
A solution to the random assignment problem over the complete

domain∗

Akshay-Kumar Katta† Jay Sethuraman ‡

January 2004

Abstract

We consider the problem of allocating a set of indivisible objects to agents in a fair and
efficient manner. In a recent paper, Bogomolnaia and Moulin consider the case in which all
agents have strict preferences, and propose the probabilistic serial (PS) mechanism; they
define a new notion of efficiency, called ordinal efficiency, and prove that the probabilistic
serial mechanism finds an envy-free ordinally efficient assignment. However, the restrictive
assumption of strict preferences is critical to their algorithm. Our main contribution is an
analogous algorithm for the complete domain in which agents are allowed to be indifferent
between objects. Our algorithm is based on a reinterpretation of the PS mechanism as an
iterative algorithm to compute a “flow” in an associated network. In addition we show
that on the complete domain it is impossible for any strategyproof mechanism to find a
(random) assignment that is both ordinally efficient and envy-free.

∗This research was supported by an NSF grant DMI-0093981 and an IBM partnership award. A version of

this paper was presented at the Fall 2003 Midwest Theory Conference in Bloomington, Indiana. We gratefully

acknowledge the comments of the participants of that conference.
†Department of Industrial Engineering and Operations Research, Columbia University, New York, NY; email:

ark2001@columbia.edu
‡Department of Industrial Engineering and Operations Research, Columbia University, New York, NY; email:

jay@ieor.columbia.edu

1

1 Introduction

The problem of allocating a number of indivisible objects to a number of agents, each desiring
at most one object, in a fair and efficient manner is fundamental in many applications. If
only one indivisible object must be allocated to n > 1 agents, there is really only one fair and
efficient solution: assigning the object to an agent chosen uniformly at random among the
n agents. When there are many objects the problem becomes substantially more interesting
for a number of reasons: (i) many definitions of fairness and efficiency are possible; (ii) richer
mechanisms emerge; and (iii) since preferences of the agents over the objects have to be solicited
from the agents, truthfulness of the allocation mechanism becomes important.

A natural approach to the problem of allocating multiple objects among many agents is
to generalize the simple “lottery” mechanism: order the agents uniformly at random and let
them successively choose an available object according to this (random) order; thus the first
agent picks his favorite object, the second agent picks his favorite object among the remaining
objects, etc. This is the random priority mechanism, and has a number of attractive features:
it is ex post efficient and truthful (or strategyproof: revealing true preferences is a dominant
strategy for all the agents); it is fair in the weak sense of equal treatment of equals (agents with
identical preferences are treated in an identical manner, a priori); however, it is not efficient
when agents are endowed with utility functions consistent with their preferences, that is, it is
not ex ante efficient. Moreover, it is not fair in the stronger sense of envy-freeness (described
later).

A second solution to this problem adapts the competitive equilibrium with equal incomes
(CEEI) solution for the fair division of unproduced commodities. This solution is envy-free
and ex ante efficient, but is not strategyproof. Moreover, the computational and informational
requirements of implementing this mechanism are prohibitive: it requires the solution of a
fixed-point problem, and requires a complete knowledge of the utility functions of the agents.
In contrast, the random priority mechanism is very simple to implement, and only requires the
agents to report their “preferences” over objects.

Our work is inspired by the remarkable paper of Bogomolnaia and Moulin [3], who proposed
a new mechanism (PS) for the random assignment problem. Their mechanism combines the
attractive features of the random priority mechanism and the CEEI solution: it requires the
agents to report their preferences over objects, not the complete utility functions, and yet
computes a random assignment that is ordinally efficient and envy-free. Ordinal efficiency is
stronger than ex post efficiency but weaker than ex ante efficiency; given the “ordinal” nature of
the input to the mechanism (only preference rankings are used, not complete utility functions),
this is perhaps the most meaningful notion of efficiency for an ordinal mechanism. Finally, the
mechanism proposed by Bogomolnaia and Moulin is not truthful, it satisfies a weaker version
of that property.

Unfortunately, the work of Bogomolnaia and Moulin [3] (and most of the existing work
so far) assumes that all preferences are strict, which is a fairly restrictive requirement in
many practical settings. Toward the end of their paper, they pose the problem of proposing

2

a similar mechanism for the complete domain, in which agents are allowed to be indifferent
between objects, as an intersting and challenging problem, worthy of further study. Our main
contribution is a solution to this problem that can be viewed as a natural extension of their PS
mechanism. Our proposed solution is ordinally efficient and envy-free. Furthermore we show
that for this richer preference domain, it is not possible for any mechanism to find an envy-free,
ordinally efficient assignment and still satisfy the weaker version of strategyproofness satisfied
by the PS mechanism in the strict preference domain. This observation indeed reveals that the
complete domain is subtler and fundamentally different from the strict preference domain for
the problems studied here. Our techniques rely on standard tools from network flow theory:
the mechanism we propose can be viewed as an iterative application of an algorithm to compute
the maximum flow in a parametric network. We first consider an extreme special case in which
each agent has a single indifference class: she finds a subset of objects to be acceptable, but is
indifferent between all of these objects. Our main algorithm is an iterative application of the
algorithm for this special case.

The remainder of this paper is organized as follows. In §2 we describe the problem, define
various notions of fairness and efficiency, and describe the notation. A description of relevant
past work appears in §3 followed by the impossibility result in §4. We consider the special case
of a single indifference class in §5, and show that the parametric max flow algorithm is ordi-
nally efficient, envy-free, and strategyproof. In fact, we show stronger forms of efficiency and
strategyproofness for this special case, which may be of independent interest. This algorithm
serves as the basis for the main result, described in §6, which also contains a characterization
of ordinally efficient assignments as well as a method to compute them.

2 Problem Description and Definitions

Problem Description. We consider the problem of allocating indivisible objects to agents so
that each agent receives at most one object. Agents have preferences over the objects, and the
allocation mechanism takes this profile of preferences as input. The preference ordering of each
agent is assumed to be transitive and connected (every pair of objects is comparable). Thus,
given a pair of objects, an agent strictly prefers one to the other or is indifferent between them;
both the indifference relation and the strict preference relation are transitive. The preference
ordering of agent i is denoted by ≥i, with >i and =i denoting the strict preference relation and
the indifference relation of agent i respectively. The set of all preference orderings is called the
preference domain, and denoted by A. Throughout the paper we let N be the set of agents
and A be the set of objects. For convenience, we assume that |N | = |A|, and we denote this
common cardinality by n; we also assume that agents’ preference lists are complete, meaning no
agent prefers being unassigned to receiving an object. These assumptions can be relaxed easily
by introducing dummy objects or dummy agents and appropriately modifying the preferences
of the exising agents or by introducing arbitrary preferences for the dummy agents.

A deterministic assignment is an allocation in which each agent receives exactly one object
and each object is allocated to exactly one agent. More formally, it is a one-to-one corre-

3

spondence between the set of agents, N , and the set of objects, A. Often, it is convenient
to think of a deterministic assignment as a 0 − 1 matrix, with rows indexed by agents and
columns indexed by objects: a 0−1 matrix represents a deterministic assignment if and only if
it contains exactly one 1 in each row and each column. (Such matrices are called permutation
matrices.) We let D be the set of all deterministic assignments.

A random assignment is a probability distribution over deterministic assignments; the
corresponding convex combination of permutation matrices is a stochastic matrix, whose (i, j)th

entry represents the probability with which agent i receives object j. For our purposes, different
random assignments that give rise to the same stochastic matrix are equivalent, so we do not
distinguish a random assignment from its associated matrix. Given a random assignment
matrix P , we let Pi be the ith row, which represents the allocation for agent i in this random
assignment. (An allocation is simply a probability distribution over the set of objects A.) We
let R be the set of all random assignments.

A random assignment mechanism is simply a mapping from An toR Our objective is to find
a random assignment mechanism satisfying some desirable efficiency and fairness properties. To
describe these properties formally, we extend the agents’ preferences over objects to preferences
over random assignments. Given two random assignments P and Q, an agent i prefers P to Q

(denoted P �i Q) if and only if the allocation Pi stochastically dominates the allocation Qi,
where the stochastic dominance is with respect to ≥i, agent i’s preference ordering over sure
objects. Formally,

P �i Q ⇐⇒
∑

k:k≥ij

pik ≥
∑

k:k≥ij

qik, ∀j ∈ A. (1)

If, in addition,
∑

k:k≥ij
pik >

∑
k:k≥ij

qik for some j ∈ A, then agent i strictly prefers P to Q,
and this is denoted by P �i Q; on the other hand, if

∑
k:k≥ij

pik =
∑

k:k≥ij
qik for all j ∈ A,

then agent i is indifferent between P and Q, and this is denoted by P ∼i Q. We emphasize
that this relation �i is only a partial order on the set of all random assignments, and so not
every pair of random assignments is comparable. Finally, a random assignment P dominates
a random assignment Q (denoted P � Q), if every agent prefers P to Q, that is, if P �i Q for
all i ∈ N . Even if P and Q are comparable for every agent, it may be the case that P 6� Q

and Q 6� P ; this is the case if some agent prefers P to Q and another prefers Q to P . We are
now ready to describe the notions of efficiency and fairness adopted here.

Efficiency. A random assignment P is ordinally efficient if it is not dominated by any other
random assignment Q. If we apply this definition to a deterministic assignment—a random
assignment in which the entries are 0 or 1—then we recover the familiar definition of Pareto
efficiency. Thus, ordinal efficiency can be viewed as a natural extension of Pareto efficiency
to the random assignment setting. Other extensions are possible and have been considered in
the literature; we briefly discuss two such extensions, one weaker and one stronger. A random
assignment is ex post efficient if it can be represented as a probability distribution over Pareto
efficient deterministic assignments. A random assignment is ex ante efficient if for any profile

4

of utility functions consistent with the preference profile of the agents, the resulting expected
utility vector is Pareto efficient: for any random assignment in which the expected utility of
some agent is strictly greater, there must be another agent whose expected utility is strictly
lower. It is easy to show that ex ante efficiency implies ordinal efficiency, which implies ex post
efficiency. The attractive feature of ordinal efficiency is that its informational requirements are
low: it relies only on agents’ preferences over objects, not on their preferences over random
allocations; yet, it is stronger than ex post efficiency (which also only requires preferences over
objects). For this reason we shall restrict ourselves to ordinally efficient assignments in the
rest of this paper.

Fairness. A random assignment P is envy-free if each agent prefers her allocation to that of
any other agent. Formally, P is envy-free if Pi �i Pi′ for all i, i′ ∈ N . A weaker version of envy-
freeness can also be defined: P is weakly envy-free if no agent strictly prefers someone else’s
allocation to hers, that is, if Pi′ 6�i Pi for all i, i′ ∈ N . A still weaker definition is possible too:
A random assignment P satisfies equal treatement of equals if agents with identical preferences
get identical allocations (Pi = Pi′ if >i=>i′). Again, it is easy to show that envy-freeness
implies weak envy-freeness and equal treatment of equals. (It is easy to see that weak envy-
freeness and equal treatment of equals are not comparable: it is easy to construct assignments
that satisfy one property but not the other.) In most of this paper, we shall restrict ourselves
to envy-free assignments.

Incentives. A random assignment mechanism is said to be strategyproof if revealing the true
preference ordering is a dominant strategy for each agent. Again a weaker notion of strate-
gyproofness can be defined: A mechanism is weakly strategyproof if by falsifying her preference
list an agent cannot obtain an allocation that she strictly prefers to her true allocation. Specif-
ically, consider the two preference profiles (>1, >2, . . . , >n) and (>∗

1, >2, . . . , >n) in which the
preferences of all the agents except agent 1 is fixed; let P and P ∗ be the respective random
assignments computed by the mechanism. The mechanism is strategyproof if P �1 P ∗. The
mechanism is weakly strategyproof if P ∗ 6�1 P .

3 Related Work

Several solutions have been proposed to the random assignment problem. The earliest work
on this problem is due to Hylland and Zeckhauser [11], who adapt the competitive equilib-
rium with equal incomes (CEEI) solution. The mechanism is “expensive” both in terms of its
informational requirements (needs utility functions of all individuals) and in terms of its com-
putational requirements (requires the solution of a fixed-point problem). the resulting solution
is envy-free and Pareto efficient with respect to the utility functions, but the mechanism is not
strategyproof. Gale [7] conjectured that this is the best possible, specifically, that no strate-
gyproof mechanism that elicits utility functions and achieves Pareto efficiency with respect to

5

these utility functions can find a “fair” solution, even in the weaker sense of equal treatment
of equals. This conjecture was proved by Zhou [19].

The prohibitive cost of CEEI motivated research on finding simpler mechanisms. A natural
candidate was the random priority (RP) mechanism: order the agents uniformly at random,
and let them successively choose an object in that order. This was analyzed by Abdulkadiroglu
and Sonmez [1] who showed that RP is equivalent to the unique core allocation of the Shapley-
Scarf housing market [18] in which each agent is endowed with an object chosen uniformly at
random; Roth and Postlewaite [17] had earlier shown that any Shapley-Scarf housing market
with strict preferences has a unique core, and Roth [16] proved that the core (from random
endowments) is stategyproof, anonymous (does not depend on the labels of the agents), and
ex-post Pareto efficient. The equivalence of RP with the core from random endowments implies
that RP itself is strategyproof, anonymous, and always an ex-post Pareto efficient solution; in
fact, Abdulkadiroglu and Sonmez showed [1] that the only Pareto efficient matching mecha-
nisms are serial dictatorships, which are like RP, except that the initial ordering of the agents
is chosen in a deterministic fashion. Zhou [19] showed that the solution computed by RP may
not be efficient if agents are endowed with utility functions consistent with their preferences.

Bogomolnaia and Moulin [3] considered mechanisms that combined the “best” of CEEI
and RP: the CEEI solution has strong efficiency and fairness properties, but is not strate-
gyproof; the RP solution is strategyproof but has weaker efficiency and fairness properties.
The key contribution of Bogomolnaia and Moulin [3] is the definition of an intermediate no-
tion of efficiency—ordinal efficiency–and natural mechanisms to find all ordinally efficient solu-
tions. They also showed that one such mechanism—the probabilistic serial (PS) mechanism—is
weakly strategyproof, and achieves an envy-free, ordinally efficient solution. In a result parallel
to Zhou’s impossibility theorem, they show that no strategyproof mechanism can achieve both
ordinal efficiency and fairness, even in the weak sense of equal treatment of equals. All of their
results were derived in the setting of a strict preference domain; the extension to the “full
domain” (that allows for “subjective indifferences”) was left as a challenging open problem at
the end of their work, and is addressed here.

The PS mechanism was introduced by Cres and Moulin [6] in the context of a scheduling
problem with opting out. In that model, every agent has a job that needs unit time on a
machine by a certain deadline; thus the objects are really possible time-slots to which jobs can
be assigned. Agents have strictly decreasing, positive, utilities for the time-slots to which their
jobs can be feasibly assigned, and a utility of zero for not being assigned a time-slot before their
deadline. (Thus agents’ preference orderings are identical; only their deadlines and utilities may
vary.) Cres and Moulin [6] show that in their model the PS solution stochastically domainates
the RP solution. Bogomolnaia and Moulin [4] introduced the concept of ordinal efficiency in
that model and provided two different characterizations of the PS mechanism: it is the only
mechanism that is ordinally efficient, strategyproof, and satisfies equal treatment of equals;
and it is the only mechanism that is ordinally efficient and envy-free.

6

Simultaneous Eating Algorithm. For our purposes, it will be useful to review the work
of Bogomolnaia and Moulin [3], who propose a class of algorithms, called simultaneous eating
algorithms, that generate all ordinally efficient assignments. The preference domain is the
set of all strict preference orderings, that is, the set of all permutations of the set A. Each
algorithm in this class is specified by a set of n eating speed functions wi, for i ∈ N . We can
view wi(t) as the speed at which agent i is allowed to consume objects at time t. We assume
that wi(t) ≥ 0 and ∫ t=1

t=0
wi(t)dt = 1.

For convenience, we also assume that wi(t) < ∞, although this is not necessary for the results
to hold. In the simultaneous eating algorithm for the profile of eating speeds (wi)i∈N , each
agent consumes her best available object at rate wi(t) at time t; each object can be viewed as
having size 1, and once a unit amount of an object has been consumed, it becomes unavailable
for further consumption. The probabilistic serial (PS) mechanism is obtained when all the
eating rate functions are identically 1.

This is best illustrated by an example from Bogomolnaia and Moulin [3]. Let N = 1, 2, 3, 4,
A = a, b, c, d, and consider the preference profile in which agents 1 and 2 rank the objects
a > b > c > d and agents 3 and 4 rank the objects b > a > d > c. Suppose all the eating rate
functions are identically 1. Initially, agents 1 and 2 eat object a, whereas agents 3 and 4 eat
object b; at t = 1/2, unit amounts of a and b are consumed, so a and b are no longer available;
from this point on, agents 1 and 2 eat object c (their best available object) and agents 3 and
4 eat object d. At t = 1, all of the objects are consumed, and each agent has consumed a unit
amount. The resulting random assignment is

a b c d

1 1/2 0 1/2 0
2 1/2 0 1/2 0
3 0 1/2 0 1/2
4 0 1/2 0 1/2

Consider the PS mechanism. As described, it isn’t clear how this mechanism can be readily
extended to handle indifferences. The difficulty is that if an agent is indifferent between a set
of objects at some point, it is not at all clear precisely which objects he should eat. This
ambiguity does not arise when preferences are strict; and resolving this issue is critical to
achieving ordinal efficiency. Later in the paper, we shall arrive at the PS mechanism from a
slightly different point of view, which will readily extend to the complete preference domain.

4 An Impossibility Result

Our first result establishes that on the complete preference domain, ordinal efficiency and
envy-freeness are incompatible with strategyproofness even in the weaker sense. This is in
contrast to the result of Bogomolnaia and Moulin [3], who showed that on the strict preference

7

domain, the PS mechanism is weakly strategyproof and achieves an envy-free, ordinally efficient
solution.

Example 1. Let N = {1, 2, 3}, A = {a, b, c}, and consider the following preference profile:

1 {a, b} c

2 a b c

3 a c b

Agent 1 is indifferent between a and b, but prefers both of these to c; agent 2 prefers a to b to
c, and agent 3 prefers a to c to b. It is easy to verify that

a b c

1 0 3/4 1/4
2 1/2 1/4 1/4
3 1/2 0 1/2

(2)

is ordinally efficient and envy-free. We first argue that this is the only assignment that is both
ordinally efficient and envy-free. To that end, we make a few observations. For agents 2 and
3 to not envy each other, we must have

p2a = p3a;

similarly, for agents 1 and 2 to not envy each other, we must have

p1a + p1b = p2a + p2b,

which also implies
p1c = p2c.

Also, ordinal efficiency implies that p1a = 0 and p3b = 0: if p1a > 0, then agent 1 can give up
her share of a in exchange for an equal amount of b from agents 2 or 3; if p3b > 0, agent 3
can give up her share of b in exchange for an equal amount of c from agents 1 or 2. In either
case, the resulting assignment dominates the original one. Taking all of these observations
together, we see that p2a = p3a = 1/2; as p3b = 0, p3c = 1/2 (because agent 3’s allocation
should sum to 1). Since p1c = p2c, we must have p1c = p2c = 1/4. This means that p1b = 3/4
and p2b = 1/4. Thus, the only envy-free, ordinally efficient assignment for this instance is the
one shown in (2).

Now suppose agent 1 reports that she prefers a to b to c. Then, envy-freeness implies
p1a = p2a = p3a = 1/3, and that agents 1 and 2 must receive identical allocations. As described
earlier, p3b must be 0, otherwise the assignment cannot be ordinally efficient. Thus, p3c = 2/3,
which implies p1c = p2c = 1/6, which implies p1b = p2b = 1/2. Thus, agent 1’s allocation is
(1/3, 1/2, 1/6) if she submits a preference list a > b > c; whereas her allocation is (0, 3/4, 1/4) if
she submits her true preference list {a, b} > c. Both these allocations are uniquely determined

8

by ordinal efficiency and envy-freeness, and the former stochastically dominates the latter. So
it is impossible to find an envy-free, ordinally efficient allocation even if the mechanism is only
required to be weakly strategyproof.

This also formally verfies our intuitive feeling that the strict preference domain is indeed
special, and allowing for indifferences changes the character of the problem.

5 Random Assignment: A Single Indifference Class

We first consider the special case of the random assignment problem over the domain in which
every agent has a single indifference class. Specifically, each agent declares a subset of the
objects as acceptable, but is indifferent between acceptable objects. Two reasons underlie our
focus on this special case: first, our solution to the overall problem is essentially an iterative
application of the ideas that help solve this special case; and second, stronger results can
be proved for this special case, which may be of independent interest. In particular, the
impossibility result of §4 does not hold, and in fact, it is possible to find a strategyproof
mechanism that achieves both ordinal efficiency and envy-freeness. We note that it is possible
to adapt random priority to this special case; we do not describe this adaptation because (a)
the results for the natural adaptation of the random priority mechanism are weaker; and (b)
our goal is to use this mechanism to eventually find an ordinally efficient assignment on the
complete domain, and we know from Bogomolnaia and Moulin [3] that the random priority
mechanism does not find an ordinally efficient assignment.

Model. Consider a scheduling problem in which jobs require unit processing times on a
machine. Each job has a set of acceptable time slots in which it can be processed, and the
utility associated with processing a job in any one of those time slots is the same. Thus, one can
view the jobs as agents; the time-slots as objects; and the acceptable time-slots for a particular
job as the set of acceptable objects for the corresponding agent. The assumption on utilities
means that every agent is indifferent between her acceptable objects. Our objective is to find
a strategyproof mechanism that is envy-free and ordinally efficient. For convenience, we relax
the assumption that the number of objects is the same as the number of agents in this section
alone; thus, each agent indicates only the subset of objects that she finds acceptable, each of
which gives unit utility. We assume that each agent finds at least one object acceptable; agents
who do not meet this assumption are irrelevant to the problem as they will necessarily have
zero utility in all solutions.

Let Li ⊆ A be the set of all acceptable objects for agent i; recall that she is indifferent
between any two objects in Li. Thus, for a random assignment P , the utility (or welfare-level)
ui of agent i is simply

∑
j:j∈Li

pij , the probability that she is assigned an acceptable object.

Algorithm and Analysis. We now propose a mechanism that computes a random assign-
ment for any given preference profile. We shall later show that the mechanism is strategyproof
and that the computed random assignment is both envy-free and ordinally efficient. In fact,

9

we shall prove some stronger properties of both the mechanism and the computed random as-
signment. The algorithm can be viewed as finding a specific type of flow in a suitably defined
network. (For background on network flow problems and techniques, we recommend [2].)

Suppose the preference profile in a given instance of the random assignment problem is
such that some set of three agents have only two acceptable objects among them. Then, it
is obvious that the combined utilities of these three agents cannot exceed 2. The general
algorithm for solving the problem builds on this trivial observation: it consists of locating such
a “bottleneck” subset of agents, and allocating their acceptable objects amongst them in a
“fair” way, eliminating these agents and their acceptable objects, and recursively applying the
idea on the remaining set of agents and objects. To formalize this, let Γ(Y) denote the set of
objects acceptable to at least one agent in Y , for any Y ⊆ N , and let

v = min
Y⊆N

|Γ(Y)|
|Y |

,

with X denoting the largest cardinality set Y ⊆ N with |Γ(Y)|/|Y | = v. If v ≥ 1, there are
more objects than agents competing for it, so each agent can be assigned a distinct object,
and there is nothing more to do. If v < 1, the algorithm allocates the objects in Γ(X) among
the agents in X such that the utility of any agent i ∈ X is exactly v; such an assignment
would completely use up the objects in Γ(X), so none of these objects can even be fractionally
assigned to the other agents; moreover, the agents in X cannot be assigned any other object.
Thus, the agents in X and the objects in Γ(X) can be removed from the problem as they play
no further role. The same calculations are carried out in the residual problem with agents
N \ X, objects A \ Γ(X), and the preference profiles of the agents restricted to the these
“currently available” objects.

The only remaining details are the identification of the “bottleneck” subset X of agents,
and the precise allocation of the “bottleneck” set of objects, Γ(X), to the agents in X. It is an
elementary exercise to show that this in fact follows from the max-flow min-cut theorem [2].
We provide the complete argument for the sake of completeness.

Consider the bipartite graph with nodes corresponding to N and A, and edges (i, j) for
i ∈ N, j ∈ Li. Let these edges have infinite capacity. Augment the network by adding a source
node s, a sink node t; edges with capacity λ ≥ 0 going from s to each node in N , and edges
with unit capacity going from each node in A to t. A cut in this graph is a collection of nodes
that contain s but not t; the capacity of a cut is the sum of the capacities of the edges from
the “s-component” to the “t-component.” A fundamental theorem in network flow theory is
the max-flow min-cut theorem, which states that the size of the maximum flow from s to t in
a given directed network is equal to the minimum capacity cut separating s from t.

We view λ ≥ 0 as a parameter, and study the minimum-capacity s − t cuts (or simply
minimum cuts) in the network as λ is varied. For the application of interest, it will not be
necessary to consider λ > 1, so we may assume that λ ∈ [0, 1]. Fix any such λ. Any cut
separating s from t must be of the form s∪X ∪W for some X ⊆ N and W ⊆ A. Furthermore
since the “original” edges (i.e. those from the agents to their acceptable objects) have infinite

10

capacity, W ⊇ Γ(X) in any minimum cut. The capacity of such a cut is then

λ(|N | − |X|) + |W |,

which shows that W = Γ(X) in any minimum cut. Thus, any minimum cut is completely
determined by the set X and is of the form s ∪X ∪ Γ(X) with capacity

λ(|N | − |X|) + |Γ(X)|.

When several minimum cuts exist, we pick the minimum-cut with the largest |X|. (This is
unique.)

For λ sufficiently close to 0, it is clear that X = ∅ gives the minimum cut, whose capacity
grows linearly in λ. We consider two possibilities, depending on whether or not X = ∅ is a
minimum cut for λ = 1. If it is, it will be clear from the following argument that each agent can
be assigned an acceptable object with probability 1, and there is nothing more to do. If X = ∅
is not a minimum cut for λ = 1, let λ∗ ∈ (0, 1) be the smallest value of λ for which X = ∅ is not
the minimum cut, that is, some set X with |X| > 0 is also a minimum cut. (By our convention,
X = ∅ could be a minimum cut, but is not the only one.) Let X∗ be the minimum cut for
λ = λ∗. By definition, for any λ < λ∗, X = ∅ was the minimum-cut, with capacity λ|N |. It is
clear (by continuity) that the capacity of the minimum-cut for λ = λ∗ must be exactly λ∗|N |;
since X∗ is a minimum-cut for λ = λ∗ and has capacity λ∗(|N | − |X∗|) + |Γ(X∗)|, we have

λ∗|N | = λ∗(|N | − |X∗|) + |Γ(X∗)|,

from which we get

λ∗ =
|Γ(X∗)|
|X∗|

. (3)

Let λ = λ∗, and consider any Y ⊆ N ; the capacity of the cut s ∪ Y ∪ Γ(Y) is simply
λ∗(|N | − |Y |) + |Γ(Y)|, which must be at least as large as the minimum-cut capacity λ∗|N |.
This, combined with Eq. (3), establishes

λ∗ = min
Y⊆N

|Γ(Y)|
|Y |

; X∗ = arg min
Y⊆N

|Γ(Y)|
|Y |

.

By our convention, X∗ is the largest cardinality subset of agents with this property.
Consider the network with λ = λ∗. By the max-flow min-cut theorem, the maximum flow

from s to t in this network matches the capacity of the minimum cut, which equals λ∗|N |.
However, every edge from s has capacity exactly λ∗ (and there are exactly |N | such edges), so
all of these edges carry a flow of λ∗ in a maximum flow; in particular, λ∗ units reach the sink
from each i ∈ X∗, which gives us the required random assignment.

The quantity λ∗ is the (smallest) breakpoint of the min-cut capacity function of the para-
metric network. The breakpoints of the min-cut capacity function of a parametric network are
well-understood [8]. Efficient algorithms to compute these breakpoints have been discovered
by several researchers, see [2]; the fastest of these methods, discovered by Gallo, Grigoriadis

11

and Tarjan [8], is based on the preflow-push algorithm for the maximum flow problem due
to Goldberg and Tarjan [9]. Gallo et al. [8] propose algorithms to find maximum flows in
an n-node, m-arc network for O(n) values of the parameter in O(nm log(n2/m)) time. In
addition, they study the min-cut capacity as a function of a parameter λ and propose al-
gorithms to compute its smallest (or largest) breakpoint in O(nm log(n2/m)) time; a more
complicated algorithm but with the same running time in fact finds all the breakpoints of the
min-cut capacity function. We note that variants of this problem have been studied in the
operations research literature as “flow sharing” problems in the context of network transmis-
sion [5, 12, 13, 14, 15] and network vulnerability [10]. For this reason, we do not describe the
algorithms to compute the breakpoints and the associated bottleneck sets, but rather appeal
to these results to conclude that these can be found efficiently.

Properties. We now proceed to formally prove some attractive properties of the random
assignment found by the parametric max-flow algorithm. Let λ1, λ2, . . . , λr be the successive
“breakpoints” found by the algorithm, with X1, X2, . . . , Xr being the associated sets of agents.
Let P = (pij) be the random assignment found by the parametric max-flow algorithm. (Thus,
for agent i,

∑
j∈Li

pij = λi.)

Theorem 1 The random assignment computed by the parametric max-flow algorithm lexico-
graphically maximizes the n-vector, whose ith component is the ith smallest utility. In partic-
ular, the random assignment is ordinally efficient.

Proof. From the description of the algorithm, it is clear that 0 < λ1 < λ2 < . . . < λr ≤ 1:
When λ = λ1, the agents in X1 collectively use up all the objects in Γ(X1), but the remaining
agents are able to still send (more than) λ1 units of flow to the sink. Consider the agents in X1.
It is clear that these agents can collectively achieve a utility of at most λ1|X1|, so no agent in
X1 can achieve a utility greater than λ1 without some other agent achieving a utility less than
λ1. Thus, the proposed algorithm is maximin fair: it maximizes the welfare of the agent who
is worst-off. Inductively, it follows that for any r′ ≤ r, among all assignments that guarantee a
utility of λi for agents in Xi, i = 1, 2 . . . , r′−1, the agents in Xr′ achieve the maximum possible
utility. This proves that the utility vector– arranged in nondecreasing order– associated with
the random assignment found by the algorithm is lexicographically optimal. Ordinal efficiency
of the is immediate: for otherwise, there is some other assignment in which no agent is worse-
off and at least one agent is strictly better off; such an assignment would have a utility vector
that is lexicographically larger, which is not possible.

We note that a version of this result has been observed in the network-flow literature [14,
15, 8].

Theorem 2 The random assignment P computed by the parametric max-flow algorithm is
envy-free.

12

Proof. An agent k ∈ Xi cannot envy an agent k′ ∈ X1 ∪X2 ∪ . . . ∪Xi−1 because∑
j∈Lk

pk′j ≤
∑
j∈A

pk′j < λi,

so k strictly prefers her allocation to that of any agent k′ ∈ X1 ∪X2 ∪ . . . ∪Xi−1. Moreover,
k cannot envy an agent k′ ∈ Xi+1 ∪ Xi+2 ∪ . . . ∪ Xr because none of these agents can be
assigned to any object that k finds acceptable. (When k is assigned an object, any acceptable
object that has not been allocated to agents in X1, X2, . . . , Xi−1 will be completely allocated
to agents in Xi and will not be available at the next stage.)

Let S 6= ∅ be any coalition of agents, with Li and L′
i being the true and stated preferences

of agent i ∈ S. We now consider the outcome of the algorithm for the preference profiles
(Li, i ∈ S;Lk, k ∈ N \ S) and (L′

i, i ∈ S;Lk, k ∈ N \ S). We view the first as the “true”
preference profile and the second as the “stated” preference profile. A mechanism is said to be
group strategyproof if it is not possible for any coalition S to improve its allocation (meaning,
each agent in S is at least as well off, and one of them is strictly better off) by stating false
preferences.

We next show that the parametric max-flow algorithm is group strategyproof.

Theorem 3 The parametric max-flow mechanism is group strategyproof.

Proof. Consider the outcome of the parametric max-flow algorithm on the profiles (Li, i ∈
S;Lk, k ∈ N \ S) and (L′

i, i ∈ S;Lk, k ∈ N \ S) for some S ⊆ N . Let λ1, λ2, . . . , λr be the
successive breakpoints found by the parametric max-flow algorithm on the true preference
profile, with X1, X2, . . . , Xr being the associated sets. We first claim that no agent in X1 can
strictly benefit by being a part of S.

Suppose otherwise. Since the collective true utilities of the agents in X1 is at most λ1|X1|,
if one of the agents in X1 achieves a strictly larger utility, then some agent in X1 must achieve
a strictly smaller utility. Such an agent must be truthful, by the definition of group strate-
gyproofness. Let W1 be the set of (truthful) agents whose utility is strictly less than λ1. Since
every other member of X1 achieves a utility of at least λ1, the parametric max-flow algorithm
will process all of the agents in W1 before processing any agent in X1 \W1; in particular, no
member of X1 \ W1 can be assigned an object in Γ(W1). So the collective utility achievable
by the agents in X1 \W1 is at most |Γ(X1)| − |Γ(W1)|. Because each agent in X1 \W1 has a
utility of at least λ1 with one of them having a strictly better utility, we must have

|Γ(X1)| − |Γ(W1)| > (|X1| − |W1|)λ1 = (|X1| − |W1|)
|Γ(X1)|
|X1|

; (4)

this implies
|Γ(W1)|
|W1|

<
|Γ(X1)|
|X1|

, (5)

which contradicts the fact that X1 is the bottleneck subset of agents. So no agent in X1 can
strictly benefit by lying.

13

We now use induction: suppose that no agent in X1, X2, . . . , Xk can strictly benefit by
lying. Then, the utility of any agent in Xi is exactly λi, for i = 1, 2, . . . , k. Thus, none of the
objects in Γ(X1)∪Γ(X2)∪. . .∪Γ(Xk) can be allocated to any agent outside of X1∪X2∪. . .∪Xk.
Therefore, the agents in Xk+1 together can collectively achieve a utility of at most λk+1|Xk+1|;
for an agent in Xk+1 to achieve a strictly larger utility, some other (truthful) agent must
achieve a strictly smaller utility, which means Wk+1 must be nonempty. Using Wk+1 and Xk+1

instead of W1 and X1 in Eqs. (4) and (5), we observe that this is not possible.

6 Random Assignment: The complete domain

We now extend the parametric max-flow algorithm to compute an envy-free, ordinally efficient
assignment on the complete domain. (In view of the impossibility result of §4, the algorithm
cannot be strategyproof.) It will be instructive to first consider the strict preference domain and
rederive the PS mechanism as an iterative application of the parametric max-flow algorithm.

Another view of PS. Bogomolnaia and Moulin [3] proposed the PS algorithm for the
special case in which each agent has strict preferences over the objects. In the PS algorithm,
each object is assumed to have a size of 1 and is initially available for consumption; each
agent consumes her best available object at a unit rate; and an object becomes unavailable
for consumption, once a unit amount of that object has been eaten. This algorithm can be
viewed as an iterative application of parametric maximum flow algorithm that terminates in
(at most) n phases. The network structure remains the same as in Section 5, with the obvious
modification that each agent now has only one outgoing arc—to her best available object;
the capacities of the arcs from the source to the agents and the set of available objects vary
from phase to phase. In phase k, the capacity of the arc from the source to agent i ∈ N is
c(i, k) + λ, where c(i, k) is a constant determined at the end of the (k − 1)st phase, and λ is
the parameter. Let λ∗k be the smallest breakpoint in the associated parametric maximum flow
problem. Note that λ∗k is the smallest value of λ for which some subset B of the available
objects is completely consumed; this set B can be viewed as the bottleneck set of objects. If
i’s best object in this phase belongs to this set B, then then we give her c(i, k) + λ∗k units of
this object, and set ci,k+1 = 0 (this is because i has no share over the other remaining objects
as she has not yet started “eating” them); if not we set c(i, k+1) = c(i, k)+λ∗k (this is because
i has already “eaten” this amount of her best available object at the end of this phase, and
this object will still be available for consumption, possibly by other agents as well; in a sense,
this is like pledging an amount of c(i, k) + λ∗k to agent i). The objects in B are removed from
the set of available objects, and we move to the (k + 1)st phase. Since |B| ≥ 1, the procedure
ends in at most n phases. We set c(i, 1) = 0 for all i ∈ N , as initially none of the agents has
started eating. We record these observations formally in Figure 1; its equivalence with the
PS mechanism of Bogomolnaia and Moulin [3] is evident. Let H(i, A′) denote agent i’s most
preferred object in A′ and let P be the assignment matrix.

14

PS

1. Initialize A′ = A; P ≡ 0; c(i, 1) = 0 for all i ∈ N ; and k = 1.

2. Construct G with each agent i ∈ N pointing to the object H(i, A′); every
object in A′ connected to a common sink through an arc of capacity 1 ; and
every agent i ∈ N connected from the source through an arc of capacity
c(i, k) + λ .

3. Solve the corresponding parametric max-flow problem. Let λ∗k be the smallest
break point and B be the bottleneck set of objects.

4. For an agent i, if H(i, A′) ∈ B then update Pi,H(i,A′) = c(i, k) + λ∗k and
c(i, k + 1) = 0 ; if not update c(i, k + 1) = c(i, k) + λ∗k .

5. Update A′ = A′ − B and k = k + 1. If A′ 6= φ then go to step 2. Else,
terminate the algorithm.

Figure 1: An alternative view of the PS algorithm

Algorithm for the complete domain and its analysis. The main difficulty in extending
the PS algorithm (as presented by Bogomolnaia and Moulin [3]) to the complete domain
is as follows: if an agent is indifferent between many objects, it is not at all clear which of
these objects she should consume, and at what rate. Consider an agent who is indifferent
between two objects a and b, and suppose there are no other indifferences in the problem.
This agent has three options: to eat a alone, to eat b alone, and to eat both of these objects.
It is easy to construct examples in which each of these options is the unique solution. Also,
note that in the last case, there are actually infinitely many possibilities because the rate at
which the agent eats the two objects could be anything as long as they sum to 1. Thus, the
“combinatorial” approach to this problem seems to present inherent difficulties. However, the
alternative view of the PS mechanism—a minor change in our point of view—avoids these
difficulties: the crucial step in the algorithm is solving the parametric max flow problem of
an associated network, which can be done easily even when each agent points to (has arcs to)
several objects. This algorithm, called EPS for “extended” PS, is simply a natural combination
of the ideas in §5 and the alternative view of PS, and closely follows the algorithm described
in Figure 1: the only change from this algorithm is in Step 2, where each agent now points to
her most preferred set of objects. A formal description appears in Figure 2; as before, we let
H(i, A′) be agent i’s most preferred set of objects in A′ and let P be the assignment matrix.

Note that in this algorithm, the most expensive computation is solving the parametric max-
imum flow problem. As noted before, the complexity of parametric maximum flow algorithm
is O(nm log(n2/m)), where ’m’ is the number of arcs in the network. Therefore, the overall
complexity of the algorithm EPS is O(

∑r
k=1 n2mk log(n2/mk)), where mk is the number of

15

EPS

1. Initialize A′ = A; P ≡ 0; c(i, 1) = 0 for all i ∈ N ; and k = 1.

2. Construct G with each agent i ∈ N pointing to the objects H(i, A′); every
object in A′ connected to a common sink through an arc of capacity 1 ; and
every agent i ∈ N connected from the source through an arc of capacity
c(i, k) + λ .

3. Solve the corresponding parametric max-flow problem. Let λ∗k be the smallest
break point and B be the bottleneck set of objects.

4. For an agent i, if H(i, A′) ⊆ B then update c(i, k + 1) = 0 and give her an
amount c(i, k)+λ∗k from the set H(a,A′) ; if not update c(i, k+1) = c(i, k)+λ∗k

5. Update A′ = A′ − B and k = k + 1. If A′ 6= φ then go to step 2. Else,
terminate the algorithm.

Figure 2: The extended PS algorithm for the complete domain

arcs in the kth phase and r is the total number of phases.

Properties. We now proceed to prove that the random assignment P generated by the
algorithm EPS is ordinally efficient and envy-free. Let P be a random assignment matrix over
the preference profile ≥. Given this, we define a binary relation τ(P,≥) over the set of objects,
A, as follows:

∀a, b ∈ A : aτ(P,≥)b ⇐⇒ { ∃ i ∈ N : a ≥i b and pib > 0} (6)

The binary relation is strict if in the above expression a >i b, that is, an agent i strictly
prefers a to b and pib > 0. To save notation, we denote the above relation in short by aτb

when the random assignment matrix is clear from the context. The relation τ(P,≥) is cyclic
if there exists a cycle of relations a1τa2,, a(r−1)τar,, aRτa1 with at least one of these
binary relations being strict. We next characterize ordinally efficient assignments. (This result
parallels the characterization of ordinaly efficiency in the strict preference domain due to
Bogomolnaia and Moulin [3].)

Lemma 4 The random assignment P is ordinally efficient w.r.t. the profile ≥ if and only if
the relation τ(P,≥) is acyclic.

Proof. Statement only if :Suppose that the relation τ has a cycle: a1τa2; a2τa3; ...; aR−1τaR; aRτa1.
We assume, without loss of generality, that the first relation is a strict one. By definition of
τ , we can construct a sequence i1, ..., iR in N such that: pi1,a2 > 0 and a1 >i1 a2; pi2,a3 > 0
and a2 ≥i2 a3; ...; piR,a1 > 0 and aR ≥iR a1 (note that the agents ik, k = 1, ..., R, may not

16

be all different). Choose δ > 0 such that δ ≤ pikak+1
for k = 1, ..., R with the understanding

aR+1 = a1. Then, we define the matrix Q as follows: Q = P +∆ where δikak
= δ; δikak+1

= −δ

for k = 1, ...,K − 1 and δia = 0 otherwise. By construction, Q is a bistochastic matrix. We
go from Pik to Qik by shifting some probability from object ak+1 to an object ak, which is at
least as good as ak+1 according to ik. Moreover, this preference is strict for k = 1. Therefore,
Q stochastically dominates P in a strict sense (if the same agent appears more than once, we
use the transitivity of stochastic dominance). Hence, P cannot be ordinally efficient.

Statement if :Suppose Q stochastically dominates P in a strict sense wrt ≥. Let i1 be an
agent such that Qi1 6= Pi1 (we can always do this because of definition of strict stochastic
dominance). By definition of stochastic dominance, there exist two objects a1, a2 such that

a1 >i1 a2; qi1,a1 > pi1,a1 and qi1,a2 < pi1,a2 (7)

In other words, a1τ(P,≥)a2 in a strict sense. Next by feasibility of Q, there exists an agent i2
such that qi2,a2 > pi2a2 . Repeating the same argument, we find an a3 such that a2 ≥i2 a3 and
pi2,a3 > qi2,a3 ; and hence a2τa3. Due to finiteness of A and N , we will eventually find a cycle
of the relation τ .

Theorem 5 The algorithm proposed is ordinally efficient.

Proof. Suppose not. Then, by Lemma 4, we can find a cycle in the relation τ over the
assignment matrix Q: a1τa2, .., arτar+1, .., aRτa1. Without loss of generality, assume that the
last binary relation is strict. Let ir be an agent such that ar ≥ir ar+1 and pir,ar+1 > 0
(r ∈ 1, .., R, with the convention aR+1 = a1). Let sr be the phase of the EPS algorithm during
which ar was in the bottleneck set. Since ar is at least as good as ar+1 for the agent ir, and
ir gets a positive amount of ar+1 , ar+1 could not have been in the bottleneck set before ar.
Therefore, sr ≤ sr+1. Moreover, if ar is strictly preferred over ar+1 , then sr < sr+1. Note that
sR+1 = s1.Therefore, s1 ≤ s2 ≤ ≤ sR < s1. But, this is a contradiction because s0 = sR+1.
Therefore, the algorithm is ordinally efficient.

Next, we prove the that assignment P found by algorithm EPS is envy-free.

Theorem 6 The matrix P given by the algorithm EPS is envy-free.

Proof. Let the preference profile be ≥. Consider any two agents i, j ∈ N and an object
a ∈ A. Define the set M(i, a) = {b : b ≥i a}. Let k be the first phase of the algorithm by the
end of which all the objects in M(i, a) are used up. Note that in the first k phases, i will be
allocated objects only from the set M(i, a). Therefore, the number of units allocated to i from
the objects in M(i, a) is

∑
l∈M(i,a) pi,l = λ∗1 + ... + λ∗k ≥

∑
l∈M(i,a) pj,l (since j could have used

some other objects outside the set M(i, a)). Therefore, i cannot envy j and hence EPS always
finds an envy-free random assignment.

17

Illustrative example. Let N = {1, 2, 3}, A = {a, b, c}, and consider the following preference
profile:

1 {a, b} c

2 a b c

3 a c b

Agent 1 is indifferent between a and b, but prefers both of these to c; agent 2 prefers a to b to
c, and agent 3 prefers a to c to b. At the beginning of first phase, agent 1 is connected to both
a and b; agents 2 and 3 are connected only to a. The smallest breakpoint in the parametric
maximum flow problem is λ∗1 = 1

2 . The corresponding minimum cut is s ∪ {2, 3} ∪ {a} (
following the notation of section 5). We update p2,a = 1

2 ; p3,a = 1
2 ; c(1, 2) = 1

2 ; c(2, 2) = 0;
c(3, 2) = 0; A′ = {b, c}. At this stage, a is fully consumed. In the second phase agents 1 and
2 are connected to b and agent 3 is connected to c. The smallest breakpoint is λ∗2 = 1

4 and
the corresponding minimum cut is s ∪ {1, 2} ∪ {b}. We update p1,b = 3

4 ; p2,b = 1
4 ; c(1, 3) = 0;

c(2, 3) = 0; c(3, 3) = 1
4 ;A′ = {c}. At this stage, both a and b are totally consumed. In the

third phase all the agents are connected to c. The smallest breakpoint is λ∗3 = 1
4 and the

corresponding minimum cut is s∪{1, 2, 3}∪{c}. We update p1,c = 1
4 ; p2,c = 1

4 ; p(3, c) = 1
2 . At

this stage, all the objects are fully consumed and the algorithm ends. The resulting random
assignment is

a b c

1 0 3/4 1/4
2 1/2 1/4 1/4
3 1/2 0 1/2

(8)

Variable eating rates. In the EPS algorithm, all the agents have same eating rates. Suppose
that each agent i ∈ N has a different eating rate function wi(·), where

∫ t=1
t=0 wi(t)dt = 1. The

EPS algorithm can be modified in a simple way to accommodate for these different eating
rate functions. The only modification required is that the parametric maximum flow problem
needs to be redefined appropriately, which we do here. We refer to this algorithm as EER.
Let tk be the starting time of the kth phase. The capacity of the arc from the source to
agent i ∈ N is c(i, k) +

∫ t
tk

wi(u)du , where c(i, k) is a constant determined at the end of the
(k − 1)st phase, and each agent points to her most preferred set of objects. In this problem
the parameter is t ≥ tk. The smallest breakpoint, in this context, is the value of t after which
the maximum flow stops increasing linearly with time. A method for doing this was described
in Gallo, Grigoriadis and Tarjan [8]. We denote the smallest breakpoint by tk+1 and the
corresponding bottleneck by B. If i’s preferred set of objects is a subset of B, then we give
her c(i, k) +

∫ tk+1

tk
wi(u)du amount from these objects (this can be done, as before, based on

the maximum flow solution at the breakpoint tk+1) and also update c(i, k + 1) = 0 ; if not we
update c(i, k + 1) = c(i, k) +

∫ tk+1

tk
wi(u)du. Since |B| ≥ 1 , this procedure also has to end in

at most n phases. As before, c(i, 1) = 0 and t1 = 0.
Let PEER denote the random assignment obtained from the EER algorithm. Then PEER

is ordinally efficient. This can be seen from the proof of Theorem 5 . Notice that the proof

18

relies only on the phase at which an object is in the bottleneck set; and not upon the rate at
which it is consumed. So, essentially the same argument goes through. In fact, more is true:
every ordinal efficient can be found in this way; we omit the straightforward proof. (This result
parallels a result of Bogomolnaia and Moulin [3] for the strict preference domain.)

Theorem 7 Fix a preference profile ≥. Then, a random assignment matrix P is ordinally
efficient if and only if there exists a profile of eating speeds w = (wi)i∈N such that P = PEER.

References

[1] A.Abdulkadiroglu and T.Sonmez (1998), “Random serial dictatorship and the core from
random endowments in house allocation problems”, Econometrica, 66, 689–701.

[2] Ahuja, Magnanti and Orlin ,“ Network Flows: Theory, Algorithms, and Applications”,
Prentice Hall, 1993.

[3] A.Bogomolnaia and H. Moulin (2001), “A new solution to the Random Assignment prob-
lem”, Journal of Economic Theory, 100, 295–328.

[4] A. Bogomolnaia and H. Moulin (2002), “A Simple Random Assignment Problem with a
Unique Solution”, Economic Theory, 19, 623–636.

[5] J.R.Brown (1979),“The sharing problem”, Oper. Res. , 27, 324–340.

[6] H. Cres and H. Moulin (2001), “Scheduling with Opting Out: Improving upon Random
Priority”, Operations Research, 49(4):565–576.

[7] D. Gale (1987), “College course assignments and optimal lotteries”, mimeo, University of
California, Berkeley, 1987.

[8] Giorgio Gallo, Michael D Grigoriadis and Robert E Tarjan (1989),“A Fast Parametric
Maximum Flow Algorithm and Applications”, SIAM J. Comput. , 18, 30–55.

[9] A.V.Goldberg and R.E.Tarjan , “A new approach to the maximum flow problem”, Proc.
18h Annual ACM Symposium on Theory of Computing, 1986, 136–146; J. Assoc. Comput.
Mach., 35 (1988).

[10] D.Gusfield (1987),“Computing the strength of a network in O(|V |3|E|) time”, Tech. report
CSE-87-2, Department of Electrical and Computer Engineering, University of California,
Davis, CA.

[11] A.Hylland and R.Zeckhauser (1979), “The efficient allocation of individuals to positions”,
J. Polit. Econ. , 91, 293–313.

[12] T.Ichimori, H.Ishii and T.Nishida (1982),“Optimal sharing”, Math. Programming, 23,
341–348.

19

[13] A.Itai and M.Rodeh (1985),“Scheduling transmissions in a network”, J. Algorithms, 6,
409–429.

[14] N. Megiddo (1974),“Optimal flows in networks with multiple sources and sinks”, Math.
Programming, 7, 97–107.

[15] N. Megiddo (1979),“A good algorithm for lexicographically optimal flows in multi-terminal
networks”, Bull. Amer. Math. Soc., 83, 407–409.

[16] A. E. Roth (1982), “Incentive compatibility in a market with indivisibilities,” Economics
Letters, 9, 127–132.

[17] A. E. Roth and A. Postlewaite (1977), “Weak versus strong domination in a market with
indivisible goods,” Journal of Mathematical Economics, 4, 131–137.

[18] L. Shapley and H. Scarf (1974), “On cores and indivisibility,” Journal of Mathematical
Economics, 1, 23–28.

[19] L. Zhou (1990), “On a conjecture by Gale about one-sided matching problems,” Journal
of Economic Theory, 52, 123–135.

20

