
Additive rules for the quasi-linear bargaining
problem

Christopher P. Chambers∗and Jerry R. Green†

Jan. 2004
(very preliminary, please do not cite or quote)

Abstract

We study the class of additive rules for the quasi-linear bargaining
problem introduced by Green. We provide a characterization of the
class of all rules that are efficient, translation invariant, additive, and
continuous. We present two subfamilies of rules which are nested
in each other: the one parameter family of t-Shapley rules and the
larger family of weighted coalitional rules, and we discuss additional
properties that solutions in these families possess.

1 Introduction

This paper is concerned with decisions that affect a group of n players. These
players’ preferences depend upon a decision (x) and their receipt or payment
of a divisible transferable resource (t), which we can call money. In the
domain of problems we study, preferences are quasi-linear in money and are
completely general with respect to the decision: hence the term quasi-linear
bargaining problems. Preferences can be represented by U (x, t) = u (x) + t.
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Our approach is normative and welfarist. We seek rules that choose good
decisions and equitable vectors of monetary transfers among the players.
These rules are allowed to depend on the way in which decisions affect players,
but not on the nature of the decisions themselves. Any two problems, which
give rise to the same set of feasible utility allocations, before any transfers
of money are made, should lead to the same outcome. Thus we envision the
role of monetary transfers as capturing the compensation that players should
make among themselves — such compensation being due to the fact there can
be desirable decisions for some players that are inefficient for the group as a
whole.
This model is introduced by Green [10, 11] and studied further by Moulin

[12, 13, 14], Chun [3, 4, 5], etc. In this literature, several axioms are standard
and will be accepted throughout our work. First, the chosen decision should
be efficient. Given the form of the utility functions, the sum of players’
willingnesses to pay should be maximized. Second, because there is a one-
parameter family of equivalent utility representations for each player, we
do not want the selection of a particular numerical representation to affect
the outcome. This condition is expressed as the translation invariance of
the solution with respect to the set of feasible utility allocations. Third, the
solution should not be excessively sensitive to errors of measurement or errors
in judgment. Defining a natural topology on problems, we thus require the
solution to be continuous in this topology.
There is an unmanageably large collection of solutions satisfying these

three conditions. The key additional property we study is motivated by the
idea that if a problem can be decomposed into two sub-problems which do
not interact at all, then one should arrive at the same outcome whether the
original problem is solved as given or the two sub-problems are solved inde-
pendently. This property amounts to the additivity of the solution. Solutions
that are not additive will be subject to complex agenda-setting manipulations
and will exhibit other pathologies and inconsistencies.
Green [11] obtains a characterization of additive solutions for the two-

player case under a further condition that he calls recursive invariance (to be
explained below). In this paper we develop a characterization for the general
n-player case. That is, we extend his results to any number of players and
we drop the recursive invariance condition. Although the set of solutions we
obtain is very large, it has a mathematical characterization that can enable
further analysis and refinement.
We then undertake two such refinements by studying two subfamilies of
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these general solutions. The first are called the t-Shapley rules, where t is
a real valued parameter. These rules correspond to the two agent rules in
Green. However, they form only a small subfamily of rules in the general
case. The second subfamily we study is called the weighted coalitional rules.
These rules include the t-Shapley rules but are more general. However, in
the case of more than two players, some weighted coalitional rules exhibit
pathological properties. By laying bare the geometrical foundation of this
family of solutions, the characterization we provide should enable the study
of further requirements and desirable properties in the general case.

2 A general representation for n-agents

Let N be a finite set of agents. Say that a subset B ⊂RN is bounded
above if there exists some x ∈ RN such that B ⊂ {y : y ≤ x}.1 A problem
is a nonempty subset of RN which is closed, convex, comprehensive, and
bounded above. By B, we mean the set of all problems.
Let x : B → R be defined as x (B) ≡ maxx∈B

P
N xi. We say x is

feasible for a problem B if
P

N xi ≤ x (B). Our interest is in providing a
method for solving problems. To this end, a rule is a function f : B→ RN

such that for all B ∈ B, f (B) is feasible for B. A rule associates with any
given problem a unique feasible solution. In particular, it allows us to make
recommendations across problems.
Let H be a function defined on the set of problems which maps to the

set of hyperplanes of RN . Specifically, let H (B) be defined as H (B) ≡©
x ∈ RN :

P
N xi = x (B)

ª
. Thus, H (B) is the set of efficient points that

the agents can achieve by making transfers.
For all sets A, K (A) is the convex and comprehensive hull of A.
For two problems B,B0, define the sum B + B0 ≡

{x+ x0 : x ∈ B, x0 ∈ B0}.2
We posit the following axioms.
Our first axiom states that for all problems, all solutions should be effi-

cient.

Efficiency: For all B ∈ B, f (B) ∈ H (B).

1For x, y ∈ RN , y ≤ x means for all i ∈ N , yi ≤ xi.
2The operator ‘+’ is sometimes referred to as the Minkowski sum.

3



Our next axiom specifies a robustness of the rule to the underlying utility
specification. Formally, any two problemsB,B0 ∈ B such thatB0 = B+x for
some x ∈ R2 can be viewed as arising from the same underlying preferences.
Hence, a rule should recommend the same social alternative and transfers in
the new problem as in the old problem. But the utility value induced by
this solution for the new problem is simply the old utility value, translated
by x.

Translation invariance: For all B ∈ B and all x ∈ RN , f (B + x) =
f (B) + x.

Additivity: For all B1, B2 ∈ B, f (B1 +B2) = f (B1) + f (B2).

The next property states that if two problems are “close,” then their solu-
tions should be “close.” In order to define this, we first define theHausdorff
extended metric on the space C of closed subsets of RN .3 Let d : RN×RN

be the Euclidean metric. Define the distance d∗ : RN × C → R+ as

d∗ (x,B) ≡ inf
y∈B

d (x, y) .

Finally, the Hausdorff extended metric, dHaus : C×C → R+∪{∞}, is defined
as

dHaus (B,B
0) ≡ max

½
sup
x∈B0

d∗ (x,B) , sup
x∈B

d∗ (x,B0)

¾
.

It can be verified that, restricted to the class of problems, dHaus is actually a
metric.

Continuity: There exists M > 0 such that for all B1, B2 ∈ B,
d (f (B1) , f (B2)) ≤MdHaus (B1, B2).

Continuity tells us that the Euclidean distance between the solutions of
two problems is uniformly bounded by some scale of the distance of the two
problems.

3For d to be an extended metric, the following must be true:
i) For all B,B0 ∈ K, d (B,B0) ≥ 0 with equality if and only if B = B0

ii) For all B,B0 ∈ K, d (B,B0) = d (B0, B)
iii) For all A,B,C ∈ K, d (A,C) ≤ d (A,B) + d (B,C).
The function d is a metric if it only takes real values.
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The main theorem is a result characterizing all rules satisfying efficiency,
translation invariance, additivity, and continuity. The basic idea is to iden-
tify problems with their support functions, and then provide an integral
representation of rules as additive functions on the set of such support func-
tions.
Here, SN

+ refers to the intersection of the positive orthant with the unit
sphere in RN .
The main representation theorem follows.

Theorem: A rule f satisfies efficiency, translation invariance, additivity, and
continuity if and only if there exists a countably additive, nonnegative
measure µ on the Borel subsets of SN

+ and an integrable function h :
SN
+ → RN such that f (B) ≡

R
SN+

h (u) (supx∈B x · u) dµ (u), where h
and µ satisfy the following restrictions:

i)
P

i∈N hi (u) =

⎧⎪⎪⎨⎪⎪⎩
0 if u 6=

µ
1√
|N |

, ..., 1√
|N |

¶
p
|N |/µ

µ½µ
1√
|N |

, ..., 1√
|N |

¶¾¶
otherwise

, µ-almost

surely

ii) for all i ∈ N ,
R
SN+

hi (u)uidµ (u) = 1

iii) for all i, j such that i 6= j,
R
SN+

hi (u)ujdµ (u) = 0.

Proof: Step 1: Embedding problems into the space of support
functions
Define a function σ : B → C

¡
SN
+

¢
which maps each problem into its

support function, defined as σ (B) (x) ≡ supy∈B x · y. The function σ is
one-to-one. Hence, on σ (B), we may define T : σ (B)→ RN as T (σ (B)) =
f (B). It is easy to verify that T is positively linearly homogeneous, additive,
and Lipschitz continuous in the sup-norm topology (the last statement follows
from the well-known fact that dHaus (B,B0) = dsup (σ (B) , σ (B

0)), when the
support function is defined on the unit sphere).

Step 2: Defining a rule on the class of support functions
Write T = (Ti)i∈N . Each Ti is then positively linearly homogeneous,

additive, and Lipschitz continuous with Lipschitz constantM . Extend Ti to
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the linear hull of σ (B), i.e. σ (B) − σ (B) ≡ {f − g : f ∈ σ (B) , g ∈ σ (B)}.
Call the extension T ∗i . This extension is itself Lipschitz con-
tinuous; that is, let g − g0, h − h0 ∈ σ (B) − σ (B). Then
d (T ∗ (g − g0) , T ∗ (h− h0)) = d (T (g)− T (g0) , T (h)− T (h0)). More-
over, d (T (g)− T (g0) , T (h)− T (h0)) = d (T (g) + T (h0) , T (h) + T (g0)).
But since T is additive, we conclude d (T (g) + T (h0) , T (h) + T (g0)) =
d (T (g + h0) , T (g0 + h)). By Lipschitz continuity of T ,
d (T (g + h0) , T (g0 + h)) ≤ Mdsup (g + h0, g0 + h). But the latter is
equal to Mdsup (g − g0, h− h0). Hence d (T ∗ (g − g0) , T ∗ (h− h0)) ≤
Mdsup (g − g0, h− h0), so that T ∗ is Lipschitz continuous. This establishes
that T ∗ is also continuous.

By efficiency, for all g ∈ σ (B),
P

i∈N Ti (g) =
p
|N |g

µ
1√
|N |

, ..., 1√
|N |

¶
.

Fix j ∈ N . For all i 6= j, we may extend T ∗i to all of C
¡
SN
+

¢
so that the

extension is continuous, using an appropriate version of the Hahn-Banach
Theorem (e.g. Dunford and Schwartz [8], II.3.11). Call this extension T ∗∗i .

For j, define T ∗∗j (g) =
p
|N |g

µ
1√
|N |

, ..., 1√
|N |

¶
−
P

i6=j T
∗∗
i (g). Clearly,

T ∗∗j is continuous and is an extension of T ∗j , and for all g ∈ C
¡
SN
+

¢
,P

i∈N T ∗∗i (g) =
p
|N |g

µ
1√
|N |

, ..., 1√
|N |

¶
.

Step 3: Uncovering the integral representation agent-by-agent
Each T ∗∗i has an integral representation, by the Riesz representation

theorem (for example, Aliprantis and Border [1], Theorem 13.14). Thus,
T ∗∗i (g) =

R
SN+

g (x) dµi (x). The (possibly signed) measures µi are each

countably additive and of bounded variation, since SN
+ is compact and Haus-

dorff.

Step 4: Synthesizing the agents’ measures to obtain one mea-
sure
Define the measure µ =

P
i∈N |µi|.4 Each µi is then absolutely

continuous with respect to µ, and so the Radon-Nikodym theorem guar-
antees the existence of measurable functions hi : SN

+ → R so that

4Here, |µi| denotes another measure called the absolute value of µi. When µi is
countably additive and of bounded variation (as we know it is), then |µi| is also countably
additive, and in particular, µi (A) 6= 0 implies |µi| (A) > 0. See Alprantis and Border [1],
Corollary 9.35 and Theorem 9.55.
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for all measurable g, T ∗∗i (g) =
R
SN+

hi (u) g (u) dµ (u). Thus, we may

write T ∗∗ (g) =
R
SN+

h (u) g (u) dµ (u), where h : SN
+ → RN . Fur-

ther,
P

i∈N T ∗∗i (g) =
R
SN+

P
i∈N hi (u) g (u) dµ (u), which we know is equal

to
p
|N |g

µ
1√
|N |

, ..., 1√
|N |

¶
. This establishes that

P
i∈N hi (u) = 0

µ-almost everywhere, except at x =

µ
1√
|N |

, ..., 1√
|N |

¶
, in which caseP

i∈N hi

µ
1√
|N |

, ..., 1√
|N |

¶
=

√
|N |

µ

µ½µ
1√
|N|

,..., 1√
|N|

¶¾¶ .

Step 5: Translating the representation back to the space of
problems
Translating back into the original framework, this tells us that f (B) =R

SN+
h (x)

¡
supy∈B x · y

¢
dµ (x), where µ is a positive, countably additive, mea-

sure, and h is a measurable function from SN
+ into RN , which satisfies

X
i∈N

hi (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x 6=

µ
1√
|N |

, ..., 1√
|N |

¶
√
|N |

µ

µ½
1√
|N|

,..., 1√
|N|

¾¶ for x =
µ

1√
|N |

, ..., 1√
|N |

¶
µ-almost surely.

Step 6: Uncovering the implications of translation invariance
Under additivity, translation invariance is equivalent to the statement

that for each unit vector ei, f (K ({ei})) = ei. The support func-
tion of K ({ei}) is given by σ (K ({ei})) (u) = ui. Thus, one ob-
tains

R
SN+

h (u)uidµ (u) = ei, equivalent to the statement that for all i,R
SN+

hi (u)uidµ (u) = 1 and for all i 6= j,
R
SN+

hi (u)ujdµ (u) = 0.

Theorem 1 tells us that any solution satisfying the four axioms can be
represented by a function h and a measure µ. It is worth discussing these
objects. First, the function h maps from the nonnegative part of the unit
sphere in Euclidean N-space. Elements of the unit sphere can be interpreted
as a list of “weights,” one for each agent. For any problem, these weights are
used to compute the maximal “weighted utility” that can be achieved within
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the problem before making transfers. This suggests a “weighted utilitarian”
notion.
The function h specifies another vector in Euclidean N-space for each

such list of weights. This vector can be interpreted as a fixed list of relative
utility values. It is scaled by the maximal weighted utility achieved from the
list of weights. A higher weighted utility scales this vector. Thus, this can
be viewed as a “payoff vector,” where the payoff is scaled by the maximal
weighted utility. The payoff vectors are then aggregated over, according to
a measure µ.
There are many degrees of freedom in this definition. In particular, we

have many degrees of freedom in choosing h and µ. We are allowed to
renormalize h as long as the renormalization is accompanied by a counter-
balancing renormalization of µ. Thus, there is no sense in which these
parameters are “unique.”
However, there is also another way that we can imagine renormalizing

solutions. Thus, the fact that lists of weights lie in SN
+ is useful for the

proof, but has no economic content, and moreover is not necessary. Thus,
one is also free to scale any u ∈ SN

+ by some α > 0 as long as h is then
equivalently scaled by 1/α. Thus, the maximal weighted utility is scaled
up by α while the vector the weights map to is scaled by α, having no
aggregate effect. Such “renormalizations” will sometimes make the nature
of the problem more transparent. In such environments, integration would
no longer be performed over SN

+ , but over whatever lists of weights were
deemed relevant. Clearly, when considering “renormalized” lists of weights,
we never need to consider situations where two lists of weights are simply
scale translations of each other.

3 A class of rules: the t−Shapley rules
The following property was introduced by Chun [4] (he calls it trivial inde-
pendence). We use the terminology introduced by Green [11]. The property
states that if a solution is recommended for a particular problem, and this
solution is added to the original utility possibility set, then reapplying the
rule to this new problem results in the solution for the original problem.

Recursive invariance: For all B ∈ B, f (K (B ∪ {f (B)})) = f (B).
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This axiom was used by Green [11] in the class of two-agent problems.
Upon adding recursive invariance and a mild symmetry axiom to our four
main axioms, he established a characterization of a one-parameter family
of rules. In this section, we discuss a natural extension of this class to
the many-agent case. These rules identify any problem with a transferable
utility game, and then recommend the Shapley value [18] of this associated
game for the problem.
Fix a parameter t > 0. For a given problem B ∈ B, define the TU-game

associated with a bargaining problem as follows:
For all S ⊂ N , vB (S) = maxx∈B

P
i∈S xi − t

¡
x (B)−

P
i∈N xi

¢
. The

quantity νB (S) is the maximal amount that coalition S can obtain, when
being forced to pay some “tax” at rate t on the degree of inefficiency of the
selected alternative. Given that we have defined a game in transferrable
utility, we can compute the Shapley value of the game. This corresponding
value will be called the t-Shapley solution for the problem B.
The t-Shapley rules enjoy many properties. In particular, they are anony-

mous and recursively invariant. Here, we simply show how to express the
t-Shapley rules in the representation derived above. As in the previous sec-
tion, we are allowed to “renormalize” the lists of weights in SN

+ . We shall
do this in order to keep the analysis simple and clean.
Writing out explictly the definition of the Shapley value, we may, for all

i ∈ N , and all B ∈ B, compute:

f ti (B) =
X

{S⊂N :i/∈S}

[vB (S ∪ {i})− vB (S)]
|S|! (|N\S|− 1)!

|N |! .

Rewriting νB (S) = maxx∈B (1 + t)
P

i∈S xi + t
P

i∈N\S xi − tx (B), we
conclude

f ti (B) =
X

{S⊂N :i/∈S}

⎡⎣ maxx∈B h(1 + t)
P

j∈S∪{i} xj + t
P

i∈N\(S∪{i}) xj
i

−maxx∈B
h
(1 + t)

P
j∈S xj + t

P
i∈N\S xj

i ⎤⎦ |S|! (|N\S|− 1)!
|N |! .

Thus, for all S ⊂ N , define uSi = 1 + t if i ∈ S, and usi = t if i /∈ S.5

Rearranging the preceding obtains:

f ti (B) =
X

{S⊂N :i∈S}

µ
sup
x∈B

uS · x
¶
(|S|− 1)! |N\S|!

|N |!

5Hence, the element in SN+ to which this vector corresponds is the unit vector u
kuk .
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−
X

{S⊂N :i/∈S}

µ
sup
x∈B

uS · x
¶
|S|! (|N\S|− 1)!

|N |!

Now, write hi
¡
uS
¢
= 1

|S| if i ∈ S and − 1
|N\S| if i /∈ S. For all S, define

µ
¡©
uS
ª¢
= |S|!|N\S|!

|N |! . Then we conclude

f ti (B) =
X
S⊂N

hi
¡
uS
¢µ
sup
x∈B

uS · x
¶
µ
¡©
uS
ª¢
.

This gives us exactly the type of representation obtained in Theorem 1. One
can easily verify that all of the conditions are satisfied.
The t-Shapley rules are intuitively appealing and enjoy many normative

properties. In particular, they satisfy all of the axioms that we used in our
theorem. Moreover, they are also anonymous and recursively invariant. Let
us verify that they are recursively invariant.
One might wonder if, in fact, the t-Shapley rules are the unique family

which satisfies all of the axioms, together with anonymity and recursive in-
variance. Unfortunately, the answer is no, and a much broader class of rules
can be defined. In the next section, we discuss another (more general) class
of rules that includes the t-Shapley rules, but also includes many patholog-
ical and ill-behaved rules. However, this framework will make it simpler to
discuss the geometric properties of certain rules.

4 The weighted coalitional rules

We here introduce another family of rules. They are motivated by the
following observation: Suppose a rule satisfies our primary axioms. Note
that the measure µ associated with such a rule must have a support consisting
of at least |N | vectors. Otherwise, translation invariance cannot be satisfied.
To this end, suppose that the measure µ associated with this rule has

a support of exactly |N | vectors. Write the support of µ as {P1, ..., PN}.
Let P be the |N | × |N | matrix whose rows are the Pi’s. We index rows
by subscript and columns by superscript. We claim that for all B ∈ B,
f (B) = P−1 [supx∈B Pi · x]i∈N .

Proposition: Suppose f satisfies the axioms listed in Theorem 1, and let
µ be the measure associated with f . Suppose that the support of µ

10



is {P1, ..., PN}. Then for all B ∈ B, f (B) = P−1 [supx∈B Pi · x]i∈N ,
where P is the matrix whose rows are Pi’s.

Proof: Let f satisfy the hypothesis of the proposition. The
rule f can then be written so that for all B ∈ B, f (B) =P

i∈N h (Pi)µ ({Pi}) (supx∈B Pi · x). In particular, for all j ∈ N and all
B ∈ B, fj (B) =

P
i∈N hj (Pi)µ ({Pi}) (supx∈B Pi · x).

First, we claim that {P1, ..., PN} is linearly independent. To see why,
let x ∈ RN be arbitrary. By translation invariance, we establish that x =
f (K ({x})) =

P
i∈N h (Pi) (Pi · x)µ ({Pi}). Define the N × N matrix Q

as Qi
j = hj (Pi)µ ({Pi}). The preceding expressions then read fj (B) =P

i∈N Qi
j [supx∈B Pi · x]i∈N , or f (B) = Q [supx∈B Pi · x]i∈N . We claim that

Q = P−1. By ii) of Theorem 1, for all j ∈ N ,
P

i∈N Qi
jP

j
i = 1. Thus,

Qj · P j = 1. By iii) of Theorem 1, if j 6= k,
P

i∈N Qi
jP

k
i = 0. Thus,

Qj · P k = 0. These two statements imply that QP = I. Since P and Q
are each |N | × |N | matrices, we conclude that Q = P−1. Hence f (B) =
P−1 [supx∈B Pi · x]i∈N . ¥

Thus, let
½
P1, P2..., P|N |−1,

µ
1√
|N |

¶
i∈N

¾
be a set of linearly independent

vectors in SN
+ . Label PN =

µ
1√
|N |

¶
i∈N
. As the set {P1, ..., PN} is linearly

independent, we can construct an invertible matrix P so that the rows of
P are exactly Pi’s. The weighted coalitional rule according to P is
defined as f (B) = P−1 [supx∈B Pk · x]nk=1. It is trivial to verify that the
weighted coalitional rules are efficient, translation invariant, additive, and
continuous. They are also recursively invariant.
Note that the Proposition establishes that for any set of |N | linearly

independent vectors, there is a unique rule whose measure µ has this set as
its support. The unique such rule is the weighted coalitional rule according
to any matrix whose rows are the elements in the support of µ. Moreover,
the weighted coalitional rules are those rules whose support is minimal.
The weighted coalitional rules have a simple geometric interpretation,

which leads to an interpretation in terms of weighted utilitarianism. Thus,
given a matrix P , the weighted coalitional rule according to P works as
follows. Given is a problem B ∈ B. Fix a row of P , say Pk; this row gives a
list of “weights,” one for each agent in society. The maximal social weighted
utility according to weights Pk that can be achieved by society before making
transfers is simply [supx∈B Pk · x]. For each row of P , we get a maximal

11



weighted utility of this form (for the row of equal coordinates, we actually
get a maximal aggregate non-weighted utility). The vector [supx∈B Pk · x]nk=1
gives this profile of maximal weighted social utilities. Hence, the vector
P−1 [supx∈B Pk · x]nk=1 gives the unique vector in RN that achieves the same
weighted social utilities as the maximal weighted social utilities attainable
with problem B. Geometrically, this vector is the unique intersection of the
tangent hyperplanes to B in the directions Pk.
Note that affine combinations of weighted coalitional rules also satisfy all

of the axioms. In fact, Chambers [2] has shown that such affine combinations
exhaust the family of all rules satisfying our axioms when there are two
agents. It is not known if such a statement holds in the case of many agents.

5 On the possibility of advantageous trans-
fers

An advantageous reallocation for a coalition M ⊂ N exists for problem
B ∈ B if there exists B0 ∈ B such that(ÃX

i∈M
xi, x−M

!
: x ∈ B

)
=

(ÃX
i∈M

xi, x−M

!
: x ∈ B0

)
and for all i ∈ M , fi (B0) > fi (B), with at least one inequality strict. An
advantageous reallocation exists if it is possible for a group of agents to get
together, and change the set of alternatives by promising ex-ante to make
contingent monetary transfers among themselves upon the realization of a
particular social alternative. In particular, our (strong) definition allows
groups of agents to significantly expand the underlying bargaining set. Our
definition appears to allow groups of agents to significantly expand the un-
derlying problem. Of course our theory is welfarist. We only recognize
the possibility that there exists an underlying set of alternatives and a pref-
erence profile generating B that generates B0 when groups specify ex-ante
which contingent monetary transfers will be made.

No advantageous reallocation For all B ∈ B and all M ⊂ N , there does
not exist an advantageous reallocation of B for M .

The main result of this section is that for any rule satisfying our main
axioms, there exists a problem B which gives some coalition M an advanta-
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geous reallocation. This is surprising, as our main axioms are satisfied by
many rules.
We first begin with a simple lemma that discusses an implication of our

primary axioms in two-agent environments. It states that, restricted to the
class of problems for which there are exactly two decisions, each of which are
efficient, the rule always recommends some weighted combination of the two
decisions, where the weights are independent of the problem in question.

Lemma 1: Let f satisfy efficiency, translation invariance, additivity, and
continuity. Suppose that |N | = 2, where N = {i, j}. Then there
exists λ ∈ R such that the following is true: For all x, y ∈ RN such
that xi + xj = yi + yj and xi ≤ yi, f (K ({x, y})) = λx+ (1− λ) y.

Proof: We offer a proof that relies on an application of our general rep-
resentation theorem, although the lemma can also be derived independently.
By the general representation theorem, there exists some h : SN

+ → RN ,
as well as a measure µ defined on the Borel subsets of SN

+ which parametrize
the rule. Define

λ ≡
Z
{u∈SN+ :ui<uj}

hi (u) (ui − uj) dµ (u) .

We will show that for all x, y ∈ RN such that xi + xj = yi + yj and xi ≤ yj,
f (K ({x, y})) = λx+ (1− λ) y.
To this end, by translation invariance of f , it is enough to prove the

statement for those x, y for which xi+xj = yi+yj = 0. Let (x,−x) , (y,−y) ∈
RN , and suppose that x ≤ y. By the representation of f ,

f (K ({x, y})) =
Z
SN+

h (u) (max {uix− ujx, uiy − ujy}) dµ (u) .

For (ui, uj) such that ui < uj, max {uix− ujx, uiy − ujy} = uix− ujx, and
for (ui, uj) such that uj < ui, max {uix− ujx, uiy − ujy} = uiy − ujy. For
ui = uj, max {uix− ujx, uiy − ujy} = 0. Therefore,

f (K ({x, y}))

=

Z
{u∈SN+ :ui<uj}

h (u) (uix− ujx) dµ (u)

+

Z
{u∈SN+ :uj<ui}

h (u) (uiy − ujy) dµ (u) .
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Factoring out x and y from the integrals obtains

= x

Z
{u∈SN+ :ui<uj}

h (u) (ui − uj) dµ (u)

+y

Z
{u∈SN+ :uj<ui}

h (u) (ui − uj) dµ (u) .

As for all u 6=
³
1√
2
, 1√

2

´
, hi (u) + hj (u) = 0, we conclude

= x

ÃZ
{u∈SN+ :ui<uj}

hi (u) (ui − uj) dµ (u) ,−
Z
{u∈SN+ :ui<uj}

hi (u) (ui − uj) dµ (u)

!

+y

ÃZ
{u∈SN+ :uj<ui}

hi (u) (ui − uj) dµ (u) ,−
Z
{u∈SN+ :uj<ui}

h (u) (ui − uj) dµ (u)

!
.

Hence,

= (x,−x)
Z
{u∈SN+ :ui<uj}

hi (u) (ui − uj) dµ (u)

+ (y,−y)
Z
{u∈SN+ :uj<ui}

hi (u) (ui − uj) dµ (u) .

Lastly, we verify that
R
{u∈SN+ :uj<ui} hi (u) (ui − uj) dµ (u) = 1 − λ. To this

end, we establish thatZ
{u∈SN+ :ui<uj}

hi (u) (ui − uj) dµ (u)

+

Z
{u∈SN+ :uj<ui}

hi (u) (ui − uj) dµ (u) = 1.

The following equality is trivial:

Z
{u∈SN+ :ui<uj}

hi (u) (ui − uj) dµ (u)

+

Z
{u∈SN+ :uj<ui}

hi (u) (ui − uj) dµ (u)

=

Z
SN+ \

n³
1√
2
, 1√

2

´o hi (u) (ui − uj) dµ (u) ,
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Moreover, if u =
³
1√
2
, 1√

2

´
, ui − uj = 0. Thus the preceding expression is

equal to
R
SN+

hi (u) (ui − uj) dµ (u). Separating, we establishZ
SN+

hi (u) (ui − uj) dµ (u)

=

Z
SN+

hi (u)uidµ (u)

−
Z
SN+

hi (u)ujdµ (u) .

By conditions ii) and iii) in Theorem 1, this quantity is therefore equal to
1, so that

R
{u∈SN+ :uj<ui} hi (u) (ui − uj) dµ (u) = 1− λ.

Therefore, f (K ({x, y})) = λ (x,−x) + (1− λ) (y,−y). ¥

Theorem: Suppose that |N | ≥ 3. There does not exist a rule satisfying
efficiency, translation invariance, continuity, additivity, and no advan-
tageous reallocation.

Proof: Step 1: The rule chooses aggregate welfare levels for
each group of agents independently

First, we claim that for all coalitionsM ⊂ N , and all B,B0 ∈ B such that(ÃX
i∈M

xi, x−M

!
: x ∈ B

)
=

(ÃX
i∈M

xi, x−M

!
: x ∈ B0

)
,

P
i∈M fi (B) =

P
i∈M fi (B

0). The argument is due to Moulin [12]. Suppose,
by means of contradiction, that there exists M ⊂ N , and B,B0 ∈ B where(ÃX

i∈M
xi, x−M

!
: x ∈ B

)
=

(ÃX
i∈M

xi, x−M

!
: x ∈ B0

)

and
P

i∈M fi (B) <
P

i∈M fi (B
0). Let z ∈ RN be defined as

zi ≡
(

fi (B)− fi (B
0) +

(
P

i∈M fi(B0)−
P

i∈M fi(B))
|M | if i ∈M

0 if i /∈M
.

15



Define B00 ≡ B0+ z. By translation invariance, f (B00) = f (B0)+ z, so that

for all i ∈M , fi (B00) = fi (B
0)+zi = fi (B)+

(
P

i∈M fi(B
0)−

P
i∈M fi(B))

|M | > fi (B).
Next, (ÃX

i∈M
xi, x−M

!
: x ∈ B00

)
=

(ÃX
i∈M

xi + zi, x−M

!
: x ∈ B0

)

=

(ÃX
i∈M

xi, x−M

!
: x ∈ B0

)
=

(ÃX
i∈M

xi, x−M

!
: x ∈ B

)
.

Hence, we have constructed B00 which gives an advantageous transfer forM
for the problem B.
Next, for all M ⊂ N , and all B,B0 ∈ B such that(ÃX

i∈M
xi, x−M

!
: x ∈ B

)
=

(ÃX
i∈M

xi, x−M

!
: x ∈ B0

)
,

we claim that for all i /∈M , fi (B) = fi (B
0). This follows trivially from the

statement in the preceding paragraph, and by applying the no-advangtageous
reallocation requirement to the problems B,B0 and the coalition M ∪ {i}.

Step 2: Constructing an induced rule for a partition of the
agents into groups

Step 1 will be used in order to construct an “induced rule” which is defined
on groups of the original agents. To this end, without loss of generality, label
N = {1, ..., n}. Let m < n. We may partition N into m groups {Nj}mj=1,
so that for all j < m, Nj = {j}, and Nm = {m, ..., n}. Label the partition
P = {Nj}mj=1. We show how to construct an induced rule on the partition,
meaning that the agents are {Nj}mj=1.
To this end, let BP be the collection of closed, convex, comprehensive

sets in RP that are bounded above. We claim that for all B ∈ BP , there
exists B0 (B) ∈ B such that B =

½³P
i∈Nj

xi
´m
j=1

: x ∈ B0
¾
. We define a

function which carries elements of RP into elements of RN . Thus, define
X : RP → RN by

Xi (x) =

½
xNi if i ≤ m
0 otherwise

¾
.
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For all B ∈ BP , define B0 (B) as the comprehensive hull of {X (x) : x ∈ B}.
First, it is clear that {X (x) : x ∈ B} is closed, convex, and bounded

above. Therefore, B0 (B) ∈ B. Moreover, we claim that B =½³P
i∈Nj

xi
´m
j=1

: x ∈ B0
¾
. Thus, for all x ∈ B,

³P
i∈Nj

Xi (x)
´m
j=1

= x.

By definition of B0 (B), for all x0 ∈ B0 (B), there exists x ∈ B such that

x0 ≤ X (x). Hence
³P

i∈Nj
Xi (x

0)
´m
j=1
≤ x, so that

³P
i∈Nj

Xi (x
0)
´m
j=1
∈ B.

We define an induced rule fP : BP → RP by fP (B) =³P
i∈Nj

fi (B
0 (B))

´m
j=1
. It is easy to see that for all B,B∗ ∈ BP ,

B0 (B +B∗) = B0 (B) + B0 (B∗), so that the rule fP is additive. One can
also similarly check its translation invariance. The efficiency and continuity
of fP follow immediately from the efficiency and continuity of f . Lastly, no
advantageous reallocation is also trivially satisfied by fP .

Step 3: Construction of two problems leading to a contradiction

By Step 2, it is without loss of generality to assume that |N | = 3. We
will establish that no three-agent rule can satisfy all of the axioms. Without
loss of generality, label N = {1, 2, 3}.
By Step 2, f can be used to construct a collection of induced two-agent

rules. In particular, for each agent i ∈ N , let P i = {{i} , {j, k}} be a parti-
tion of N into a one-agent group containing agent i and a two-agent group
containing the remaining agents. This induces a two-agent rule fP

i
as in

Step 2, which satisfies all of the axioms. In particular, the Lemma estab-
lishes that for each such rule, there exists a corresponding λ (i) associated
with {i} ∈ P i.
We construct two problems in B, each of which induces a two-agent prob-

lem that is the convex, comprehensive hull of two points. To this end, define

B ≡
(
x ∈ RN : x ≤ 1 and

X
i∈N

xi ≤ 2
)
.

Clearly, this is a well-defined problem. For each partition P i, B induces a
problem Bi ∈ BP i

, where

Bi =
n
(x, y) ∈ RP i

: x ≤ 1, y ≤ 2, x+ y ≤ 2
o
.
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By the Lemma, fP
i

{i} (B
i) = λ (i). By Step 1, we conclude fi (B) = λ (i).

Hence λ (1)+λ (2)+λ (3) = 2. Thus, there exists some i such that λ (i) > 0.
Without loss of generality, we suppose that λ (1) > 0.
Let B∗ ∈ B be defined as

B∗ ≡
(
x ∈ RN :

X
i∈N

xi ≤ 2, x2 ≤ 1, x3 ≤ 1
)

∩
©
x ∈ RN : x1 + x3 ≤ 2, x1 + x2 ≤ 2, x1 ≤ 2

ª
.

In particular, for i = 2, 3, B∗i = Bi. Moreover,

B∗1 =
n
x ∈ RP 1 : x{1} + x{2,3} ≤ 2, x{1} ≤ 2, x{2,3} ≤ 2

o
.

By the Lemma, fP
1

{1} (B
∗1) = 2λ (1), and by Step 1, f1 (B∗) = 2λ (1). For

i = 1, 2, fP
i

{i} (B
∗i) = λ (i), so that fi (B∗) = λ (i). Conclude

f1 (B
∗) + f2 (B

∗) + f3 (B
∗)

= 2λ (1) + λ (2) + λ (3)

= λ (1) + [λ (1) + λ (2) + λ (3)]

= λ (1) + 2 > 2.

Therefore, f (B∗) is infeasible for B∗, a contradiction. ¥
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