferences with unique
best alternatives on the range of the social choice function. This is the domain
considered by Barberà and Peleg (1990). They do not explicitly prove a tops-
only result for their domain, but the tops-only property is implied by their
main theorem.

I do not claim that my approach to proving that the tops-only property is
implied by strategy-proofness applies for all domains in which all preferences
have unique best alternatives on the range of the social choice function.
Indeed, it is clear that the domain must be reasonably rich in order for my
arguments to apply. However, my proof strategy does work on a number of
domains that have been considered in the literature. Further examples of
such domains are described in my concluding comments. Thus, the proof
strategy proposed here provides a unified perspective from which to view
many of the existing tops-only results. Hopefully, it will also facilitate the
development of tops-only theorems on domains that have not previously been
considered.

1The Gibbard (1973)–Satterthwaite (1975) Theorem shows that a strategy-proof social
choice function is dictatorial when the individual preferences are unrestricted and the
range of the social choice function contains at least three alternatives. An individual is a
dictator if for all preference profiles in the domain of the social choice function, the chosen
alternative maximizes this person’s preference on the range of the social choice function.

2A tops-only theorem for the related problem of allocating a divisible private good
among individuals with single-peaked preferences over own consumption had previously
been established by Sprumont (1991).
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In the next section, I set out the notation and basic definitions that are
employed in subsequent sections. In Section 3, I review a number of theo-
rems that identify some properties that strategy-proof social choice functions
must exhibit when individuals have the same set of admissible preferences.
My proof strategy is used in Section 4 to prove a tops-only theorem for single-
peaked preferences. The analogous theorem for continuous preferences with
unique best alternatives on the range of the social choice function is estab-
lished in Section 5. Some concluding remarks are provided in Section 6.

2. Notation and basic definitions

The set of individuals is N = {1, . . . , n}, where n is finite. The set of
alternatives is A. In order for the social choice problem to be nontrivial, it
is assumed throughout that |A| ≥ 2. Further assumptions about A will be
made in subsequent sections.

An ordering R on A is a reflexive, complete, and transitive binary relation.
The corresponding strict preference and indifference relations are denoted by
P and I, respectively. The set of all orderings of A is R. Preferences may
be restricted a priori. The domain of individual preferences is D ⊆ R. Each
individual h ∈ N is assumed to have a preference ordering Rh ∈ D. A profile
is an n-tuple of individual preference orderings R = (R1, . . . , Rn). The set
of admissible profiles is Dn.

By assuming that everyone has the same individual preference domain, I
am implicitly assuming that the alternatives are public in nature. If there are
private goods and individuals only care about their own consumption, then
the individual preference domains would need to be person-specific. The
assumption that the set of admissible preference profiles is the Cartesian
product of identical individual preference domains is used in a fundamental
way in establishing most of the theorems presented here.

A social choice function is a function f : Dn → A. The range of f is

Af = {x ∈ A | f(R) = x for some R ∈ Dn}.
If there are resource constraints that preclude some of the alternatives in A
from being feasible, as in Barberà, Massó, and Neme (1997), then we also
need to introduce the set of feasible alternatives Z ⊆ A. Preferences would
still be defined on all of A, but the range would then be a subset of Z. In this
article, I assume that A = Z and, henceforth, do not distinguish between A
and Z.
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The vector RH = (Rh)h∈H denotes the subprofile of preferences of the
individuals in H, where ∅ ⊂ H ⊂ N .3 When I want to focus on the subgroups
H and −H (the complement of H), a profile is written as R = (RH ;R−H).
For the social choice function f , the option set generated by RH is

Of
−H(RH) = {x ∈ A | x = f(RH ;R−H) for some R−H ∈ Dn−|H|}.

Of
−H(RH) is the set of alternatives that are attainable given that the indi-

viduals in H have reported the subprofile RH .
Given a subprofile RH ∈ D|H|, we can use f to define an (n−|H|)-person

social choice function g : Dn−|H| → A by setting

g(R−H) = f(RH ;R−H) for all R−H ∈ Dn−|H|. (1)

The option set Of
−H(RH) is simply the range of g. If |H| = n− 1, g is a one-

person social choice function. Although there is no social choice problem
if there is only one individual, in order to identify some of the properties
of option sets generated by the preferences of all but one individual, it is
sometimes necessary to consider one-person social choice functions. Except
when this is the case, it is assumed that n ≥ 2.

A social choice function f is manipulable by person h ∈ N at the profile
R ∈ Dn via R̄h ∈ D if f(R1, . . . , Rh−1, R̄h, Rh+1, . . . , Rn)P hf(R). If there
is no individual h ∈ N , no profile R ∈ Dn, and no preference R̄h ∈ D such
that f is manipulable by person h at R via R̄h, then f is strategy-proof.

For any R ∈ R and any nonempty set S ⊆ A, the top set of R in S is

τ(R, S) = {x ∈ S | xRy for all y ∈ S}.
The top sets considered in subsequent sections all have the property that they
contain exactly one alternative. A social choice function f has the tops-only
property if f(R) = f(R̄) for all R, R̄ ∈ Dn for which τ(Rh, Af ) = τ(R̄h, Af )
for all h ∈ N . That is, the only information about preferences that f is
sensitive to is each person’s top set on the range of f .

In some of the literature, the tops-only property is defined in terms of
the top sets for A, not Af . However, this alternative definition has typically
been adopted for problems in which the two definitions coincide. This will
be the case if either (i) A = Af or (ii) A 
= Af and the top set on Af is
uniquely determined by the top set on A for all admissible preferences. In
the former case, the social choice function is said to be nonimposed. The
latter case applies to the problem considered in Section 4.

3If H = {h}, the braces are omitted.
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3. General results

In this section, I review a number of basic properties of strategy-proof social
choice functions that hold quite generally when the domain is the Cartesian
product of a common individual preference domain. My discussion is based
on Section 2 of Le Breton and Weymark (1999). Their theorems are more
general than needed here, so, in most cases, I sacrifice some of this generality
in order to make the presentation more accessible. With the exception of
Proposition 1, versions of Le Breton and Weymark’s theorems had previ-
ously been established for a number of particular specifications of A and D.
Throughout this section, it is assumed that f : Dn → A is a strategy-proof
social choice function.

The first four propositions in this section make no assumptions about the
structure of the set of alternatives and the domain of the social choice func-
tion other than my maintained assumption that the domain is the Cartesian
product of a common individual preference domain.

Proposition 1 establishes that any admissible preference must have a well-
defined maximum on Af .

Proposition 1. Suppose that n ≥ 1. If a social choice function f : Dn → A
is strategy-proof, then for all R ∈ D, τ(R, Af ) 
= ∅.

The next proposition is a unanimity result. It shows that alternative x
must be chosen if everybody agrees that x is uniquely best on Af .

Proposition 2. Suppose that n ≥ 1 and that f : Dn → A is a strategy-proof
social choice function. If there exists an x ∈ Af such that τ(Rh, Af ) = {x}
for all h ∈ N , then f(R) = x.

Recall that the option set Of
−H(RH) is the range of the social choice

function g defined in (1). Note that if f is strategy-proof, then so is g. By
applying Proposition 2 to g, it follows that if the individuals not in H agree
that x is uniquely best on this option set, then it must be the social choice.

Proposition 3. Suppose that n ≥ 2 and that f : Dn → A is a strategy-proof
social choice function. For all nonempty H ⊂ N and all RH ∈ D|H|, if
τ(Rh, Of

−H(RH)) = {x} for all h 
∈ H, then f(R) = x.

Another implication of Proposition 2 is that if a subgroup agrees that x is
uniquely best on Af , then x must be in the option set that their preferences
generate.
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Proposition 4. Suppose that n ≥ 2 and that f : Dn → A is a strategy-proof
social choice function. For all nonempty H ⊂ N , if τ(Rh, Af ) = {x} for all
h ∈ H, then x ∈ Of

−H(RH).

For the final two propositions in this section, it is assumed that A is a
subset of a metric space.4 In many applications of these results, A is in fact a
subset of a Euclidean space. It is also assumed that the domain of f satisfies
a regularity condition. A social choice function f : Dn → A has a regular
domain if for all x ∈ Āf , there exists a continuous preference R ∈ D such
that τ(R, Āf ) = {x}.5 In other words, for any alternative x in the closure
of the range Āf , there is a continuous preference in the individual preference
domain that is uniquely maximized on Āf at x.

This domain regularity condition is satisfied in the problems considered
in Sections 4 and 5, as well as in many other problems considered in the
literature. However, there are problems of economic interest that satisfy my
other domain restrictions without being regular. For example, suppose that
A is the set of lotteries generated by three or more certain alternatives and
that D is the set of von Neumann–Morgenstern preferences on A. If the social
choice function is nonimposed, then the domain is not regular because only
a vertex of A can be a unique maximizer of a von Neumann–Morgenstern
preference on A.6

Proposition 5 demonstrates that the range of f must be a closed set
whenever A is a subset of a metric space, provided that the domain regularity
condition is satisfied.

4These results hold more generally for any first-countable topological space.
5A preference R ∈ R is continuous if for all x ∈ A, {y ∈ A | yRx} and {y ∈ A | xRy}

are both closed sets.
6Gibbard (1977), Ehlers, Peters, and Storcken (2002), and Dutta, Peters, and Sen

(2002), among others, model probabilistic social choice using a probabilistic decision
scheme, rather than a social choice function. A probabilistic decision scheme assigns a
probability measure over the set of certain outcomes A to each admissible profile of pref-
erences on A. Ehlers, Peters, and Storcken (2002) and Dutta, Peters, and Sen (2002) have
established tops-only theorems using this framework. A probabilistic decision scheme p
can be reformulated as a social choice function f for the set of probability measures ∆(A)
on A if the domain of f is permitted to include profiles of incomplete preference relations
on ∆(A). The function f associated with p is defined by ordinally extending each ad-
missible preference R on A to an incomplete preference Q(R) on ∆(A) using first-degree
stochastic dominance with respect to the upper contour sets of R. The top of Q(R) on
∆(A) is the probability measure that assigns the top of R on A probability 1. Thus, the
domain of f cannot be regular if, as in the articles cited above, random dictatorships are
in the range of the social choice function and the tops of the preferences on A are unique.
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Proposition 5. Suppose that n ≥ 1 and that A is a subset of a metric space.
If f : Dn → A is a strategy-proof social choice function with a regular domain,
then Af is closed.

This result is easily established by observing that if Af is not closed, then
for any x ∈ Āf\A, any y ∈ Af , and any continuous preference R ∈ D for
which τ(R, Āf ) = {x}, there must be alternatives close to x in A that are
strictly preferred to y by R. This implies that the top set of R on Af is
empty, contradicting Proposition 1.

Because the option set Of
−H(RH) is the range of the social choice function

g defined in (1) and because strategy-proofness and regularity are properties
that g inherits from f , it follows from Proposition 5 that option sets are
closed when A is a subset of a metric space and the domain is regular.

Proposition 6. Suppose that n ≥ 2 and that A is a subset of a metric space.
If f : Dn → A is a strategy-proof social choice function with a regular domain,
then for all nonempty H ⊂ N and all RH ∈ D|H|, Of

−H(RH) is closed.

4. Single-Peaked Preferences

In this section, A is assumed to be a subset of the real line R and preferences
are assumed to be single-peaked on this set. Depending on the application,
A could be a discrete or a connected set. For example, A could be a finite
set of candidates for election, arrayed on a left-right ideological spectrum.
Alternatively, A could be the nonnegative line R+, with x ∈ A interpreted
as being the quantity of some public good.

It is useful to have a definition of an interval of A that applies whether
or not A is itself an interval of R. A subset S of A ⊆ R is an interval of A
if [x, y] ∩ A ⊆ S whenever x, y ∈ S. In other words, for any two points in S,
all the points in A lying between x and y are also in S. The closed interval
of A containing all points between x and y is denoted xy.

A preference R on A is single-peaked if there exists an alternative π(R) ∈
A such that π(R)PxPy whenever x, y ∈ A and y < x < π(R) or π(R) <
x < y. The alternative π(R) is the peak of the preference R. The set of
single-peaked preferences on A is S.

It is assumed that the social choice function f is defined on the set of all
profiles of single-peaked preferences Sn. It is also assumed that the range Af

is an interval of A. Note that f has a regular domain, so by Propositions 5
and 6, the range and all option sets of f must be closed if f is strategy-proof.
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For all R ∈ S, the top set τ(R, S) is uniquely defined by the peak π(R) if S
is a closed interval of A. Suppose that x (resp. y) is the smallest (resp. largest)
point in S. We then have three cases. (i) If π(R) ∈ S, then τ(R, S) = {π(R)}.
(ii) If π(R) < x, then τ(R, S) = {x}. (iii) If π(R) > y, then τ(R, S) = {y}.
Thus, if two preferences in S have the same peak on A, they also have the
same top set on the range Af if the range is a closed interval of A.

To show that strategy-proofness implies the tops-only property on the do-
main of single-peaked preferences when the range of the social choice function
is an interval of A, I first establish a number of intermediate results. The
first of these results, Lemma 1, shows that when a set of individuals H agrees
that some alternative is uniquely best on the range of the social choice func-
tion, then how these individuals rank the other alternatives is irrelevant in
determining the option set that their preferences generate. In effect, Lemma
1 shows that option sets satisfy a tops-only property when there is agreement
among the individuals in H as to which alternative is best on the range. In
the particular case in which there is only one person in H, Lemma 1 says
that the option set generated by this person’s preference only depends on
his most-preferred alternative on the range, provided that there is only one
such alternative. The limited form of a tops-only property for option sets
established in Lemma 1 when |H| ≥ 2 is used in a fundamental way in the
proof of Lemma 2.

Lemma 1. Suppose that n ≥ 2, A ⊆ R, and Af is an interval of A. If
f : Sn → A is a strategy-proof social choice function, then for all nonempty
H ⊂ N and all RH , R̄H ∈ S |H| for which τ(Rh, Af ) = τ(R̄k, Af ) for all
h, k ∈ H, Of

−H(RH) = Of
−H(R̄H).

Proof. The lemma is trivial if |Af | = 1, so suppose that |Af | ≥ 2. Without
loss of generality, we can suppose that H = {1, . . . , k} with 1 ≤ k < n.
Consider the sequence of subprofiles:

RH,0 = (R1, . . . , Rk) = RH ,

RH,1 = (R̄1, R2, . . . , Rk),

...

RH,k−1 = (R̄1, . . . , R̄k−1, Rk),

RH,k = (R̄1, . . . , R̄k) = R̄.
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To establish the lemma, it is sufficient to show that

Of
−H(RH,h−1) = Of

−H(RH,h) (2)

for all h ∈ H.
On the contrary, suppose that there exists an h̄ ∈ H such that (2) does

not hold for h = h̄. Without loss of generality, we can suppose that there
exists a y ∈ Of

−H(RH,h̄−1) with y 
∈ Of
−H(RH,h̄).

By assumption, τ(Rh, Af ) = τ(R̄k, Af ) for all h, k ∈ H. Call this common
value x. Without loss of generality, we can suppose that x < y. By Propo-
sition 4, x ∈ Of

−H(RH,h̄−1) ∩ Of
−H(RH,h̄). By Proposition 6, Of

−H(RH,h̄) is a

closed set. Hence, in xy there is a unique closest point to y in Of
−H(RH,h̄).

Call this point z.7 This construction is illustrated in Figure 1 for the case in
which A = R. Because there is an open neighbourhood of y not contained in
Of

−H(RH,h̄), we can find a preference R∗ in S with peak at y that is maximized

at z in Of
−H(RH,h̄). By Proposition 3, we have f(RH,h̄−1; R∗, . . . , R∗) = y

and f(RH,h̄; R∗, . . . , R∗) = z. But zP h̄y because z lies between x (which
is h̄’s top alternative on the range) and y. Hence, h̄ can manipulate f at
(RH,h̄−1; R∗, . . . , R∗) via R̄h̄, contradicting strategy-proofness.

In order to see how the strategy used to prove Lemma 1 can be applied to
other domains, it is instructive to summarize the proof strategy without the
details that depend on the specific domain used in the lemma. To establish
the lemma, there is no loss of generality in supposing that only the preference
of one person, say person h̄, differs in the two subprofiles RH and R̄H .

By assumption, x is the uniquely-best alternative on the range of the
social choice function f for h̄ with either of his two preferences. Furthermore,
everyone else in H agrees that x is best on the range. Hence, by Proposition
4, x is in the option set facing the rest of the population with either of h̄’s
preferences. Contrary to the lemma (and without loss of generality), it is
supposed that there is an alternative y that is in the option set when h̄
has the preference Rh̄, but not when he has the preference R̄h̄. Because the
domain is regular, we know from Proposition 6 that the option set Of

−H(RH,h̄)
is closed.

The next step in the argument shows that there exists an alternative y 
∈
Of

−H(RH,h̄) and a preference R∗ in the domain that satisfies two properties:

(i) it is maximized at y and (ii) it is maximized on the option set Of
−H(RH,h̄)

7If |Af | = 2, z must be equal to x because x is the only alternative in Of
−H(RH,h̄).
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at a unique alternative z that is preferred to y by any preference whose most-
preferred alternative on the range is at x. How such a preference is identified
is domain specific. For the domain considered in this section, a preference
satisfying properties (i) and (ii) can be constructed for any y 
∈ Of

−H(RH,h̄).
However, on other domains, such a preference may only exist for some y 
∈
Of

−H(RH,h̄).
The proof is completed by supposing that everyone not in H has the

preference R∗. Because these individuals agree that z is the best alternative
in the option set Of

−H(RH,h̄), Proposition 3 implies that z must be chosen

when h̄ reports R̄h̄. Similarly, because y is their best alternative in the option
set Of

−H(RH,h̄−1), Proposition 3 implies that y must be chosen when h̄ reports

Rh̄. Which option set applies is determined by h̄’s report. By property (ii),
we have zP h̄y. Hence, h̄ can manipulate the outcome by reporting R̄h̄ when
his true preference is Rh̄, contradicting strategy-proofness. Therefore, when
a group of individuals H agrees that some alternative x is uniquely best on
the range, the option set they generate cannot depend on their rankings of
the other alternatives.

Other than assuming that the domain is regular, the only other feature
of the domain that has been used in the preceding argument is that there
is a preference in the domain satisfying properties (i) and (ii) for some y 
∈
Of

−H(RH,h̄). Thus, a version of Lemma 1 can be established for any regular
domain if for any subprofile RH in which the individuals in H agree that
there is an alternative x that is best on the range and for some y not in
the option set generated by this subprofile, there exists a preference in the
domain satisfying properties (i) and (ii).

The proof strategy used to establish Lemma 1 is based on the proof used
by Barberà and Peleg (1990) to prove a version of this lemma in which
|H| = 1 and the domain is the one considered in the next section. In their
proof, the preference R∗ is chosen so that property (ii) is satisfied with z = x
(the best alternative on the range for Rh̄). In general, it is not possible to
have z = x with single-peaked preferences.

Throughout this section, it is assumed that the range of the social choice
function is an interval. Lemma 2 demonstrates that this property of the range
is inherited by any option set generated by a single individual’s preference
when the domain is the set of single-peaked preferences and the social choice
function is strategy-proof.

Lemma 2. Suppose that n ≥ 2, A ⊆ R, and Af is an interval of A. If

10



f : Sn → A is a strategy-proof social choice function, then for all h ∈ N and
all Rh ∈ S, Of

−h(R
h) is a closed interval of A.

Proof. The proof is trival if |Af | ≤ 2, so suppose that |Af | ≥ 3. By Proposi-
tion 6, Of

−h(R
h) is a closed set. Contrary to the lemma, suppose that there

exists an h ∈ H and an Rh ∈ S such that this option set is not an interval.
Hence, there exist α, β, γ ∈ Af with α < β < γ such that α, γ ∈ Of

−h(R
h)

and (α, γ) ∩ Of
−h(R

h) = ∅. See Figure 2 for the case in which A = R. Be-
cause Af is a closed interval, τ(Rh, Af ) contains a single alternative, say x.
By Proposition 4, x ∈ Of

−h(R
h). Without loss of generality, we can suppose

that x ≥ γ (otherwise, the roles of α and γ can be reversed). Because Rh is
single-peaked, we thus have γP hα.

We can construct a preference Rα ∈ S with peak at β that is max-
imized on Of

−h(R
h) at α. Similarly, we can find a preference Rγ ∈ S

with peak at β that is maximized on Of
−h(R

h) at γ. By Proposition 3,
we have f(Rh; Rα, . . . , Rα) = α and f(Rh; Rγ, . . . , Rγ) = γ. Note that
β ∈ Af because Af is an interval. Hence, by Lemma 1, Of

h(Rα, . . . , Rα) =
Of

h(Rγ, . . . , Rγ). Strategy-proofness implies that Rh is maximized at α on
Of

h(Rα, . . . , Rα) and at γ on Of
h(Rγ, . . . , Rγ). Therefore, αIhγ, contradicting

our observation that γP hα.

Lemma 2 shows that there is a structural property of the range that is
inherited by the option sets generated by a single person’s preference when
the social choice function is strategy-proof. In this section, this structural
property is that the range is an interval. The regularity of the domain ensures
that this interval is closed.

For other domains for which a version of Lemma 2 can be established, it
is first necessary to identify what structural property to impose on the range
of the social choice function f . For example, when the set of alternatives is
R

m for some m ≥ 2, Le Breton and Weymark (1999) assume that the range
is what they call a coordinate hyperplane. With a coordinate hyperplane,
the values for some coordinates are unrestricted, whereas the values of the
other components are fixed.

For my proof strategy to apply, it is necessary that each preference R in
the domain has a unique maximum on any set of alternatives that satisfies
the structural property assumed for the range, and this maximum must only
depend on the top of R on the range. This restriction is satisfied here because
any single-peaked preference has a unique best alternative x on any closed
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interval of A and the only information about this preference that is needed
to identify x is its peak.

Lemma 2 is trivially true for any option set that only contains one al-
ternative because any single point in the range is a closed interval of A.
However, on other domains, an option set consisting of a single alternative
may not satisfy the structural property assumed for the range of the social
choice function. On such an option set, any preference necessarily has a
unique maximum determined by its top on the range, and that is all that
is needed to apply my proof strategy. As a consequence, on some domains,
the analogue to Lemma 2 shows that each option set generated by a single
person’s preference either preserves some structural property of the range or
it contains only a single alternative.

The basic proof strategy can be summarized as follows. Contrary to the
lemma, assume that there is an individual h and a preference Rh in the
domain for which the option set Of

−h(R
h) generated by Rh does not satisfy

the structural property stated in the lemma, but which contains at least two
alternatives. An implication of this assumption is that there is an alternative
β satisfying certain properties that is not in the option set Of

−h(R
h), but is in

the range Af .8 For example, in the proof of Lemma 2, β lies in the smallest
interval containing the option set. In general, the location of β relative to
the option set Of

−h(R
h) plays a role in constructing the preferences Rα and

Rγ described below, as does the fact (implied by strategy-proofness) that the
alternative x that maximizes Rh on the range is in this option set.

The proof proceeds by constructing two preferences Rα and Rγ in the
domain that are both maximized on the range at β, but are maximized
at distinct points α and γ on the option set Of

−h(R
h). The closure of the

option set, which by Proposition 6 is implied by strategy-proofness and the
regularity of the domain, is used in this step of the argument. The preferences
Rα and Rγ are chosen so that the alternatives α and γ are not indifferent
to each other according to the preference Rh. Without loss of generality,
these alternatives can be labelled so that γP hα. For example, in the proof of
Lemma 2, because the peak of the single-peaked preference Rh on the range
is x, if α and γ are chosen as in Figure 2, it is necessarily the case that Rh

does not regard α and γ as being indifferent.
When everyone other than h shares the preference Rα, they agree that α is

8For the domain considered in Section 5, β can be any alternative not in the option
set, but this is atypical.
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the uniquely-best alternative on the option set Of
−h(R

h). Proposition 3 then
implies that α must be chosen for the profile (Rh; Rα, . . . , Rα). Similarly, γ
must be chosen for the profile (Rh; Rγ, . . . , Rγ).

Consider a profile R̄ for which person h has the preference R̄h and every-
one else has the preference R̄. Suppose that R̄ has a unique maximum on the
option set Of

−h(R̄
h). Proposition 3 implies that the social choice f(R̄) must

simultaneously (i) maximize R̄h on the option set generated by the subprofile
R̄−h and (ii) maximize R̄ on the option set generated by R̄h. Thus, α must
maximize Rh on the option set Of

h(Rα, . . . , Rα) and γ must maximize Rh on
the option set Of

h(Rγ, . . . , Rγ).
Next, Lemma 1 is applied for a subgroup H consisting of everyone but

person h. Because the tops of Rα and Rγ on the range are the same, the
option sets Of

h(Rα, . . . , Rα) and Of
h(Rγ, . . . , Rγ) are identical. Because both

α and γ maximize Rh on this set, we must have αIhγ, contradicting the fact
that γP hα, which completes the proof.

If it is not possible to find preferences Rα and Rγ such that ¬(αIhγ),
it is nevertheless possible to employ the same basic proof strategy if there
is a preference R̃h in the domain with the same most-preferred alternative
on the range as Rh for which such preferences exist. By Lemma 1, Rh and
R̃h generate the same option set, so the preceding proof applies with R̃h

substituting for Rh.
The proof strategy used to establish Lemma 2 is based on the proof

used by Le Breton and Weymark (1999) to prove the analogous lemma in
their article. The main difficulties encountered in adapting this result to
other domains are (i) identifying the structural property of the range that is
preserved by non-singleton option sets generated by the preferences of single
individuals and (ii) constructing the preferences Rα and Rγ. As Le Breton
and Weymark’s article demonstrates, the latter constructions might be quite
involved.

Lemma 3 extends Lemma 2 by showing that any option set, not just those
generated by a single individual’s preference, must be an interval if the range
satisfies this property, the domain is the set of single-peaked preferences, and
the social choice function is strategy-proof.

Lemma 3. Suppose that n ≥ 2, A ⊆ R, and Af is an interval of A. If
f : Sn → A is a strategy-proof social choice function, then for all nonempty
H ⊂ N and all RH ∈ S |H|, Of

−H(RH) is a closed interval of A.

Proof. In view of Lemma 2, we only need to consider the case in which

13



|H| ≥ 2. First, assume that |H| = 2 and, without loss of generality, suppose
that H = {1, 2}. For any R1 ∈ S, define the (n − 1)-person social choice
function gR1 : Sn−1 → A by setting gR1(R2, . . . , Rn) = f(R1, . . . , Rn) for all
(R2, . . . , Rn) ∈ Sn−1. The range of gR1 is Of

−1(R
1), which, by Lemma 2, is

an interval of A. Applying Lemma 2 to gR1 , it follows that the option set
O

gR1

−H (R2) = Of
−H(R1, R2) is an interval of Of

−1(R
1). Hence, because Of

−1(R
1)

is an interval of A, Of
−H(R1, R2) is also an interval of A. Proceeding by

induction on the number of individuals in H, the conclusion follows.

Lemma 3 and its proof are due to Barberà and Jackson (1994). The rea-
soning used to establish this lemma applies whenever a structural property
of the range Af of a social choice function f is inherited by non-singelton
option sets generated by a single person’s preference; i.e., whenever an ana-
logue of Lemma 2 can be established for the domain being considered. When
the preferences of the individuals in some group H are fixed at say RH , the
social choice only depends on the preferences of the remaining individuals.
Thus, fixing RH defines an (n−|H|)-person social choice function gRH whose
arguments are the preferences of the individuals not in H. The range of this
function is simply the option set generated by the subprofile RH . When
H = {h}, by assumption, this option set exhibits the same structural prop-
erty as Af or it contains only one alternative. Applying the analogue of
Lemma 2 for the domain under consideration to the social choice function
gRh implies that any option set of gRh generated by the preference of someone
other than h must also either satisfy the same structural property or contain
only one alternative. In terms of the original social choice function f , it then
follows that any option set of f generated by the preferences of two indi-
viduals satisfies the structural property or it contains only one alternative.
An induction argument on the number of individuals in H then shows that
every option set either contains one alternative or it exhibits the structural
property assumed for Af .

With Lemmas 1, 2, and 3 in hand, it is now a simple matter to show that
the tops-only property is satisfied by a strategy-proof social choice function
on the domain of single-peaked preferences when the range is an interval.

Theorem 1. Suppose that n ≥ 2, A ⊆ R, and Af is an interval of A. If
f : Sn → A is a strategy-proof social choice function, then f satisfies the
tops-only property.

Proof. Consider any R, R̄ ∈ Sn for which τ(Rh, Af ) = τ(R̄h, Af ) for all
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h ∈ N . For any h̄ ∈ N , it is sufficient to show that if τ(Rh̄, Af ) = τ(R̄h̄, Af )
and Rj = R̄j for all j 
= h̄, then f(R) = f(R̄). By Lemma 3, the option set
Of

h̄
(R−h̄) is an interval. Further, by Proposition 6, this option set is closed.

Because Rh̄ and R̄h̄ are single-peaked with τ(Rh̄, Af ) = τ(R̄h̄, Af ), they have
the same unique maximum on Of

h̄
(R−h̄). By Proposition 3, we thus have

f(R) = f(R̄).

The proof strategy used to establish Theorem 1 is due to Le Breton and
Weymark (1999). This proof strategy can be applied whenever it is the case
that if two preferences in the domain have the same most-preferred alterna-
tive on the range of the social choice function, then they also have the same
most-preferred alternative on any option set generated by the preferences of
n − 1 individuals. For a given domain, whether this property of a social
choice function is satisfied depends on the structural properties of the option
sets. For any domain for which a version of Theorem 1 applies, the analogue
of Lemma 3 would be used to show that the relevant properties of an option
set are satisfied. To establish the theorem, there is no loss of generality in
supposing that only the preference of one person, say person h̄, differs in the
two profiles. Because these two preferences have the same top on the range,
they must be maximized at the same point x in the option set generated by
the other individuals’ preferences. By Proposition 3, x must be chosen in
both cases, from which the tops-only property immediately follows.

A single-peaked preference is monotonic and, hence, continuous on either
side of its peak. This limited form of continuity is used implicitly in the
proofs in this section to conclude that a single-peaked preference has a well-
defined maximum on any option set. However, a single-peaked preference
need not be continuous as it is possible for there to exist alternatives x, y,
and z such that (i) x is on the other side of the peak from y and z, (ii) y is
strictly preferred to x which is turn is strictly preferred to z, and (3) there
is no alternative on the same side of the peak as y and z that is indifferent
to x. It is readily verified that the proofs used to establish Lemmas 1–3 and
Theorem 1 also hold if the domain S is replaced with the set of continuous
single-peaked preferences.

When the range is not an interval, a strategy-proof social choice function
f defined on Sn need not satisfy the tops-only property. The problem is
that a single-peaked preference on A need not be single-peaked on the range
Af . Single-peakedness on the range is a property of f that has been used
to help prove that the tops-only property is implied by strategy-proofness.
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However, as shown by Barberà and Jackson (1994), if f is strategy-proof, on
the subdomain of preferences that are single-peaked on Af , f satisfies the
tops-only property. Letting f̂ denote the restriction of f to this subdomain,
it follows from Proposition 2 that the range of f̂ is the same as the range
of f . Hence, by defining intervals relative to Af (rather than with respect
to A), the arguments used here provide an alternative proof of Barberà and
Jackson’s theorem. No explicit range assumption is required for f̂ because
Af is trivally an interval of itself.

5. Continuous Preferences

I now assume that A is a metric space. Let C denote the set of continuous pref-
erences on A. Consider a strategy-proof social choice function f : Cn → A.
Barberà and Peleg (1990) have shown that f must be dictatorial provided
that the range Af of f contains at least three alternatives. When the do-
main is C, a dictatorial social choice function need not satisfy the tops-only
property. For example, suppose that everyone’s preference, including the dic-
tator’s, is maximized on Af at both x and y. In such a situation, information
about preferences other than the tops on the range can be used to break this
tie.

Let Ĉ be the set of continuous preferences on A that have unique most-
preferred alternatives on the range of f and let f̂ : Ĉn → A be the restriction
of f to this subdomain of preferences. Because f is strategy-proof, so is f̂ . To
prove their theorem, Barberà and Peleg first show that f̂ is dictatorial on the
subdomain Ĉ when |Af | ≥ 3. On this subdomain, a dictatorial social choice
function satisfies the tops-only property. In this section, I directly show that
f̂ has the tops-only property regardless of the number of alternatives in its
range.

Lemma 4, which is due to Barberà and Peleg (1990), shows that the range

Af̂ of f̂ coincides with Af .

Lemma 4. Suppose that n ≥ 2 and A is a metric space. If f : Cn → A is a
strategy-proof social choice function, then Af̂ = Af .

Proof. Because Ĉ ⊆ C, Af̂ ⊆ Af . Consider any x ∈ Af . By the definition of
Ĉ, there exists a preference R̄ ∈ Ĉ such that τ(R̄, Af ) = {x}. By Proposition

2, f̂(R̄, . . . , R̄) = x. Thus, x ∈ Af̂ . Hence, Af ⊆ Af̂ .
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Because f has a regular domain, by Proposition 5, Af is closed. Thus, by
Lemma 4, Af̂ is closed. Furthermore, Ĉ is a regular domain for f̂ . Because f̂
inherits strategy-proofness from f , it follows from Proposition 6 that all the
option sets of f̂ must be closed.

I now prove an analogue of Lemma 1 for continuous preferences. Lemma 5
demonstrates that if the social choice function f on the domain C is strategy-
proof, then on the subdomain Ĉ, the option sets of its restriction f̂ exhibit
the limited form of a tops-only property found in Lemma 1. That is, if
the individuals in subgroup H agree that the same alternative is best on the
range, then no other information about their preferences is used to determine
the option set generated by their subprofile.

Lemma 5. Suppose that n ≥ 2 and A is a metric space. If f : Cn → A
is a strategy-proof social choice function, then for all nonempty H ⊂ N
and all RH , R̄H ∈ Ĉ|H| for which τ(Rh, Af ) = τ(R̄k, Af ) for all h, k ∈ H,

Of̂
−H(RH) = Of̂

−H(R̄H).

Proof. The lemma is trivial if |Af | = 1, so suppose that |Af | ≥ 2. The proof
is identical to the proof of Lemma 1 (with f̂ substituted for f) up to the
point at which it is concluded that there exists a y ∈ Of

−H(RH,h̄−1) with y 
∈
Of

−H(RH,h̄). As in the proof of Lemma 1, let {x} = τ(Rh, Af ) = τ(R̄h, Af )
for all h ∈ H.

I now show that there exists a preference R∗ ∈ Ĉ that (i) has its unique
top at y and (ii) is maximized on the option set Of

−H(RH,h̄) at a unique
alternative z that is preferred to y by any preference whose most-preferred
alternative on the range is at x. Because the option set Of

−H(RH,h̄) is closed

and y 
∈ Of
−H(RH,h̄), it is easy to construct such a preference. The preference

R∗ is chosen so that it has two local maxima. The first is a global maximum
at y, which is strictly preferred to the second local maximum, which is located
at x. Because there exists an open neighbourhood containing y that has an
empty intersection with Of

−H(RH,h̄), such a “double-peaked” preference R∗

for which R∗ is maximized on Of
−H(RH,h̄) at x necessarily exists.9 Thus,

property (ii) is satisfied with z = x. The rest of the proof is identical to the
proof of Lemma 1.

The strategy used to prove Lemma 5 is essentially the same as the strategy
used to prove Lemma 1. The only substantive difference is how the preference

9For a more formal discussion of the construction of R∗, see Barberà and Peleg (1990).
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satisfying properties (i) and (ii) is identified, which is necessarily domain
specific.

Next, I need to identify a structural property of the range of f (and,
hence, of f̂), that is preserved by the non-singleton option sets of the social
choice function f̂ . As noted in the preceding section, for my proof strategy
to apply, it is necessary that each preference R in the domain has a unique
maximum on any set of alternatives that satisfies the structural property
assumed for the range, and this maximum must only depend on the top of
R on the range. For any closed strict subset S of the range containing at
least two alternatives and any alternative x ∈ Af \ S, using constructions
similar to the one employed in the proof of Lemma 5, it is possible to find
two preference in Ĉ with tops at x that are maximized at different points in
S. Hence, the only candidate for the required structural property is that of
identity. Thus, the analogue to Lemma 2 for the domain Ĉ shows that the
option set generated by a single individual’s preference is either all of the
range or a single alternative.10

Lemma 6. Suppose that n ≥ 2 and A is a metric space. If f : Cn → A is
a strategy-proof social choice function, then for all h ∈ N and all Rh ∈ Ĉ,

Of̂
−h(R

h) is either a singleton or all of Af .

Proof. The proof is trival if |Af | ≤ 2, so suppose that |Af | ≥ 3. By Proposi-

tion 6, Of̂
−h(R

h) is a closed set. Contrary to the lemma, suppose that there

exists an h ∈ H and an Rh ∈ S such that Of̂
−h(R

h) is neither a singleton nor

all of Af = Af̂ . By the definition of Ĉ, τ(Rh, Af ) contains a single alterna-

tive, say γ. By Proposition 4, γ ∈ Of̂
−h(R

h). Hence, there exist α, β ∈ Af

such that α ∈ Of̂
−h(R

h), α 
= γ, and β 
∈ Of
−h(R

h). Because τ(Rh, Af ) = {γ},
we must have γP hα.

As in the proof of Lemma 5, we can construct a “double-peaked” pref-

erence Rα ∈ Ĉ with peak at β that is maximized on Of̂
−h(R

h) at α and

a “double-peaked” preference Rγ ∈ Ĉ with peak at β that is maximized

on Of̂
−h(R

h) at γ. By Proposition 3, we have f̂(Rh; Rα, . . . , Rα) = α and

f̂(Rh; Rγ, . . . , Rγ) = γ. By Lemma 5, Of̂
h(Rα, . . . , Rα) = Of̂

h(Rγ, . . . , Rγ).

Strategy-proofness implies that Rh is maximized at α on Of̂
h(Rα, . . . , Rα)

10In the latter case, it follows from Proposition 4 that the option set generated by Rh

is h’s most-preferred alternative on the range.
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and at γ on Of̂
h(Rγ, . . . , Rγ). Therefore, αIhγ, contradicting our observation

that γP hα.

The proof of Lemma 6 differs from that of Lemma 2 in only two respects.
First, the alternative γ can be chosen to be equal to the top of Rh on the
range of f̂ . Second, the construction of the preferences Rα and Rγ are domain
specific.

Next, I show that all option sets, not just those generated by a single
individual’s preference, are either a singleton or all of the range Af .

Lemma 7. Suppose that n ≥ 2 and A is a metric space. If f : Cn → A is a
strategy-proof social choice function, then for all nonempty H ⊂ N and all

RH ∈ Ĉ|H|, Of̂
−H(RH) is either a singleton or all of Af .

Proof. In view of Lemma 6, we only need to consider the case in which
|H| ≥ 2. First, assume that |H| = 2 and, without loss of generality, suppose
that H = {1, 2}. For any R1 ∈ Ĉ, define the (n − 1)-person social choice
function gR1 : Ĉn−1 → A by setting gR1(R2, . . . , Rn) = f̂(R1, . . . , Rn) for all

(R2, . . . , Rn) ∈ Ĉn−1. The range of gR1 is Of̂
−1(R

1), which, by Lemma 6, is
either a singleton or all of Af . Applying Lemma 6 to gR1 , it follows that the

option set O
gR1

−H (R2) = Of̂
−H(R1, R2) is also either a singleton or all of Af . If

it is a singleton, then for any H̄ ⊇ H, Of̂
−H̄

(RH̄) must be as well, and the
proof is complete. If it is not, then proceeding by induction on the number
of individuals in H, the conclusion follows.

The property that the option sets exhibit differs in Lemmas 3 and 7, but
this does not affect the proof strategy used to establish these results.

Finally, using the same basic proof strategy as was used to prove Theorem
1, I show that the restriction to the domain Ĉ of a strategy-proof social choice
function on the domain C satisfies the tops-only property.

Theorem 2. Suppose that n ≥ 2 and A is a metric space. If f : Cn → A is a
strategy-proof social choice function, then f̂ satisfies the tops-only property.

Proof. The proof is the same as the proof of Theorem 1 (with f̂ substituted
for f) with the following modifications. Lemma 7 is used to conclude that

the option set Of̂
h̄
(R−h̄) is either a singleton or all of Af . Because Rh̄ and R̄h̄

have the same top on the range, in either case it trivially follows that they

are maximized at the same point in Of̂
h̄
(R−h̄).
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6. Concluding Remarks

Recall that a social choice function is nonimposed if its range is equal to the
set of alternatives A on which preferences are defined. The set of alternatives
A is a product set if it can be written as A =

∏m
i=1 Ai for some m ≥ 2. For

a variety of domains of preferences, the tops-only property has been shown
to follow from strategy-proofness when A is a product set and the social
choice function is nonimposed. Examples include: (i) the domain of separable
quadratic preferences on A when Ai = R for all i (Le Breton and Sen (1995)),
(ii) the domain of separable star-shaped preferences on A when Ai = R for
all i (Le Breton and Sen (1995)), (iii) the domain of multidimensional single-
peaked preferences when A is a grid; i.e., each set Ai consists of a finite
number of points with a fixed distance separating adjacent points (Barberà,
Gul, and Stacchetti (1993)), and (iv) the domain of separable preferences on
A when Ai = {0, 1} for all i (Barberà, Sonneneschein, and Zhou (1991)).11

In the latter two examples, it is supposed that preferences are strict, so that
no two alternatives are indifferent to each other.

Except for their analogues of Lemmas 1 and 5, Le Breton and Sen’s
method of proof for the domains of separable quadratic and separable star-
shaped preferences employs the same basic strategy used to prove the tops-
only property in Le Breton and Weymark (1999) and, hence, exhibits many
of the features of the proof strategy proposed here. It is possible to also prove
the analogues to Lemmas 1 and 5 for these two domains using my method,
but the alternative corresponding to y cannot be an arbitrary point lying
outside the option set Of

−H(RH,h̄). My proof strategy can also be used to
establish the tops-only property on the other domains described above.

My proof strategy presupposes that every preference in the domain has
a unique top on the range of the social choice function.12 As has been noted
above, when this is not the case, a strategy-proof social choice function need
not satisfy the tops-only property. For each individual h, strategy-proofness

11Le Breton and Sen’s theorems are implied by the main theorems in Border and Jordan
(1983), which characterize the set of strategy-proof social choice functions on the domains
of separable quadratic and separable star-shaped preferences that satisfy a unanimity-
respecting strengthening of nonimposition. Besides providing an explicit proof of their
tops-only theorems, Le Breton and Sen also provide simple proofs of Border and Jordan’s
theorems.

12This assumption is automatically satisfied if all preferences are asymmetric, as in
Barberà, Sonneneschein, and Zhou (1991) and Barberà, Gul, and Stacchetti (1993).
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requires that the chosen alternative maximizes h’s preference on the option
set he faces. If there is more than one alternative in this top set, then
a strategy-proof tie-breaking rule must be employed to select among these
alternatives. Barberà and Jackson (1994) have examined strategy-proof tie-
beaking rules for the domain of single-peaked preferences considered in Sec-
tion 4 when the range is not an interval of the real line.13 They have shown
that except for a limited and identifiable set of profiles, strategy-proof tie-
breaking rules satisfy the tops-only property.

The proofs presented here rely extensively on the propositions presented
in Section 3, and many of these propositions use the assumption that every-
one has the same set of admissible preferences in a fundamental way. As a
consequence, my proof strategy does not apply if individuals have different
sets of admissible preferences, as would be the case if there are private goods.
Nevertheless, tops-only theorems have been established in models with pri-
vate goods by, for example, Sprumont (1991) and Serizawa (1999), but the
proofs are model specific.14

It is my hope that the proof strategy proposed here will facilitate progress
in our understanding of strategy-proof social choice on domains other than
the ones considered in this article. As the analysis of the examples in Sections
4 and 5 demonstrates, the proofs of tops-only theorems when there are no
private components to preferences need not be model specific, nor need they
be particularly complicated.
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Laffond, G., 1980. Révelation des preferences et utilités unimodales. Thèse
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