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Abstract
An increasingly popular practice in placing students to public

schools in the US is the use of school choice programs. In a school
choice program, each student submits a preference list of schools to
a central authority which then decides upon how to place students
to schools while also taking the priorities of students for schools into
consideration. The crucial issue here is determining a central student
placement mechanism that would ensure (1) equity (i.e., students�
priorities should be respected), (2) optimality, and (3) immunity to
preference manipulation. We propse two new competing mechanisms
as promising alternatives to those mechanisms that are both currently
in use and that have been proposed in the existing literature. The �rst
mechanism we propose eliminates the potentially large e¢ ciency loss
in the well-known Gale-Shapley student optimal stable machanism,
while achieving equity and immunity to preference manipulation to
quite a satisfactory degree. The second mechanism we propose con-
siderably improves the equity aspects of the top trading cycles mech-
anism of Abdulkadiro¼glu and Sönmez (Amer. Econ. Rev. 93, 2003,
pp. 729-747) without paying any cost.
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1 Introduction

Until recently, students in the US were placed to public schools based on
their residence area, i.e., a student had to go to the school whichever was
closest to his/her home. Such a practice caused inequalities among students
of the rich and poor families since the rich always had the opportunity to
choose the place they wanted to live. Starting in 1987 with Minnesota, many
US states began adopting school choice programs which give each student
the option to choose the school he/she wants to attend. In a school choice
program, each student submits a list of preferences of schools to a central
placement authority, such as the school district, which then decides as to
which student will be placed to which school. In addition to the preferences
of students, one other major factor that the central placement authority
takes into consideration is the priorities of students for schools. There may
be several criteria in determining a priority order for a school. For example,
in Boston, the �rst priority for a school is given to the students who are in
the same walk zone and who have a sibling attending that school, the second
priority to those who only have a sibling attending that school, the third
priority to those who are only in the same walk zone, and the fourth priority
to other students. (For those students who are in the same priority group,
the order is determined by a lottery.) Today, many cities such as Boston,
Seattle, Minneapolis, (parts of) New York, and Columbus are using school
choice programs and it is strongly anticipated that in the near future there
will not be any school district which does not utilize a school choice program.
Given the signi�cance of school choice programs, the importance of the

way one will employ for the placement of students to schools is clearly ob-
vious. In this paper, we consider this issue from a mechanism design per-
spective. A student placement problem is a pair consisting of a preference
pro�le of students and a collection of priority orders for schools. For a given
student placement problem, at an allocation each student is placed to only
one school and the number of students placed to a particular school does not
exceed the number of available seats at that school. An allocation is Pareto
e¢ cient if there is no other allocation which makes all students at least as
well o¤ and at least one student better o¤.
A very closely related problem to the student placement problem is the

well-known college admissions problem due to Gale and Shapley (1962). The
main di¤erence between the two problems is that in a college admissions
problem, the priorities of schools are replaced by the preferences of schools.
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Although priorities and preferences are mathematically equivalent, unlike
priorities, preferences call for welfare and strategic considerations. Here,
priorities of schools are enforced by local/state laws and no school has a say
on the way its priority order is determined. In a college admissions problem,
an allocation is stable if there is no student-school pair (i; s) such that student
i prefers school s to the school he is placed to, and school s prefers student
i to at least one student who is placed to it. The natural counterpart of
stability in our context is �fairness.�We say that student i has justi�ed envy
for a student at school s at an allocation if he prefers school s to the school
he is placed to, and he has higher priority for school s than at least one
student who is placed to it: An allocation is fair if there is no student-school
pair (i; s) such that student i has justi�ed envy for a student who is placed
to school s:
A student placement mechanism or simply, a mechanism, is a systematic

way of selecting an allocation for each student placement problem. A student
placement mechanism is Pareto e¢ cient if it always selects Pareto e¢ cient
allocations. A student placement mechanism is fair if it always selects fair
allocations. It is by now well-known that for a given student placement prob-
lem, there may not exist a Pareto e¢ cient and fair allocation. Consequently,
there is no mechanism that is both fair and Pareto e¢ cient.
In a very recent paper, Abdulkadiro¼glu and Sönmez (2003), for the �rst

time in the literature, approach the student placement problem from a mech-
anism design perspective. They examine some of the real-life student place-
ment mechanisms and point out some serious de�ciencies they have. (See
Section 2 for one such frequently-used real-life mechanism.) They come up
with two new mechanisms to �x these de�ciencies.
The �rst one is the Gale and Shapley�s (1962) student optimal stable

mechanism (SOSM) proposed for the college admissions problem. Following
Abdulkadiro¼glu and Sönmez (2003), in consultation with Alvin Roth, the
New York education department has started using this mechanism for the
placement of ninth graders to public schools in the Fall of 2003. SOSM is fair
and it Pareto dominates any other fair mechanism. It is also strategy-proof.
However, it is not Pareto e¢ cient.
The second mechanism Abdulkadiro¼glu and Sönmez (2003) advocate is

based on an adaptation of Gale�s top trading cycles procedure to the student
placement context. They call this mechanism the top trading cycles mecha-
nism (TTCM). TTCM is Pareto e¢ cient and strategy-proof. However, it is
not fair.
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There are three most important properties one can expect a good stu-
dent placement mechanism to satisfy: (1) Equity (e.g., fairness), (2) Opti-
mality (e.g., Pareto e¢ ciency), and (3) Immunity to strategic behavior (e.g.,
strategy-proofness). In this context, it is impossible to fully achieve all three.
Let that alone, even fairness and Pareto e¢ ciency are incompatible. If one to-
tally gives up on one of the three properties, then it is possible to fully achieve
the other two. However, such a sacri�ce may lead to unacceptable situations
in terms of the property that is given up. For example, if one insists on the
use of a fair and strategy-proof mechanism, then SOSM is the obvious choice
as it Pareto dominates any other fair mechanism (and it is strategy-proof).
However, the outcome of this mechanism could be so ine¢ cient that most of
the students may end up at their almost worst choices (Example 2). On the
other hand, if one values Pareto e¢ ciency and strategy-proofness above any
other pair, then a choice like TTCM may result in situations where equity
is severely violated. For example, for a given student placement problem,
TTCM may not select the Pareto e¢ cient and fair allocation, even if such an
allocation exists (Example 3), and thereby introduce unwarranted justi�ed
envy among students. Or, the TTCM outcome may not Pareto dominate
SOSM outcome, even if SOSM outcome is Pareto ine¢ cient (Example 4).
Our �rst mechanism is motivated by these observations.
First, we propose a new equity criterion as an alternative to the strong

requirement �fairness.�Consider an allocation at which there is a student
who has justi�ed envy for another student who is placed to a certain school.
That is, there is a student who would rather be placed to another school for
which he has higher priority than another student who is currently placed
to that school. Naturally, such a student would consider this allocation as
unfair. Consequently, he would object to that allocation and demand a
fair allocation to be decided upon. Note that when this student objects to
the earlier allocation, he has the hope that at the new allocation, he will
be placed to that school or, to an even better school for him. If there is
indeed an allocation that does this, then the point this student makes is
reasonable. But, what if there is no such allocation? That is, what if there
is no fair allocation that places this student to either that school or to a
better school for him. In such a case, the desire of this student can not
be ful�lled, and thus it is groundless. The alternative equity criterion we
propose is based on this observation. We say that an allocation is reasonably
fair for a student placement problem if whenever a student has justi�ed envy
for another student who is placed to a certain school, then there is no fair
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allocation that places him to that school or to any school better for him
than that school. A reasonably fair mechanism always selects reasonably fair
allocations.
We propose a modi�cation of SOSM that takes care of the serious e¢ -

ciency loss in this mechanism. In many ways, it mimics SOSM. We call this
mechanism the e¢ ciency adjusted deferred acceptance mechanism (EADAM).
EADAM is reasonably fair (Proposition 7). Furthermore, it is Pareto e¢ cient
(Proposition 8). Yet, it is not immune to strategic manipulation. However,
there is no mechanism that is reasonably fair, Pareto e¢ cient, and strategy-
proof (Proposition 9). Because a mechanism is not strategy-proof does not
necessarily mean that it can easily be manipulated. Based on a result due to
Ehlers (2002b), we show that EADAM is practically strategy-proof (Propo-
sition 10). EADAM achieves all three important considerations to quite a
satisfactory degree, which in turn gives it the edge over its competitors in
terms of practical applicability.
The second mechanism we propose is another adaptation of Gale�s top

trading cycles procedure. In our approach, unlike the TTCM of Abdulka-
diro¼glu and Sönmez (2003), instead of giving all the trading power to those
students with the highest priority for a school, we distribute the trading
rights of seats for each school among those who are entitled one seat at that
school and allow them to trade in such a way so as situations of justi�ed envy
are avoided as much as possible. We call this mechanism the equitable top
trading cycles mechanism (ETTCM). ETTCM is also Pareto e¢ cient and
strategy-proof like TTCM. Furthermore, it considerably improves the equity
aspects of TTCM without paying any cost.
We believe that both mechanisms we propose will contribute signi�cantly

to the mechanism design literature and that they will be powerful tools for
overcoming the shortcomings of both the currently in use real-life mechanisms
and the so far proposed alternative mechanisms in the literature.
The paper is organized as follows. In Section 2 we model the student

placement problem and describe a popular real-life mechanism (the Boston
mechanism), the student optimal stable mechanism, and the top trading
cycles mechanism. In Section 3 we motivate and propose the new equity
criterion �reasonable fairness.�In Sections 4 and 5 we introduce the e¢ ciency
adjusted deferred acceptance mechanism and the equitable top trading cycles
mechanism respectively. The paper contains an Appendix at the end.
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2 Student Placement Problem

In a student placement problem, there is a certain number of students each of
whom are to be placed to a school among a certain number of schools. Each
school has a certain number of available seats and the total number of seats
is greater than the number of students. Let us denote the set of students by
I � fi1; i2; : : : ; ing: A generic element in I is denoted by i: Let us denote the
set of schools by S � fs1; s2; : : : ; smg: A generic element in S is denoted by s:
Each school has a certain number of available seats. For each school there is
a strict priority order of all students, and each student has strict preferences
over all schools. The priority orders are determined according to state/local
laws and certain criteria of school districts. Let us denote the priority order
for school s by �s : Let us denote the preferences of student i by Pi: Let Ri
denote the at-least-as-good-as relation associated with Pi:
A student placement problem is a pair ((�s)s2S; (Pi)i2I) consisting of

a collection of priority orders and a preference pro�le.1 For a given student
placement problem, at an allocation each student is placed to only one
school and the number of students placed to a particular school does not
exceed the number of available seats at that school. An allocation is Pareto
e¢ cient if there is no other allocation which makes all students at least as
well o¤ and at least one student better o¤.
A very closely related problem to the student placement problem is the

well-known college admissions problem due to Gale and Shapley (1962). The
only but crucial di¤erence between the two problems is that in a college
admissions problem, schools have preferences over students whereas here,
schools are merely objects (each of which has multiple copies) to be con-
sumed. A central concept in college admissions is �stability.�An allocation
is stable if there is no student-school pair (i; s) such that student i prefers
school s to the school he is placed to, and school s prefers student i to at least
one student who is placed to it. The natural counterpart of stability in our
context is �fairness.�We say that at an allocation a student i has justi�ed
envy for a student at school s if he prefers school s to the school he is placed
to, and he has higher priority for school s than at least one student who is
placed to it. An allocation is fair if there is no student-school pair (i; s) such

1The student placement problem is also closely related to the �house allocation prob-
lem�in which there is a set of objects collectively owned by the society. See for example,
Pápai (2000), Abdulkadiro¼glu and Sönmez (1998, 1999), Ehlers et al. (2002), Ergin (2000),
Ehlers and Klaus (2003), Ehlers (2002a), and Kesten (2003a,b,c).
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that student i has justi�ed envy for a student who is placed to school s:
A student placement mechanism or, simply a mechanism, selects

an allocation for each student placement problem. A student placement
mechanism is Pareto e¢ cient if it always selects Pareto e¢ cient allocations.
A student placement mechanism is fair if it always selects fair allocations.
A student placement mechanism is strategy-proof2 if no student can ever
gain by misstating his preferences.
Student placement is an important real-life problem. We �rst examine the

mechanisms that are currently in use as well as those that have been proposed
in the existing mechanism design literature. We start with a frequently-used
real-life student placement mechanism.

2.1 Boston Student Placement Mechanism

We �rst examine a popular real-life mechanism: the Boston mechanism.
This mechanism and its slight variants are currently being used in many
places such as Boston, Seattle, Minneapolis, Lee County, and Florida. For
a given student placement problem, the outcome of the Boston mechanism
can be found via the following algorithm:

Step 1: Only the �rst choices of the students are considered. For each
school, consider only those students who have listed it as their �rst choice
and place these students to this school one at a time following their priority
order until either there are no seats left or there is no student who has listed
it as his �rst choice, is left.

Step 2: Consider the remaining students. Only the second choices of these
students are considered. For each school with still available seats, consider
only those students who have listed it as their second choice and place these
students to this school one at a time following their priority order until either
there are no seats left or there is no student who has listed it as his second
choice, is left.

In general,

Step k, k � 2: Consider the remaining students. Only the k-th choices
of these students are considered. For each school with still available seats,
consider only those students who have listed it as their k-th choice and place

2This requirement is also referred as incentive compatibility.
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these students to this school one at a time following their priority order until
either there are no seats left or there is no student who has listed it as his
k-th choice, is left.

The Boston mechanism has serious de�ciencies. First of all, it is not
strategy-proof. More importantly, it gives very strong incentives to students
for misstating their preferences. Because a student who has high priority for
a school may lose his advantage for that school if he does not list that school
as his best choice, this mechanism forces students to think very strategically.
Moreover, even the school district authorities explicitly advice students and
their parents to make strategic choices (see for example, Glazerman and
Meyer (1996) pp. 26-27).
Many students in fear of losing their priority for certain schools, tend

to submit preferences that do not represent their true choices. In a recent
experiment on the Boston mechanism, Chen and Sönmez (2003) show that
80% of the subjects chose to misstate their preferences under the Boston
mechanism. Misstating one�s preferences receives so much promotion that
even suggestions of the following kind appear in the press (originally quoted
by Ergin and Sönmez, 2003):

�Make a realistic, informed selection on the school you list as your
�rst choice. It is the cleanest shot you will get at a school. But
if you aim too high, you might miss.

Here is why: If the random computer selection rejects your �rst
choice, your chances of getting your second choice school are
greatly diminished. That�s because you fall in line behind every-
one who wanted your school as their �rst choice. You can fall even
farther back in line as you get bumped to your third, fourth, and
�fth choices.�

St. Petersburg Times (September 14, 2003)

Ergin and Sönmez (2003) consider the preference revelation game induced
by the Boston mechanism and show that the set of Nash equilibria outcomes
of this game is equal to the set of stable allocations under the true preferences.
Based on this result, they suggest the use of the student optimal stable
mechanism (to be introduced next).
Finally, even if this mechanism is Pareto e¢ cient with respect to the

revealed preferences, since most students are not submitting their true pref-
erences, it is very unlikely that the outcome is Pareto e¢ cient (with respect to
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true preferences). As for equity considerations, obviously the Boston mech-
anism leads to serious violations of students�priorities. The next two mech-
anisms we describe are the ones that have previously been discussed in the
literature.

2.2 Gale-Shapley Student Optimal Stable Mechanism

One of the two mechanisms Abdulkadiro¼glu and Sönmez (2003) advocate
is the student optimal stable mechanism (SOSM) due to Gale and
Shapley (1962). For a given student placement problem, the outcome of this
mechanism can be found via the following deferred acceptance (DA) al-
gorithm:

Step 1: Each student applies to his �rst choice. For each school, consider
only those students who have applied to it and tentatively place these stu-
dents to this school one at a time following their priority order until there
are no seats or students left. Any remaining students are rejected.

In general,

Step k, k � 2: Each student who was rejected in the previous step applies
to his next choice. For each school, consider only those students who have
applied to it at this step and those who have been tentatively placed to it
school at previous steps. Tentatively place these students to this school one
at a time following their priority order until there are no seats or students
left. Any remaining students are rejected.

The algorithm terminates when no student is rejected any more. At termi-
nation, all tentative placements are �nalized. For a given student placement
problem, the DA algorithm chooses the favorite fair allocation of each stu-
dent.

PROPOSITION 1 (Balinski and Sönmez, 1999) The student optimal sta-
ble mechanism Pareto dominates3 any other fair mechanism.

3A mechanism ' Pareto dominates another mechanism  if for each student placement
problem, each student �nds his placement under ' at least as good as the one under  
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Another important feature of SOSM is that no student can ever gain by
misstating his preferences.

PROPOSITION 2 (Dubins and Freedman, 1981; Roth, 1982) The student
optimal stable mechanism is strategy-proof.

However, SOSM has an important drawback. Its outcome is not neces-
sarily Pareto e¢ cient.4 The following example illustrates this point.

Example 1 (The student optimal stable mechanism is not Pareto
e¢ cient): Let I � fi1; i2; i3g and S � fs1; s2; s3g where each school has
only one seat. The priorities for the schools and the preferences of the stu-
dents are given as follows:

�s1 �s2 �s3
i3 i2

...
i1 i3
i2

Pi1 Pi2 Pi3
s1 s1 s2
s3 s2 s1
s2 s3 s3

To calculate the outcome of the student optimal stable mechanism, we
run the DA algorithm:
Step 1: Students i1 and i2 apply to school s1 and student i3 applies to

school s2. Because student i1 has higher priority for school s1 than student
i2; student i1 is tentatively placed to school s1 and student i2 is rejected.
Student i3 is tentatively placed to school s2.
Step 2: Student i2 applies to his next choice, which is school s2: Because

student i2 has higher priority for school s2 than student i3; student i3 is
rejected, and student i2 is tentatively placed to school s2.
Step 3: Student i3 applies to his next choice, which is school s1: Because

student i3 has higher priority for school s1 than student i1; student i1 is
rejected, and student i3 is tentatively placed to school s1.
Step 4: Student i1 applies to his next choice, which is school s3 from

which he is not rejected. At this point the algorithm terminates.

and there is at least one student placement problem at which (at least) one student �nds
his placement under ' better than the one under  :

4Ergin (2002) gives a su¢ cient and necessary condition on the collection of priority
orders that ensures the Pareto e¢ ciency of SOSM.
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This algorithm is also summarized in the following table where at a given
step, the students inside a rectangle are the ones who are tentatively occu-
pying a seat at the corresponding school.

Step s1 s2 s3
1 i1; i2 i3
2 i1 i3; i2
3 i1; i3 i2
4 i3 i2 i1

The outcome of the DA algorithm for this problem is the underlined al-
location above. It is easy to see that this allocation is not Pareto e¢ cient.

We will have more to say about the reason and the size of the e¢ ciency
loss for SOSM.

2.3 Top Trading Cycles Mechanism

The second mechanism Abdulkadiro¼glu and Sönmez (2003) propose is what
they call the top trading cycles mechanism (TTCM). TTCM is based
on Gale�s top trading cycles procedure proposed in the context of �housing
markets� (Shapley and Scarf, 1974). In a housing market, there is a set of
�indivisible objects� (e.g., houses) each of which is initially assigned to a
di¤erent agent among a set of �agents.�Gale�s top trading cycles procedure
works as follows:5 Each agent points to the agent who is assigned his best
choice object. Since the number of agents is �nite, there is at least one cycle.
Then in each cycle, the corresponding trades are performed (i.e., each agent
in a cycle is given the object the agent he points to is assigned), and these
agents and objects are removed. Then the same procedure is applied to the
new market and so on. The algorithm terminates when there are no agents
left. This procedure yields an allocation which is in the core of the housing
market.6

TTCM is one adaptation of Gale�s top trading cycles procedure to the
student placement context. Since now there may be multiple copies (seats)

5The procedure we describe here is not the same procedure proposed by Gale. But, the
two are equivalent. For reasons to be obvious shortly, we adopt this alternative procedure.

6If preferences are strict, this allocation is unique (Roth and Postlewaite, 1977).
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of a particular object (school), this di¤erence in the models has to be taken
into account. For a given student placement problem, the outcome of TTCM
can be found via the following algorithm:7

Step 1: Each student who has the highest priority for a school is assigned
all seats of that school. (A student may be assigned the seats of di¤erent
schools.) Each student points to the student (possibly himself) who is as-
signed (all seats of) his best choice. There is at least one cycle. Each student
in a cycle is placed to the school that was assigned to the student he is point-
ing to. Since each student who is part of a cycle is already placed to a school,
he is removed and the number of available seats at that school is decreased
by one.

Step 2: All the remaining seats of each school which were assigned to a
student who was part of a cycle at Step 1 are assigned to the student with the
highest priority for that school among the remaining students. (A student
may be assigned the seats of di¤erent schools.) Each student points to the
student (possibly himself) who is assigned (all remaining seats of) his best
choice among the remaining schools. Each student in a cycle is placed to the
school that was assigned to the student he is pointing to. Since each student
who is part of a cycle is already placed to a school, he is removed and the
number of available seats at that school is decreased by one.

In general,

Step k, k � 2: All the remaining seats of each school which were assigned
to a student who was part of a cycle at Step k-1 are assigned to the stu-
dent with the highest priority for that school among the remaining students.
(A student may be assigned the seats of di¤erent schools.) Each student
points to the student (possibly himself) who is assigned (all remaining seats
of) his best choice among the remaining schools. Each student in a cycle
is placed to the school that was assigned to the student he is pointing to.
Since each student who is part of a cycle is already placed to a school, he is

7The algorithm we give here is an equivalent algorithm to the one that was proposed
by Abdulkadiro¼glu and Sönmez (2003). Since this version of the algorithm will make it
easier for us to compare it with the alternative adoptation of Gale�s top trading cycles
procedure that we will propose later in the paper, we give this equivalent algorithm. This
alternative algorithm is proposed in Kesten (2003a).
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removed and the number of available seats at that school is decreased by one.

The algorithm terminates when no student is left.
Being based on Gale�s top trading cycles procedure, TTCM inherits the

desirable properties it has. The �rst one such property is Pareto e¢ ciency.

PROPOSITION 3 (Abdulkadiro¼glu and Sönmez, 2003) The top trading
cycles mechanism is Pareto e¢ cient.

However, TTCM is not fair.8 (We will shortly return to this aspect of
TTCM.) The second important property TTCM has is strategy-proofness.

PROPOSITION 4 (Abdulkadiro¼glu and Sönmez, 2003) The top trading
cycles mechanism is strategy-proof.

2.4 Pareto E¢ ciency and Fairness: An Impossibility

A well-known negative result for the student placement context (as well as
for the two-sided matching) is the incompatibility between Pareto e¢ ciency
and fairness.

PROPOSITION 5 (Roth 1982) A Pareto e¢ cient and fair allocation may
not always exist and if it exists, it is unique.

By Proposition 1, if a Pareto e¢ cient and fair allocation exists for a given
student placement problem, then it is the one selected by the student optimal
stable mechanism. Proposition 5 has two immediate corollaries:

COROLLARY 1 There is no mechanism that is Pareto e¢ cient and fair.

COROLLARY 2 The student optimal stable mechanism is not Pareto e¢ -
cient and the top trading cycles mechanism is not fair.

8Recently, Kesten (2003a) gives a su¢ cient and necessary condition (which is similar to
the one given in Ergin, 2002) for the equivalence of SOSM and TTCM or, the fairness of
TTCM, or the resource monotonicity of TTCM, or the population monotonicity of TTCM.
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3 A New Equity Criterion: Reasonable Fair-
ness

3.1 Motivation for a new equity criterion

It is clear that �fairness� is the most natural and ideal equity criterion in
this context. However, by Corollary 1, there is no mechanism that is both
fair and Pareto e¢ cient. If one values fairness over Pareto e¢ ciency, then
the student optimal stable mechanism is, of course, the obvious choice (recall
Proposition 1). However, because we care about equity does not mean that
we can totally ignore the welfare aspects of the problem at hand. Better yet,
it becomes completely pointless to insist on such a criterion, if it causes every
student to be unsatis�ed. We know that the student optimal stable mecha-
nism is not Pareto e¢ cient. However, the following example shows that the
size of the e¢ ciency loss due to this mechanism can be disappointingly large.

Example 2 (The student optimal stable mechanism may result in
severe e¢ ciency loss): Let I � fi1; i2; : : : ; i12g and S � fs1; s2; : : : ; s5g
where each school except s5 has two seats and school s5 has four seats. The
priorities for the schools and the preferences of the students are given as
follows:

�s1 �s2 �s3 �s4 �s5
i5 i2 i11 i4 i12
i7 i10 i1 i8 i9
i12 i9 i6 i3 i6
i4 i7 i10 i1 i3

i8 i4 i5 i2
...

i9 i3 i12 i6
i10 i1 i4 i7
i11 i8 i2 i5
i6 i12 i3 i9
i1 i4 i7 i10
i2 i5 i8 i11
i3 i6 i9 i12
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Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 Pi7 Pi8 Pi9 Pi10 Pi11 Pi12
s1 s1 s1 s2 s2 s2 s3 s3 s3 s4 s4 s4
s2 s3 s3 s3 s4 s1 s4 s2 s4 s1 s1 s2
s4 s4 s2 s1 s3 s4 s2 s1 s1 s3 s2 s3
s3 s2 s4 s4 s1 s3 s1 s4 s2 s2 s3 s1
s5 s5 s5 s5 s5 s5 s5 s5 s5 s5 s5 s5

The outcome of the DA algorithm for this student placement problem is
the above underlined allocation. (See Appendix for details.) It is striking to
see that the student optimal stable mechanism places each student to either
his worst choice or his second worst choice. This allocation is clearly Pareto
ine¢ cient. For example, the allocation, marked above with rectangles, which
places the �rst eight students to their best choices and that does not change
the placement of the last four students, Pareto dominates the above alloca-
tion.

It is quite easy to construct an example like the one above for student
placement problems of much bigger sizes. It is also noteworthy to observe
that the size of the potential e¢ ciency loss in the outcome of the student
optimal stable mechanism increases as the number of students rejected from
schools increases. (We will make this argument more precise in the next
section.) Even though each student may not end up at his almost bottom
choice at every student placement problem under the student optimal stable
mechanism, a great number of students may su¤er from this welfare loss.
Taking the fact that it is the students�future at stake into account, it is clear
that one can not take any chances about this issue.
Recall Corollaries 1 and 2. Since there may not always exist a Pareto ef-

�cient and fair allocation, clearly it is not possible to have a Pareto e¢ cient
and fair mechanism. The point we have to be careful about this result is
that a mechanism can be excused for violating either property only when it
is not possible to �nd any allocation satisfying both properties. However, it
is very natural to require and expect a good mechanism to select the Pareto
e¢ cient and fair allocation whenever it exists. Note that the student optimal
stable mechanism meets this requirement. However, the top trading cycles
mechanism fails to do so.
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Example 3 (The top trading cycles mechanism may not select the
Pareto e¢ cient and fair allocation, even if such an allocation ex-
ists): Let I � fi1; i2; i3g and S � fs1; s2g where school s1 has one seat and
school s2 has two seats. The priorities for the schools and the preferences of
the students are given as follows:

�s1 �s2
i1 i3
i2 i2
i3 i1

Pi1 Pi2 Pi3
s2 s1 s1
s1 s2 s2

It is easy to calculate that the outcome of the top trading cycles mech-
anism is the underlined allocation above and the outcome of the student
optimal stable mechanism is the allocation marked with rectangles. Note
that the unique Pareto e¢ cient and fair allocation for this problem is the
one given by the student optimal stable mechanism. However, the outcome
of the top trading cycles mechanism is clearly not this one.

The observation we make from Example 3 is that the top trading cy-
cles mechanism may result in unnecessary justi�ed envy among students. Of
course this need not be the case only when there exists a Pareto e¢ cient
and fair allocation. It may very well be the case in general. In the following
lemma, we make an interesting observation about Pareto e¢ cient mecha-
nisms.

LEMMA 1 Let ' be a Pareto e¢ cient mechanism. Given a student place-
ment problem, if a student prefers his placement under the student optimal
stable mechanism to his placement under ', then under ' he either has justi-
�ed envy for the school to which he is placed under the student optimal stable
mechanism or, there is another student who also prefers his placement under
the student optimal stable mechanism to his placement under ':

Note that if ' is a Pareto e¢ cient mechanism that selects a di¤erent al-
location than the student optimal stable mechanism for a student placement
problem, then by Proposition 5, there is at least one student who has justi�ed
envy for another student at the allocation selected by ': Lemma 1 says that
if the Pareto e¢ cient mechanism ' places a student to a school worse for him
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than his placement under the student optimal stable mechanism, then the
only way he does not have justi�ed envy for another student who is placed
to that school is that another student is also placed to a school worse for him
than his placement under the student optimal stable mechanism. Similarly,
the only way that student does not have justi�ed envy for another student
who is placed to that school is that, another student is also placed to a school
worse for him than his placement under the student optimal stable mecha-
nism and so on. What this means is that if a Pareto e¢ cient mechanism
that does not Pareto dominate the student optimal stable mechanism avoids
situations in which students have justi�ed envy for the schools they would
be placed under the student optimal stable mechanism, then the cost it has
to pay is to increase the number of students who prefer their placement un-
der the student optimal stable mechanism. This, in turn, means that even
though ' is Pareto e¢ cient, the welfare distribution under ' would be quite
unbalanced. In this sense, the student optimal stable mechanism outcome
can be seen as a benchmark for a balanced trade-o¤between equity and opti-
mality considerations. Next we examine the top trading cycles mechanism in
terms of students�welfare as compared to the student optimal stable mech-
anism.

Example 4 (The top trading cycles mechanism outcome may not
Pareto dominate the student optimal stable mechanism outcome,
even if the student optimal stable mechanism outcome is Pareto
ine¢ cient): Let I � fi1; i2; i3; i4g and S � fs1; s2; s3; s4g where each school
has only one seat. The priorities for the schools and the preferences of the
students are given as follows:

�s1 �s2 �s3 �s4
i4 i2

... i1

i3 i3
...

i1
...

i2

Pi1 Pi2 Pi3 Pi4
s1 s1 s2

s4

s3 s2 s1
...

...
... s3

...

The outcome of the student optimal stable mechanism is the underlined
allocation above. Note that this allocation is Pareto ine¢ cient. (If the place-
ments of students i2 and i3 are exchanged, we obtain a Pareto improvement.)
The outcome of the top trading cycles mechanism is the allocation marked
with rectangles. Clearly, student i3 prefers his placement under the student

17



optimal stable mechanism to his placement under the top trading cycles
mechanism.

3.2 Reasonable Fairness

Equity and optimality are two very important considerations in the student
placement context. Our not being able to satisfy these two properties to
the full extent, by no means implies that we should totally disregard one
of the two properties. A more plausible approach is that one can look for
requirements that will involve both properties at a satisfactory degree. In this
regard, we propose an alternative equity criterion that will attain a balanced
trade-o¤ between the two.
Consider an allocation at which there is a student who has justi�ed envy

for another student who is placed to a certain school. That is, there is
a student who would rather be placed to another school for which he has
higher priority than another student who is currently placed to that school.
Naturally, such a student would consider this allocation as 2unfair. Conse-
quently, he would object to that allocation and demand a fair allocation to
be selected. Note that when this student objects to the initial allocation,
he hopes that at the new allocation, he will be placed to the school which
he was not placed earlier or to an even better school for him. If there is
indeed a fair allocation that makes this student better o¤ as compared to the
initial allocation, then the point this student makes is reasonable and he is
indeed right in his objection. But, what if there is no such fair allocation?
That is, what if there is no fair allocation that places this student to either
the school to which he was not placed earlier or, to a better school for him.
In such a case, there is no way this student could be made better o¤ and,
moreover, any fair allocation can make him even worse o¤. That is in this
case, the student�s objection is groundless. The alternative equity criterion
we propose is based on this observation.

De�nition: An allocation is reasonably fair for a given student placement
problem if whenever a student i has justi�ed envy for another student who is
placed to a school s, then there is no fair allocation that places student i to
school s or to a school better for him than school s:

By Proposition 1, an equivalent way to state the above de�nition is the
following:
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Alternative De�nition: An allocation is reasonably fair for a given stu-
dent placement problem if it is either fair or, no student is placed to a school
that is worse for him than the school he is placed to at the student optimal
stable mechanism outcome.

A mechanism is reasonably fair if it always selects reasonably fair alloca-
tions.

4 AReasonably Fair and Pareto E¢ cient Mech-
anism

Let us have a closer look at Example 1 where there is a student placement
problem for which the outcome of the student optimal stable mechanism is
not Pareto e¢ cient. There, at the �rst step, since student i1 had higher
priority for school s1 than student i2, student i2 was rejected from school
s1: Having rejected from school s1; student i2; in the second step, applied to
school s2 and caused, this time, student i3 to be rejected from school s2: But
this, in turn, caused student i1 to be rejected from school s2 since student
i3 next applied to school s1 for which he has higher priority than student
i1: In short, when student i1 caused student i2 to be rejected from school
s1; he started a chain of rejections which ended back at school s1 where it
formed a full cycle, and caused himself to be rejected. Such a cycle resulted
in loss of e¢ ciency. Indeed, it is this sort of cycles that cause the student
optimal stable mechanism to be Pareto ine¢ cient.9 Suppose school s1 was
removed from student i1�s preferences without a¤ecting the relative ranking
of the other schools in his preferences. Note that, when we re-run the DA
algorithm replacing the preferences of student i1 by his new preferences, there
is no di¤erence in the placement of student i1: But, because the previously
mentioned cycle now disappears, students i2 and i3 bene�t from this change.
Moreover, the new allocation is now Pareto e¢ cient.
To sum up, what is going on here is that, by applying to school s1; student

i1 �blocked�a settlement between students i1 and i2 without a¤ecting his own
placement and introduced ine¢ ciency into the outcome. The idea behind the
mechanism we are going to introduce next is based on the identi�cation of

9Ergin (2002) gives a su¢ cient condition on the collection of priority orders that makes
sure this kind of cycles never form.
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students like student i1 of this example and preventing them from blocking
potential settlements between other students.
Given a student placement problem to which the DA algorithm is applied,

let i be a student who is tentatively placed to a school s at a Step t and
rejected from it at a Step t0. If there is at least one other student who is
rejected from school s after Step t� 1 and before Step t0 (i.e., rejected at a
Step l 2 ft; t + 1; : : : ; t0 � 1g), then we call student i a blocker for school s
and the pair (i; s) a blocking pair.
The mechanism we propose is based on the identi�cation of blocking pairs

in the DA algorithm and suitably taking care of them. Despite being seem-
ingly straightforward, such a job becomes quite intrigue as the size of the
problem increases. For example, for a given problem there may be more
than one blockers for the same school and the rejection chains in the DA
algorithm could have a nested and complicated structure making it di¢ cult
to identify which blocker (or blockers) is (are) the actual reason for the inef-
�ciency. To illustrate, we give an example.

Example 5 (A student placement problem where the associated DA
algorithm contains nested rejection chains): Let I � fi1; i2; : : : ; i6g
and S � fs1; s2; : : : ; s5g where each school except s5 has only one seat and
school s5 has two seats. The priorities for the schools and the preferences of
the students are given as follows:

�s1 �s2 �s3 �s4 �s5
i2 i3 i1 i4

...
i1 i6 i6 i3
i5 i4 i2 i6

i6 i1 i3
...

i4
...

...
i3

Pi1 Pi2 Pi3 Pi4 Pi5 Pi6
s2 s3 s3 s1 s1 s4
s1 s1 s4 s2 s5 s1

s3
... s2 s4

... s3
...

... s2
s5

The DA algorithm applied to this problem is summarized in the following
table. To help us identify the rejection chains, if a student remains tenta-
tively placed at a school for a certain number of steps, we use vertical dots
to denote this. The SSOM outcome is the underlined allocation above.
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Step s1 s2 s3 s4 s5
1 i5; i4 i1 i2; i3 i6

2
... i1; i4

... i6; i3

3 i5; i6; i1
...

...

4
... i2; i6 i5

5 i2; i1
...

...

6
... i1; i6

7 i6; i4
...

8
... i4; i3

9 i6; i3
...

10 i2 i3 i1 i4 i5; i6

Here, for example, there are two blockers for school s1 : student i5 (be-
cause student i4 was rejected while he was tentatively at school s1) and stu-
dent i1 (students i5 and i6 were rejected while he was tentatively at school s1).
Similarly, students i4 and i6 are blockers for school s2; and students i2 and
i6 are blockers for school s3 etc. At this point an idea that comes into mind
to take care of the e¢ ciency loss is to remove from each blocker�s preferences
those schools he is a blocker for. However, that would not work, because
we may end up having vacant seats at schools, although there are students
who would rather be placed there. One can also easily check that doing the
same exercise, this time, starting with those who have been blockers �rst,
would not work either. However, when we do this exercise starting with the
most recent blocker(s) and iteratively applying the removal procedure until
no blockers are left, this gives us a unique outcome. We make this argument
more precise in the following algorithm for a given student placement prob-
lem.

Round 0: Run the DA algorithm.

Round 1: Find the last step (of the DA algorithm ran in Round 0) at
which a blocker is rejected from the school for which he is a blocker. Identify
all the blocking pairs of that step. (If there are no blocking pairs, then stop.)
For each identi�ed blocking pair (i; s); remove school s from the preferences
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of student i: Do not make any changes in the preferences of the remaining
students. Re-run the DA algorithm with the new preference pro�le.

In general,

Round k, k � 2: Find the last step (of the DA algorithm ran in Round
k-1) at which a blocker is rejected from the school for which he is a blocker.
Identify all the blocking pairs of that step. (If there are no blocking pairs,
then stop.) For each identi�ed blocking pair (i; s); remove school s from
the preferences of student i: Do not make any changes in the preferences of
the remaining students. Re-run the DA algorithm with the new preference
pro�le.

Since the number of schools and students is �nite, the algorithm even-
tually terminates. At termination, the outcome obtained at the �nal round
is the outcome of the algorithm. We call the mechanism that associates to
each student placement problem the outcome of the above algorithm the
e¢ ciency adjusted deferred acceptance mechanism (EADAM). We
next give an example.

Example 6: Let us �nd the outcome the e¢ ciency adjusted deferred ac-
ceptance mechanism for the student placement problem given in Example
5.
Round 0: We run the DA algorithm. The table given in Example 5 shows

the steps of the DA algorithm for this problem.
Round 1: The last step at which a blocker is rejected from the school he

is a blocker for is Step 9 where the blocking pair is (i6; s2): (Student i6 is
a blocker for school s2 because there is a student (namely, student i4) who
was rejected from school s2 at the step student i6 was tentatively placed to
school s3.) We remove school s2 from the preferences of student i6 and keep
the preferences of the remaining students the same. We then re-run the DA
algorithm with the new preference pro�le:
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Step s1 s2 s3 s4 s5
1 i5; i4 i1 i2; i3 i6

2
... i1; i4

... i6; i3

3 i5; i6; i1
...

...

4
... i2; i6 i5

5 i2; i1
...

...

6
... i1; i6

7 i2 i4 i1 i3 i5; i6

Round 2: The last step at which a blocker is rejected from the school he
is a blocker for is Step 6 where the blocking pair is (i6; s3):We remove school
s3 from the (updated) preferences of student i6 and keep the preferences of
the remaining students the same. We then re-run the DA algorithm with the
new preference pro�le:

Step s1 s2 s3 s4 s5
1 i5; i4 i1 i2; i3 i6

2
... i1; i4

... i6; i3

3 i5; i6; i1
...

...
4 i1 i4 i2 i3 i5; i6

Round 3: The last step at which a blocker is rejected from the school
he is a blocker for is Step 3 where the blocking pair is (i5; s1): We remove
school s1 from the preferences of student i5 and keep the preferences of the
remaining students the same. We then re-run the DA algorithm with the
new preference pro�le:

Step s1 s2 s3 s4 s5
1 i4 i1 i2; i3 i6 i5

2
...

...
... i6; i3

...

3 i6; i4
...

4
... i1; i4 i2 i3

5 i6; i1
6 i1 i4 i2 i3 i5; i6
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Round 4: The last step at which a blocker is rejected from the school he
is a blocker for is Step 5 where the blocking pair is (i6; s1):We remove school
s1 from the (updated) preferences of student i6 and keep the preferences of
the remaining students the same. We then re-run the DA algorithm with the
new preference pro�le:

Step s1 s2 s3 s4 s5
1 i4 i1 i2; i3 i6 i5

2
...

...
... i6; i3

...
3 i4 i1 i2 i3 i5; i6

Round 5: There are no blocking pairs, hence we stop. The outcome of the
e¢ ciency adjusted deferred acceptance mechanism is the allocation obtained
at the end of Round 4. This allocation is marked with rectangles on the
preference pro�le given in Example 5. The reader may easily check that this
allocation is Pareto e¢ cient.

EADAM very much mimics the student optimal stable mechanism. This
allows it to inherit a great deal of the nice equity properties of the student
optimal stable mechanism. At each round of the algorithm, no student is
made worse o¤ as compared to his placement in the previous round, but
some students may be made better o¤. This continues until the procedure
�nally reaches a Pareto e¢ cient allocation. This feature of the algorithm
enables EADAM to achieve the equity criterion we have proposed in the pre-
vious section.

PROPOSITION 7 The e¢ ciency adjusted deferred acceptance mechanism
is reasonably fair.

COROLLARY 3 The e¢ ciency adjusted deferred acceptance mechanism
Pareto dominates any fair mechanism. In particular, it Pareto dominates
the student optimal stable mechanism.

Another advantage of EADAM is that a student who has justi�ed envy
for another student under EADAM may be placed to an even worse school
for him under the student optimal stable mechanism which is the best place-
ment he can get under a fair mechanism.
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Example 7 (A student who has justi�ed envy for another stu-
dent under the e¢ ciency adjusted deferred acceptance mechanism
may be placed to an even worse school for him under the stu-
dent optimal stable mechanism): Let I � fi1; i2; i3; i4; i5g and S �
fs1; s2; s3; s4; s5g where each school has only one seat. The priorities for
schools and the preferences of students are given as follows:

�s1 �s2 �s3 �s4 �s5
i3 i2 i5 i1

...
i1 i3 i4 i2

i2
... i1

...
...

...

Pi1 Pi2 Pi3 Pi4 Pi5
s1 s1 s2 s3 s4
s3 s2 s1

s5 s5

s4
...

...
...

...
...

The DA algorithm applied to this problem is given in the following table.

Step s1 s2 s3 s4 s5
1 i1; i2 i3 i4 i5

2
... i3; i2

...
...

3 i1; i3
...

4
... i1; i4

5
... i5; i1

6 i5; i4
7 i3 i2 i5 i1 i4

The outcomes of SOSM (the underlined allocation) and EADAM (the al-
location marked with rectangles) are shown above. Note that at the EADAM
allocation, student i1 has justi�ed envy for student i2 who is placed to school
s1: However, student i1 is placed to school s4 (a school worse for him than
his placement under EADAM) under SOSM.

Noting the point made in Example 7 down as another plus of the e¢ -
ciency adjusted deferred acceptance mechanism, we can easily say that this
mechanism leaves almost no room to students for objection to the outcome.
Next we state another important property of the e¢ ciency adjusted deferred
acceptance mechanism.

25



PROPOSITION 8 The e¢ ciency adjusted deferred acceptance mechanism
is Pareto e¢ cient.

COROLLARY 4 The e¢ ciency adjusted deferred acceptance mechanism
selects the fair and Pareto e¢ cient allocation whenever it exists.

4.1 Strategic Issues

Example 8 (The e¢ ciency adjusted deferred acceptance mechanism
is not strategy-proof): Let I � fi1; i2; i3g and S � fs1; s2; s3g where each
school has only one seat. The priorities for the schools and the preferences
of the students are given as follows:

�s1 �s2 �s3
i3 i2 i2
i1 i3 i1
i2

Pi1 Pi2 Pi3
s1 s1 s3

s2 s2 s1
s3

To calculate the outcome of EADAM, we �rst run the DA algorithm at
Round 0:
Step 1: Students i1 and i2 apply to school s1 and student i3 applies to

school s3. Because student i1 has higher priority for school s1 than student
i2; student i1 is tentatively placed to school s1 and student i2 is rejected.
Student i3 is also tentatively placed to school s3.
Step 2: Student i2 applies to his next choice, which is school s2; and he

is tentatively placed to this school.
Since the outcome of the DA algorithm is already Pareto e¢ cient, we stop

at the end of Round 0. The outcome of EADAM when all students truthfully
report their preferences is given by the underlined allocation.

Now, suppose that student i2 reports the fake preferences in which he
exchanges the places of s2 and s3 in his true preferences. Let us re-calculate
the outcome of EADAM. At Round 0, we run the DA algorithm:
Step1: This step is identical to Step 1 above: Student i1 is tentatively

placed to school s1 and student i3 to school s3: Student i2 is rejected.
Step 2: Student i2 applies to his next choice, which is, this time, school

s3 and since he has higher priority for it than student i3; he is tentatively
placed to school s3 and student i3 is rejected.
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Step 3: Student i3 applies to his next choice which is school s2: Since
student i3 has higher priority for this school than student i1; he is tentatively
placed to school s3 and student i1 is rejected.
Step 4: Student i1 applies to his next choice which is school s2 and since

he is the �rst to apply to school s2; he is tentatively placed to it. No student
is rejected at the end of this step and the DA algorithm terminates.

Round 1: Since student i1 is rejected from school s1 at Step 3 and since
student i2 has been rejected from school s1 while student i1 was tentatively
placed to school s1; we identify (i1; s1) as the last and the only blocking pair.
Next, we remove school s1 from student i1�s preferences and re-run the DA
algorithm with the new preference pro�le:
Step 1: Students i1; i2; and i3 apply to schools s2; s1; and s3 respectively.

No student is rejected from any school and the DA algorithm terminates.

Round 2: There are no blocking pairs and we stop. The outcome of
EADAM when student i2 misstates his preferences is the allocation marked
with rectangles above.

Note that student i2 was able to manipulate EADAM by misstating his
preferences. The reason this happened is that by switching the positions of
two schools in his preferences, student i2 initiated a rejection chain which
eventually caused student i1 to be rejected from school s1: This, in turn,
caused us to identify (i1; s1) as a blocking pair and take student i1�s right to
apply to school s1 from him, which thus has bene�ted student i2:

The following proposition shows that the vulnerability to strategic behav-
ior can not be avoided by any reasonably fair and Pareto e¢ cient mechanism.

PROPOSITION 9 There is no mechanism that is reasonably fair, Pareto
e¢ cient, and strategy-proof.

One point here is very critical: for a mechanism, being not strategy-proof
is not the same thing as being easily manipulable. A mechanism may not
be strategy-proof but it may still be very di¢ cult to manipulate or even to
identify a clear strategy that would allow a student to successfully manip-
ulate the mechanism. This point is very crucial in terms of the practical
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applicability of a mechanism. For example, let us consider the Boston mech-
anism again. A student who gives very high ranking in his true preferences
to certain schools for which he has low priority can easily identify it as an
almost 100% right strategy not to list those schools at the top positions in
the preferences he submits (unless of course, he has some extra information
about those schools). As we have argued in the relevant section, even the
press gives clear guidelines on how students should misstate their preferences.
Now let us compare this case with the case of EADAM. Example 8 is

probably one of the simplest examples to illustrate how EADAM can be
manipulated. There, in order for student i2 to gain by misstating his pref-
erences, he had to switch the ranking of two schools on his preferences. To
manipulate, he submits preferences in which he increased the ranking of a
school (school s2) and decreased the ranking of an actually better school for
him (school s3). By doing this, he initiated a rejection chain which caused
a student i1 to be rejected from school s1, in turn, resulting in student i1
being identi�ed as a blocker for school s1 the school student i2 eventually
got himself placed to. First of all, if a student ever attempts this kind of
a manipulation, he has to know other student�s preferences as well as the
priority orders for schools, an information no student (or parent) can obtain
in real-life. Second of all, the complexity of the calculations such a student
needs to make is inarguably very high. Finally and most importantly, in
order to be able to successfully manipulate EADAM, a student has to switch
the positions of two (or more) schools in his true ranking. What this means
is that he has to take the risk of ending up at that worse school for him which
he reported as a better school as compared to his true preferences.
Mechanisms based on the DA algorithm are also used in various real-life

applications such as the US intern-hospital market to match interns to hos-
pitals (see, for example, Roth (1984), Roth and Peranson (1988, 1999), and
Roth and Rothblum (1999)). For example, the hospital optimal stable mech-
anism (which uses the DA algorithm in which hospitals propose to interns) is
not strategy-proof. The way this mechanism can be manipulated by interns is
based on exactly the same idea how EADAM can be manipulated: An intern
by misstating his true preferences initiates a rejection chain which eventually
causes a more preferable (than his assignment when he submits his true pref-
erences) hospital to propose to him. Even though this DA based mechanism
is not strategy-proof, in the last two decades all those markets in which the
DA algorithm (or, its variants) are used have operated very successfully as
opposed to the markets that use alternative procedures. Roth and Rothblum
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(1999) search for the reason for this success and argue that this may be due
to the fact that interns have �limited information� about the preferences
of other interns because in such a case the scope of potentially pro�table
strategic behavior is considerably reduced. They show that regardless of the
attitude of an intern toward risk, in a low information environment, it is
never pro�table for an intern to simply switch the positions of two hospitals
in his preference ranking.10 Although the manipulating side of the market
there, is the non-proposing side in the DA algorithm, the way a manipulation
occurs is identical and the entire intuition behind the observation made in
Roth and Rothblum (1999) carries over to our context.
Let us make the argument more concrete. Very often an intern is not

able to distinguish between two hospitals, and is not sure how other interns
rank those two hospitals. That is, he sees them to be symmetric. Then
this symmetry is captured in his beliefs. We say a student�s information is
symmetric for two schools s and s0; if given that his own preferences are �xed,
he assigns the same probability to any student placement problem and to its
symmetric problem where the roles of s and s0 are exchanged (see Appendix
B for a formal treatment).
Recently, Ehlers (2002b) gives two conditions that are su¢ cient for a

mechanism to be immune to strategic behavior due to a switch of two alter-
natives in the preferences of an intern (here, student) when he has limited
information about other interns. These are �neutrality�11 and �positive as-
sociation.�Neutrality requires that the mechanism should treat all schools
equally. That is, the names of schools should not matter. This requirement is
clearly satis�ed by EADAM. His second condition is �positive association.�
It requires that given a student i who is placed to a school s when he submits
the preferences Pi; if he exchanges the positions of school s and a school s0

which he prefers to school s; then he is still placed to school s. EADAM
does satisfy this property, too (see Appendix B). Therefore, in a limited in-
formation environment, it is never bene�cial for a student to switch the true
ranking of two schools in the preferences he states.
Let us interpret the stated preferences of a student as his strategy. Given

a student placement problem ((�s)s2S; (Pi)i2I), a student i and two pref-
erences P 0i and P

00
i ; we say strategy Pi stochastically dominates strategy P

0
i

10See Theorem 1 of Roth and Rothblum (1999).
11Ehlers (2002b) actually calls this requirement �anonymity.� Since, in our context,

schools are merely objects, it would be more suitable to call this property neutrality.
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if the probability distribution induced on the placements of student i when
he states P 0i ; stochastically dominates the probability distribution induced
on the placements of him when he states P 00i where the comparison is made
according to his true preferences (see Appendix B). Then using Theorem 1 of
Ehlers (2002b), we obtain the following critical observation about EADAM.

PROPOSITION 10 Under the e¢ ciency adjusted deferred acceptance mech-
anism, any strategy which reverses the true ranking of two schools s and s0

is stochastically dominated by a strategy which preserves the true ranking of
s and s0 for a student whose information for s and s0 is symmetric.

Proposition 10 has crucial importance in terms of the practical applicabil-
ity of EADAM. It strongly discourages students from attempting to manip-
ulate this mechanism. It is very unlikely that such an attempt would bene�t
any student, even if it is not totally impossible.

4.2 E¢ ciency adjusted Gale-Shapley mechanism with
consent

At the allocation selected by EADAM, if there is a student i who has justi�ed
envy for some other student who is placed to a school s, then student i is a
blocker for school s at a certain round of the algorithm (because this is only
possible if that school has been removed from his preferences). Recall that
when a student is identi�ed as a blocker of a certain round, then this student
is prevented from applying to this school by removing that school from his
preferences. As a result of this, at the �nal allocation such a student may
have justi�ed envy for another student who is placed to that school. In fact,
this is the only reason for having justi�ed envy among some students under
EADAM.12

One alternative way to perform the updating exercise on the preferences
of students is to ask for the consent of the blocker student (because after
all, what is being violated here is his priority for that school). Recall from
Example 7 that while it does not make any blocker student worse o¤ to grant

12It is not necessarily true, however, that at the EADAM allocation, every blocker has
justi�ed envy for some student who is placed to the school he is a blocker for. It is only
true that if a student has justi�ed envy for a student who is placed to a school at the
EADAM allocation, then he must have been identi�ed as a blocker for that school at some
round.
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such a permission, it may allow him to end up at a better school for himself
by participating in this exercise. An important aspect of the algorithm we
propose is that even if a blocker student does not grant permission for the
updating exercise, it may still be possible to achieve a Pareto improvement
on the SOSM outcome by performing the updating exercise with only those
students who accept to conform.
If one would like to modify the algorithm to accommodate such a change,

then this can be done in a straightforward way as follows: Again, start with
the blocker(s) of the last step of the DA algorithm. If some blocker(s) does
(do) not grant permission for the change in his (their) preferences, then
proceed only with those who do. If there is only one blocker at a particular
round and he does not grant permission, then �nd the last step at which a
blocker can be identi�ed and continue with those blockers in a similar way.
Even if such a change in the algorithm may not allow us to achieve full Pareto
e¢ ciency13, we may still be able to obtain a considerable Pareto improvement
on the DA algorithm outcome.
To illustrate, for example, consider Example 7. We identify two blocking

pairs during the entire algorithm. The student-school pair (i4; s3) is the
blocking pair of Round 1 and (i1; s1) is the blocking pair of Round 2. Now,
suppose student i4 does not grant permission for school s3 to be removed
from his preferences. In such a case, we search for the next blocking pair
which is (i1; s1): Suppose student i1 grants permission for school s1 to be
removed from his preferences. Note that the allocation we obtain now is
not Pareto e¢ cient but it still Pareto dominates the student optimal stable
mechanism outcome.14

5 AMore Equitable Top Trading Cycles Mech-
anism

Abdulkadiro¼glu and Sönmez (2003) have adopted Gale�s top trading cycles
procedure to the student placement context and proposed a Pareto e¢ cient
and strategy-proof mechanism. Despite its appealing properties, this mech-

13It may, too. Examples in which Pareto e¢ ciency can still be achieved even if some
blockers do not grant permission, are available from the author upon request.
14Because students i2 and i3 are now placed to schools s1 and s2 respectively, while

everbody else is placed to the same school as he was placed under the student optimal
stable mechanism.
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anism is still open to criticism because of its equity aspects. As an example,
suppose a school has �ve available seats. Then what this means is that each
one of those �ve students who have the highest �ve priorities for this school,
is entitled to one seat at this school. In this sense, given only this informa-
tion, no student in these �ve has any superiority over any other student in
the group for any other school. However, at the �rst step of the algorithm
all these �ve seats are assigned to the student with the highest priority for
that school. Since any student who has this school as his best choice has
to point to this student, such a student is given all the trading rights of the
seats of this school before any other student in the group of �ve which may
potentially result in justi�ed envy of students who have lower priority for
that school but higher priority for the school this student is placed to. For
example, consider Example 3. There, at the �rst step, student i3 is assigned
the two seats of school s2 and student i1 one seat of school s1: Following our
reasoning earlier, although student i2 is also entitled to one seat at school s2;
since student i3 is assigned all the seats of this school, student i1 is forced to
a trade with student i3; which in turn leads to the violation the priority of
student i2 for school s1: However, had student i1 traded his right for one seat
at school s1 with student i2 for his right for one seat at school s2, there would
not be any justi�ed envy. Of course, due to the incompatibility between fair-
ness and Pareto ine¢ ciency, it can not be possible to totally avoid cases of
justi�ed envy. However, it may still be possible to remarkably decrease the
number of these cases by considering an alternative adaptation of Gale�s top
trading cycles procedure.
In our approach, instead of assigning all the available seats of a school to

the student with the highest priority for that school, we assign one seat to
students following their priority order for that school until no seats are left.
Also, instead of having each student point to the student who has the highest
priority for his best choice, we let each student point to that student (among
those who are assigned one seat from his best choice) who has the highest
priority for the school he himself is assigned. (Note that in this case the
student who is being pointed to is not an arbitrary person.) This ensures that
the student who is being pointed to achieves a more advantageous position
as compared to other students who are also assigned one seat from the same
school, not because of the seat he is assigned but because of his high priority
for the school whose seat the pointing student is assigned. This means,
for example, if a cycle consisting of two students forms, then each student
in that cycle has the highest priority for the school he is placed to within
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a certain group of people who are competing for the seats of those schools.
Furthermore, by imposing priority restrictions on the rules students can point
to one another, a great deal of potential for justi�ed envy is eliminated, even
if it may not be totally eliminated. To make this idea well-de�ned, we need
to be more precise in the way the procedure is being carried out.
Here is a summary of our algorithm: At the �rst step, for each school

seats are assigned to students one by one following their priority order to
form student-seat pairs. A student can be contained in more than one student
student-seat pair. We denote a student-seat pair by (i; s) where i is a student
and, with a slight abuse of notation, s denotes one seat from school s. Each
student-seat pair (i; s) points to the student-seat pair (i0; s0) such that (i)
school s0 is the best choice of student i and, (ii) student i0 is the student
with the highest priority for school s among the students who are assigned a
seat from school s0. If there is already a student-seat pair at which student
i is assigned one seat from his best choice school, then all student-seat pairs
containing him point to that student-seat pair. Since the number of student-
seat pairs is �nite, there is at least one cycle. In each cycle, corresponding
trades are performed, i.e., if a student-seat pair (i; s) is pointing to the pair
(i0; s0) in a cycle, then student i is placed to school s0 and he is removed as
well as the seat student i0 is assigned.
Note that it is possible that some student-seat pairs which contain the

same student appear in the same cycle or in di¤erent cycles. In such a case,
that student is placed to his best choice and the extra seats of that school
(for which other student-seat pairs containing him are pointing to in other
cycles) remain to be inherited by the remaining students.15 Also, if a student
is removed and there are student-seat pairs containing him which do not
participate in a cycle, then the seats assigned to him in those student-seat
pairs also remain to be inherited. To sum up, seats remain to be inherited in
two ways: (1) More than one student-seat pair containing the same student
participate in a cycle or cycles: Then that student is given one seat from
his best choice (i.e., he is placed to his best choice) and the other seats of
his best choice (for which he is pointing to in other cycles) remain to be
inherited; (2) A student-seat pair participates in a cycle and there are other
student-seat pairs containing the same student which do not participate in a

15Pápai (2000) introduces and characterizes quite a large family of rules which she calls
�endowment inheritance rules�that are also based on Gale�s top trading cycles algorithm.
The idea of �inheritence of seats�we use here is inspired by that result.
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cycle: Then the seats assigned to him in those student-seat pairs remain to
be inherited. Once the corresponding trades for cycles of the �rst step are
carried out, we move to the second step.
Those seats that remain to be inherited at the end of a Step t; t � 1; are

not necessarily inherited at the very next step by the remaining students.
Inheritance of seats of a school s does not take place until no student who
was contained in a student-seat pair with a seat from school s at Step t is
left.16 Right after the step at the end of which the last student who was con-
tained in a student-seat pair with a seat from school s at Step t is removed,
all seats of school s which thus far remained to be inherited, are inherited by
the remaining students one by one following their priority order, i.e., these
students are assigned those seats to again form student-seat pairs. At each
step, again student-seat pairs point to each other in the way described above.
Corresponding trades are carried out in each cycle and some seats remain to
be inherited at the appropriate step. The procedure continues in a similar
way. The following algorithm describes this procedure for a given student
placement problem:

Step 1: For each school, all available seats are assigned to students one by
one following their priority order to form student-seat pairs. Each student-
seat pair (i; s) points to the student-seat pair (i0; s0) such that (i) school s0 is
the best choice of student i and, (ii) student i0 is the student with the highest
priority for school s among the students who are assigned a seat from school
s0. If student i is already assigned one seat from his best choice school, then
all student-seat pairs containing him point to that student-seat pair. There
is at least one cycle. In each cycle, corresponding trades are performed and
all student-seat pairs which participate in a cycle are removed. It is pos-
sible that the student-seat pairs containing the same student, say student
i, appear in the same cycle or in di¤erent cycles. In such a case, student
i is placed to his best choice and the other seats of that school (for which
the student-seat pairs containing him are pointing to in those other cycles)
remain to be inherited. For each student-seat pair (i; s) which participates
in a cycle, the seats assigned to student i in other student-seat pairs which
do not participate in a cycle also remain to be inherited.

Step 2: For each school s such that (i) there are seats of school s which

16As it will be clear shortly, this restriction ensures that our mechanism is strategy-proof.
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remained to be inherited from Step 1 and, (ii) no student who was assigned a
seat of school s at the �rst step is left, its seats which remained to be inher-
ited are assigned to the remaining students one by one following their priority
order to form new student-school pairs. Each student-seat pair (i; s) points
to the student-seat pair (i0; s0) such that (i) school s0 is the best choice of
student i and, (ii) student i0 is the student with the highest priority for school
s among the students who are assigned a seat from school s0. If student i is
already assigned one seat from his best choice school, then all student-seat
pairs containing him point to that student-seat pair. There is at least one
cycle. In each cycle, corresponding trades are performed and all student-
seat pairs which participate in a cycle are removed. It is possible that the
student-seat pairs containing the same student, say student i, appear in the
same cycle or in di¤erent cycles. In such a case, student i is placed to his best
choice and the other seats of that school (for which the student-seat pairs
containing him are pointing to in those other cycles) remain to be inherited.
For each student-seat pair (i; s) which participates in a cycle, the seats as-
signed to student i in other student-seat pairs which do not participate in a
cycle also remain to be inherited.

In general,

Step k, k � 2: For each school s such that (i) there are seats of school
s which remained to be inherited from previous steps , and (ii) no student
who was assigned a seat of school s at a previous step is left, its seats which
remained to be inherited from previous steps are assigned to the remaining
students one by one following their priority order to form new student-school
pairs. Each student-seat pair (i; s) points to the student-seat pair (i0; s0)
such that (i) school s0 is the best choice of student i and, (ii) student i0 is
the student with the highest priority for school s among the students who
are assigned a seat from school s0. If student i is already assigned one seat
from his best choice school, then all student-seat pairs containing him point
to that student-seat pair. There is at least one cycle. In each cycle, corre-
sponding trades are performed and all student-seat pairs which participate
in a cycle are removed. It is possible that the student-seat pairs containing
the same student, say student i, appear in the same cycle or in di¤erent cy-
cles. In such a case, student i is placed to his best choice and the other seats
of that school (for which the student-seat pairs containing him are pointing
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to in those other cycles) remain to be inherited. For each student-seat pair
(i; s) which participates in a cycle, the seats assigned to student i in other
student-seat pairs which do not participate in a cycle also remain to be in-
herited.

We call the mechanism that associates to each student placement prob-
lem the outcome of the above algorithm the equitable top trading cycles
mechanism (ETTCM). Next we give an example to illustrate the dynam-
ics of this algorithm:

Example 9: Let I � fi1; i2; : : : ; i9g and S � fs1; s2; : : : ; s5g where schools
s1; s3; and s4 have three seats, schools s2 and s5 have two seats, and school
s4 has four seats. The priorities for the schools and the preferences of the
students are given as follows:
�s1 �s2 �s3 �s4 �s5
i1 i4 i3 i7 i3
i4 i5 i2 i1 i2
i5 i2 i6 i5 i1
i8 i3 i5 i4 i4
i9 i6 i7 i3 i9
i6 i9 i4 i9 i8
i3 i8 i9 i8 i5
...

... i8 i2
...

i1 i6
...

Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 Pi7 Pi8 Pi9
s2 s5 s1 s3 s4 s5 s2 s2 s4
...

...
...

...
... s4 s1 s5

...
...

... s3

Step 1: Since students i1; i4; and i5 have the �rst three highest priorities
for school s1; the three seats of this school are assigned to them to form the
student-seat pairs (i1; s1); (i4; s1); and (i5; s1): Since students i4 and i5 have
the �rst two highest priorities for school s1; the two seats of this school are
assigned to them to form the student-seat pairs (i4; s2) and (i5; s2): The other
student-seat pairs which form similarly are: (i3; s3); (i2; s3); (i6; s3); (i7; s4);
(i1; s4); (i4; s4); (i3; s5); and (i2; s5): Next we determine which student-seat
pair points to which student-seat pair. Consider, for example, the student-
seat pair (i1; s1): Since the best choice of student i1 is school s2; and each
student-seat pair containing student i1 will point to �one�of the student-seat
pairs that contain one seat from school s2; we �rst identify these student-seat
pairs. They are (i4; s2) and (i5; s2): Since student i4 has higher priority for
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( , )i s3 3 ( , )i s5 1

( , )i s1 4

( , )i s5 2( , )i s4 4 ( , )i s7 4

( , )i s1 1

( , )i s4 2

( , )i s2 5

( , )i s4 1 ( , )i s6 3 ( , )i s3 5

( , )i s2 3

Figure 1: Step 1 of the ETTCM algorithm

the school student i1 is assigned (namely, school s1) at the student-seat pair
(i1; s1); student-seat pair (i1; s1) points to the student-seat pair (i4; s2): Since
there is a student-seat pair at which student i2 is assigned his best choice,
school s5; all student-seat pairs containing student i2 point to the student-
seat pair (i2; s5): Other student-seat pairs point to each other in a similar
way (see Figure 1).
Next we identify the cycles of Step 1. Note that two cycles form in

this step: f(i3; s3); (i5; s1); (i1; s4); (i5; s2); (i4; s4)g and a self-cycle f(i2; s5)g:
Each student in a cycle is placed to the school whose seat is contained in the
student-seat pair that the student-seat pair containing himself is pointing to.
Thus, due to the �rst cycle, student i3 is placed to school s1; student i5 to
school s4; student i1 to school s2; student i5 to school s4; and student i4 to
school s3: Due to the second cycle, student i2 is placed to school s5:
All student-seat pairs which participate in a cycle are removed. Note that

there are two student-seat pairs which both contain student i5 and they both
participate in a cycle. These are student-seat pairs (i5; s1) and (i5; s2): Each
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( , )i s6 3
( , )i s8 1

( , )i s9 1

( , )i s7 4

( , )i s6 2( , )i s9 5

Figure 2: Step 2 of the ETTCM algorithm

of the two student-seat pairs are pointing to a student-seat pair containing
the best choice of student i5; namely school s4: Then one of the two seats
of school s4 remain to be inherited. Also, since students i1; i2; i3; and i4
are removed and the student-seat pairs (i1; s1); (i1; s1); (i2; s3); (i3; s5); and
(i4; s2) containing these students respectively, do not participate in a cycle,
two seats of school s1 and one seat of each of schools s2; s3; and s5 also
remain to be inherited.

Step 2: The remaining student-seat pairs from Step 1 are (i6; s3) and
(i7; s4): Also, there are two seats of school s1 and one seat of each of schools
s2; s3; s4; and s5 to be inherited. Since there are still a student who is assigned
one seat of school s3 (namely student i6) and a student who is assigned one
seat of school s4 (namely student i7) at Step 1, there is no inheritance of
the seats of schools s3 and s4 at this step. Since there is no student who is
assigned a seat of schools s1; s2; and s5 at Step 1 is left, two seats of school
s1 and one seat of each of s2 and s5 are inherited by the remaining students
who have the highest priority for these school. More speci�cally, each one of
students i8 and i9 inherits one seat from school s1 and forms a student-seat
pair with the seat he inherits. Also, student i9 and student i6 inherit one
seat of school s5 and school s2 respectively, and they each form a student-
seat pair with the seat he inherits. Thus, four new student-seat pairs form
at Step 2: (i8; s1); (i9; s1); (i9; s5); and (i6; s2): Then student-seat pairs point
to one another in the way described earlier (see Figure 2). There is only one
cycle: f(i6; s2); (i9; s5); (i7; s4)g: Student i6 is placed to school s4, student i9
to school s4; and student i7 to school s2: These three student-seat pairs are
removed. Since students i6 and i9 are removed and the student-seat pairs
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( , )i s8 1 ( , )i s8 3 ( , )i s8 4

Figure 3: Step 3 of the ETTCM algorithm

(i6; s3) and (i9; s1) do not participate in a cycle, one seat of each of schools
s3 and s1 remain to be inherited.

Step 3: The only student-seat pair remaining from Step 2 is (i8; s1): There
is one seat of each of schools s1; s3; and s4 to be inherited. Since there is still
a student who is assigned one seat of school s1 (namely student i8 himself)
at an earlier step, only one seat of school s3 and one seat of school s4 are
inherited by student i8: Thus, two new student-seat pairs now form: (i8; s3)
and (i8; s4): The only cycle that forms at this step is f(i8; s3)g (see Figure 3).
Student i8 is placed to school s3: Two seats of school s1 and one seat of school
s4 remain vacant. The outcome is the allocation marked with rectangles.

Just like TTCM, ETTCM too, is Pareto e¢ cient.

PROPOSITION 11 The equitable top trading cycles mechanism is Pareto
e¢ cient.

Just like TTCM, ETTCM too, is strategy-proof.

PROPOSITION 12 The equitable top trading cycles mechanism is strategy-
proof.

ETTCM not only shares the same nice properties with TTCM, it also has
more to o¤er in terms of equity. To make our argument more concrete, we
give examples to compare ETTCM with TTCM in terms of equity aspects.
The advantage of ETTCM over TTCM is most apparent when we consider
cycles consisting of two student-seat pairs.

Example 10 (a) ETTCM vs. TTCM when there are cycles consist-
ing of two student-seat pairs: Let I � fi1; i2; : : : ; i7g and S � fs1; s2g
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( , )i s1 1

( , )i s2 1

( , )i s3 1 ( , )i s4 2

( , )i s5 2

( , )i s6 2

( , )i s7 2

Figure 4: ETTCM applied to Example 10 (a)

where schools s1 has three seats and schools s2 has four seats. The priorities
for the schools and the preferences of the students are given as follows:

�s1 �s2
i1 i4
i2 i5
i3 i6
i7 i7
i5 i3
i6 i1
i4 i2

Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 Pi7
s2 s2 s2 s1

s1 s1 s1
s1 s1 s1 s2 s2 s2 s2

Here, students i4; i5; i6; and i7 have identical preferences and they are
competing for one seat at school s1: According to the priority order �s1 ; it is
student i7 who deserves one seat at school s1 before any other student among
the four students.
When we apply the TTCM algorithm to this problem, three cycles form

in the �rst three steps. In these cycles, each of students i1; i2; and i3 trades
one seat of school s1 for one seat of school s2 with students i4; i5; and i6
respectively. Student i7 inherits the last seat of school s2 and forms a self-
cycle. The TTCM allocation is the underlined allocation above. Note that
at this allocation, student i7 has justi�ed envy for all three students who
have been placed to school s1: Let us now apply the ETTCM algorithm to
the same problem.
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The �rst step of the ETTCM algorithm is depicted in Figure 4. The only
cycle is f(i3; s1); (i7; s2)g: Student i7 is placed to school s1 and student i3 to
school s2: Then these student-seat pairs are removed. In the second step, all
student-seat pairs containing a seat of school s1 point to the student-seat pair
(i5; s2) because student i5 has the highest priority for school s1 among the re-
maining students who are assigned a seat of school s2: All student-seat pairs
containing a seat of school s2 point to the student-seat pair (i1; s1) because
student i1 has the highest priority for school s2 among the remaining students
who are assigned a seat of school s1: Then the only cycle is f(i5; s2); (i1; s1)g:
Student i5 is placed to school s1 and student i1 to school s2: Continuing the
algorithm in a similar way, we obtain the allocation marked with rectan-
gles. Note that this allocation is fair. (Of course, this may not be the case
in general.) Now student i7 is better o¤ whereas student i4 is worse o¤ as
compared to the outcome of TTCM. By giving way more trading power to
student i4 than he deserves, TTCM severely violates the priorities of student
i7: However, ETTCM successfully establishes equity among students.

One can also observe that the size of justi�ed envy caused by TTCM in
the way described in Example 10 (a) increases as the number of seats avail-
able at schools increases. Next we argue that if the number of participants
in a cycle is larger than two, the chances of causing justi�ed envy among
students is lower under ETTCM as compared to TTCM. To illustrate this
point we give a simple example.

Example 10 (b) ETTCM vs. TTCM when there are cycles consist-
ing of more than two student-seat pairs): Let I � fi1; i2; i3; i4g and
S � fs1; s2; s3; s4g where schools s1, s3, and s4 have only one seat and school
s2 has two seats. Students i1 and i2 have identical preferences. Thus, they
are competing for the same seats.

�s1 �s2 �s3 �0s3
i4 i2 i3 i3
i1 i1 i1 i2
i3 i3 i2 i1
i2 i4 i4 i4

Pi1 Pi2 Pi3 Pi4
s3 s3 s1 s2

s1 s1 s2 s1
s2 s2 s3 s3

Let us �rst suppose that the priority order for school s3 is �s3 : The �rst
steps of TTCM and ETTCM are depicted in Figure 5. Note that students
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i2

i3

i4

( , )i s1 2 ( , )i s2 2

( , )i s3 3

( , )i s4 1

{ ( )}s2 2 { }s1

{ }s3

Figure 5: TTCM (left) vs. ETTCM (right)

i1 and i2 are competing for the only seat at school s3: Clearly, TTCM places
student i2 to school s3: The TTCM allocation is the underlined allocation
above. At this allocation, student i1 has justi�ed envy for students i2 and i3
who are placed to schools s3 and s1 respectively. For the same problem note
that the ETTCM allocation is the one marked with rectangles above. This
allocation is fair.
Let us now suppose the priority order for school s3 is �0s3 : Since now

student i2 has higher priority for school s3; at the TTCM allocation (which
is the same as before) student i1 has justi�ed envy only for student i3 who
is placed to school s1: On the other hand, at the ETTCM allocation (which
is also the same as before) student i2 has justi�ed envy only for student i1
who is placed to school s3:
Recall that students i1 and i2 have identical preferences. In the two cases

we considered, ETTCM does at least as well as TTCM. If the two priority
orders for school s3 are equally likely, then the expected number of justi�ed
envy situations are lower under ETTCM.

6 Conclusion

The equity criterion �reasonable fairness�we introduced here as a weaker
requirement than the strong �fairness�criterion, enabled us to recover a crit-
ical compatibility between equity and optimality. Ergin and Sönmez (2003)
argue that the de�ciency of the widely-used Boston mechanism due to its lack
of e¢ ciency is even more serious than that of it due to strong vulnerability
to strategic behavior. They argue that this large e¢ ciency loss can be recov-
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ered by switching to the student optimal stable mechanism. The e¢ ciency
adjusted deferred acceptance mechanism we propose, however, eliminates
the potentially large e¢ ciency loss of the student optimal stable mechanism
itself.
Although the e¢ ciency adjusted deferred acceptance mechanism is not

fully immune to strategic behavior, since students have very limited infor-
mation about each other�s preferences in almost all real-life applications,
it recovers this property as well and in this sense, it is no weaker than the
mentioned strategy-proof mechanisms. Achieving all three most desirable re-
quirements that would be expected from an admissible mechanism, to quite
a satisfactory degree, the e¢ ciency adjusted deferred acceptance mechanism
seems as a very promising practical tool for the placement of students to
schools in real-life applications.
On the other hand, the main strengths of our second proposal, the eq-

uitable top trading cycles mechanism, is in terms of Pareto e¢ ciency and
strategy-proofness. Furthermore, by adopting a more picky procedure than
its competitor, the top trading cycles mechanism (Abdulkadiro¼glu and Sön-
mez, 2003), it attains superior equity aspects. It is also possible to modify
both mechanisms to accommodate controlled choice issues (to be included in
later versions of the paper).
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7 Appendices

7.1 Appendix A

Example 1 (The detailed DA table):

Step s1 s2 s3 s4 s5
1 i1; i2; i3 i4; i5; i6 i7; i8; i9 i10; i11; i12
2 i1; i6; i2 i4; i12; i5 i7; i3; i8 i10; i9; i11
3 i11; i6; i1 i8; i12; i4 i2; i3; i7 i5; i9; i10
4 i11; i10; i6 i1; i8; i12 i2; i4; i3 i5; i7; i9
5 i9; i10; i11 i1; i3; i8 i4; i12; i2 i6; i7; i5
6 i8; i9; i10 i3; i11; i1 i12; i5; i4 i2; i6; i7
7 i4; i8; i9 i11; i7; i3 i10; i5; i12 i1; i2; i6
8 i4; i12; i8 i7; i9; i11 i10; i6; i5 i1; i3; i2
9 i12; i5; i4 i2; i9; i7 i6; i11; i10 i8; i3; i1
10 i5; i7; i12 i2; i10; i9 i11; i1; i6 i8; i4; i3
11 i5; i7 i2; i10 i11; i1 i8; i4 i3; i6; i9; i12

7.1.1 Another reasonably fair and Pareto e¢ cient mechanism

It is possible to obtain an alternative reasonably fair and Pareto e¢ cient
mechanism by combining the student optimal stable mechanism with the eq-
uitable top trading cycles mechanism. This can be achieved by the following
two-stage algorithm applied to a given student placement problem:

Stage 1: Run the DA algorithm and obtain the allocation selected by the
student optimal stable mechanism.

Stage 2: Assign each student one seat from the school he is placed to
under the student optimal stable mechanism so that student-seat pairs form
just like in the algorithm used to �nd the outcome of the equitable top trading
cycles mechanism. Note that each student is contained in only one student-
seat pair. Then apply the equitable top trading cycles algorithm.

One important point here is that unlike the case for the equitable top trad-
ing cycles algorithm, because now each student is part of only one student-
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seat pair, there is no inheritance of seats. One advantage of this new algo-
rithm is that it is indeed an easy way of �nding reasonably fair and Pareto
e¢ cient allocations.

PROPOSITION 13 The mechanism that associates the outcome of the
above algorithm to each student placement problem is reasonably fair and
Pareto e¢ cient.

The reasonable fairness of this mechanism follows from the fact that at
the ETTCM algorithm, no student-seat pair (i; s) ever points to a student-
seat pair (i0; s0) where school s0 is worse for student i than school s; and
the fact that that school s is the placement of student i under SOSM. The
Pareto e¢ ciency of this mechanism follows from the fact that at the SOSM
allocation, each student �nds his placement at least as good as being placed
to a school which still has unoccupied seats, and the fact that ETTCM is
Pareto e¢ cient. We omit the proofs.

7.2 Appendix B: Proofs of Section 4

PROOF OF LEMMA 1
Let ' be a Pareto e¢ cient mechanism. Given a student placement prob-

lem ((�s)s2S; (Pi)i2I), let i be a student who prefers his placement under the
student optimal stable mechanism to his placement under ': Let s be the
school student i is placed to under the student optimal stable mechanism and
s0 the school he is placed to under '. Thus, s Pi s0: If student i does not have
justi�ed envy for another student who is placed to school s under '; then
all students who are placed to school s under ' have higher priority than
student i for school s:17 This means there is a student i0 among them who
is not placed to school s under the student optimal stable mechanism. Then
student i0 did not apply to school s at the DA algorithm because otherwise
he would not be rejected. Then student i0 also prefers his placement under
the student optimal stable mechanism to his placement under ':

Q.E.D.

PROOF OF PROPOSITION 7

LEMMA 2 Given a student placement problem, the allocation obtained at
17This is usually referred as the individual rationality property.
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the end of a Round r; r � 1; of the algorithm to �nd the outcome of the
e¢ ciency adjusted deferred acceptance mechanism places each student to a
school which is at least as good for him as the school he was placed to at the
Round r � 1.
PROOF OF LEMMA 2
Suppose by contradiction that there is a student placement problem, a

Round r; r � 1; of the EADAM algorithm, and a student i1 such that the
school student i1 is placed to at Round r is worse for him than the school
sr�11 he was placed to at Round r � 1: This means when we run the DA
algorithm at Round r; student i1 is rejected from school sr�11 : Then, there
is a student i2 2 Infi1g who is placed to school sr�11 at Round r and who
was placed to a school sr�12 (at Round r � 1) which is better for him than
school sr�11 : Then, this means there is a student i3 2 Infi1; i2g who is placed
to school sr�12 at Round r and who was placed to a school s3 which is better
for him than school sr�12 at Round r� 1; and so on. Thus, there is a student
ik 2 Infi1; : : : ; ik�1g who is the �rst student to apply to a school sr�1k�1 which
is worse for him than the school sr�1k he was placed to at Round r � 1:
We consider two cases:
Case 1. Student ik is not a blocker of Round r � 1 : The preferences of

student ik is the same in Rounds r and r � 1: Then, there is a student who
is placed to school sr�1k at Round r and who did not apply to it at Round
r � 1: But then, this contradicts the assumption that student ik is the �rst
student to apply to a school which is worse for him than the school he was
placed at Round r � 1:
Case 2. Student ik is a blocker of Round r � 1 : At Round r; student

ik; instead of applying to the school he is a blocker for, applied to his next
choice, say school s�. Student ik had also applied to school s� at Round
r � 1: Then, there is a student who is placed to school sr�1k at Round r and
who did not apply to it at Round r� 1: But then, this again contradicts the
assumption that student ik is the �rst student to apply to a school which is
worse for him than the school he was placed to at Round r � 1:

Q.E.D.

Hence, by Lemma 2, at each round of the algorithm, no student is placed
to a school which is worse for him than the school he is placed to under
the student optimal stable mechanism. Then the result follows from the
de�nition of reasonable fairness.
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Q.E.D.

PROOF OF PROPOSITION 8
Suppose by contradiction that there is a student placement problem for

which the allocation selected by EADAM is not Pareto e¢ cient. Let � denote
this allocation. Hence, there is another allocation � that Pareto dominates
allocation �. Suppose the algorithm terminates in R rounds. Given r 2
f1; 2; : : : ; Rg; let �r denote the allocation obtained at the end of Round r
of the algorithm. By Lemma 2, allocation � also Pareto dominates each
allocation �r; r 2 f1; 2; : : : ; Rg:
We�rst show that at allocation �; no blocker of a Round r; r 2 f1; 2; : : : ; Rg;

is placed to the school for which he is a blocker at Round r. We argue by
induction. Suppose, at allocation �, there is a blocker i1 of Round 1 who is
placed to a school s1 for which he is a blocker at this round. Note that at
allocation �1; all the seats of school s1 are full. (Otherwise, student i1 would
not be rejected from it at Round 0.) Since allocation � Pareto dominates
allocation �1; there is a student i2 who is placed to school s1 at allocation
�1; and who is placed to a school s2 which is better for him, at allocation �.
Note again that at allocation �1; all the seats of school s2 are also full. Then,
there is a student i3 who is placed to school s2 at allocation �1; and who is
placed to a school s3 which is better for him, at allocation �. Continuing in
a similar way, we conclude that because allocation � Pareto dominates allo-
cation �1; there is a student ik who is placed to school sk�1 at allocation �1;
and who is placed to school s1 which is better for him, at allocation �. That
is, there is a cycle of students (i1; i2; : : : ; ik) such that each prefers the school
the next student in the cycle (for student ik it is i1) is placed to at allocation
�1; to the the school he is placed to at the same allocation. Let us consider
the DA algorithm ran in Round 0 of the algorithm. Let i 2 fi1; i2; : : : ; ikg be
the student in this cycle who is the last (or, one of the last, if there are more
than one such students) to apply to the school, say school s, he is placed to
at the end of this round. Then the student in the above cycle who prefers
school s to the school he is placed to at allocation �1; was rejected from there
at an earlier step. Then, when student i applies to school s; all the seats are
already full and since student i is placed to this school at the end of the
round, some student i0 is rejected. Then, student i0 is a blocker for school s:
Furthermore, by the assumption about student i; student i0 is rejected from
school s; at a step later than the step the blocker i1 is rejected from school
s1 for which he is a blocker. But then, student i1 can not be a blocker of
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Round 1.
Suppose that at allocation �; no blocker of a Round k; 1 � k � r � 1;

is placed to the school for which he is a blocker at Round k. We want to
show that at allocation �; no blocker of Round r is placed to the school for
which he is a blocker at Round r. Consider allocation �r: Since � Pareto
dominates each allocation �r; using the same argument as in the previous
paragraph, there is a cycle of students (i01; i

0
2; : : : ; i

0
k) such that each prefers

the school the next student in the cycle (for student i0k it is i
0
1) is placed to

at allocation �r; to the the school he is placed to at the same allocation.
Furthermore, due to our supposition about the blockers of earlier rounds,
none of the students in this cycle is a blocker for the school he prefers. Then,
for each of the students in the cycle there is a corresponding step of the
DA algorithm ran in Round r � 1 such that he is rejected from the school
he prefers, at that step. But then, we can again apply the same argument
we used in the previous paragraph to conclude that student i01 can not be a
blocker of Round r:
At the end of Round R of the algorithm, there are no blockers left and

we obtain the allocation �: Since allocation � Pareto dominates allocation
�; there is again a cycle (i001; i

00
2; : : : ; i

00
k) of students who prefers the school the

next student in the cycle (for student i00k it is i
00
1) is placed to at allocation

� to the the school he is placed to at the same allocation. Note that by
what we just proved in the previous paragraph, no student in fi001; i002; : : : ; i00kg
can be a blocker at any round for the school the next student in the cycle is
placed to at allocation �. Therefore, each student in fi001; i002; : : : ; i00kg applies
to the the school the next student in the cycle is placed to at a step of the
DA algorithm ran in Round R: Let i00 2 fi001; i002; : : : ; i00kg be the student in this
cycle who is the last to be rejected from the school the next student in the
cycle is placed to. When student i00 applies to the school he is placed to at
the end of Round R; because the student in fi001; i002; : : : ; i00kg who prefers this
school to the school he is placed to was rejected from here at an earlier step,
there is a student i000 who is rejected from this school. Then student i000 is a
blocker for this school, contradicting this round being the last round.

Q.E.D.

PROOF OF PROPOSITION 9
Consider the student placement problem given in Example 8. When each

student truthfully submits his preferences, then the outcome of the DA al-
gorithm is the underlined allocation which is Pareto e¢ cient. Hence, any
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reasonably fair and Pareto e¢ cient mechanism has to select this allocation.
Suppose student i2 submits fake preferences P 0i2 : Then the outcome of the
DA algorithm for the new problem is the twice underlined allocation which
is not Pareto e¢ cient. But the unique Pareto e¢ cient allocation that Pareto
dominates this allocation places student i2 to school s1: Thus, student i2
gains by submitting the fake preferences.

�s1 �s2 �s3
i3 i2 i2
i1 i3 i1
i2

Pi1 Pi2 P 0i2 Pi3
s1 s1 s1 s3
s2 s2 s3 s1

s3 s2

Q.E.D.

PROOF OF PROPOSITION 10
Before, we prove Proposition 10, following Ehlers (2002b), we formalize

the discussion in the text. First, we note that although Ehlers (2002b) does
his analysis for the case when each hospital is hiring one worker, his result
generalizes to our case, too. Second, we assume that all schools are accept-
able, which also does not a¤ect the result, either. In this strategic analysis,
each student is now a player:
Given s 2 S; let Bs be the class of all strict priority orders for school s:

Given i 2 I; let Pi be the class of all strict preferences for student i: Let X�i �
(Bs)s2S�(Pi0)i02Infig: A random preference pro�le is a probability distributioneP�i overX�i:Here, eP�i is interpreted as student i�s belief (or, his information)
about the stated preferences of the other students. Let A be the set of all
allocations. A random allocation ea is a probability distribution over A: Letea(i) be the distribution which ea induces on the set of student i�s placements
S: Let ' be a mechanism. Given a student placement problem (Pi; P�i) where
P�i 2 X�i, let '(Pi; P�i) be the allocation selected by ' for this problem.
Also, let '(Pi; P�i)(i) denote student i�s placement at this allocation. Given
a mechanism ' and a student i with preferences Pi; each random preference
pro�le eP�i induces a random allocation '(Pi; eP�i) in the following way: for
all a 2 A; Prf'(Pi; eP�i) = ag = Prf eP�i = P�i and '(Pi; P�i) = ag: Let
'(Pi; eP�i)(i) be the distribution which '(Pi; eP�i) induces over student i�s set
of placements. Given i 2 I; Pi; P 0i ; P 00i 2 Pi, and a random preference pro�leeP�i; we say that strategy P 0i stochastically Pi�dominates strategy P 00i if
for all s 2 S; Prf'(P 0i ; eP�i)(i) Ri sg � Prf'(P 00i ; eP�i)(i) Ri sg:
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We consider a model where a student can not distinguish between two
schools (i.e., is not sure about how other students rank the two schools). In
such a case, we say that his information about the two schools is symmetric.
Then , such a student believes that any student placement problem is equally
likely as its symmetric problem in which the roles of the two schools are
exchanged. Formally (Roth and Rothblum, 1999), given i 2 I; Pi 2 Pi; and
s; s0 2 S; let P s$s0i denote the preferences in which the positions of s and
s0 are exchanged and the other positions in Pi are unchanged. Let P s$s

0
�i

denote the pro�le such that each student i0 2 Nnfig exchanges the positions
of s and s0 in his preferences, schools s and s0 exchange their priority orders
(i.e., �s becomes the priority order for school s0 in P s$s

0
�i , and �s0 becomes

the priority order for school s in P s$s
0

�i ), and the priority orders of the other
schools remain unchanged. Given i 2 I and s; s0 2 S; student i�s information
for schools s and s0 is symmetric if P�i and P s$s

0
�i are equally probable, i.e.,

Prf eP�i = P�ig = Prf eP�i = P s$s0�i g.
Next, we de�ne the two conditions (given in Theorem 1 of Ehlers, 2002b)

that would establish the result in Proposition 10. Given a 2 A and s; s0 2 S;
let as$s

0
denote the allocation such that for all i 2 I; (i) if a(i) =2 fs; s0g;

then as$s
0
(i) = a(i); (ii) if a(i) = s; then as$s

0
(i) = s0; and (iii) if a(i) = s0;

then as$s
0
(i) = s:

Neutrality: For all i 2 I; all Pi 2 Pi; all P�i 2 X�i; and all s; s0 2 S; if
'(Pi; P�i) = a; then '(P s$s

0
i ; P s$s

0
�i ) = as$s

0
:

It is easy to see that EADAM satis�es neutrality. Next we de�ne the sec-
ond requirement of Ehlers (2002b). It says that if the position of the school
s a student is placed to is exchanged with that of another school s0 which he
prefers to school s; then the student�s placement should not change.

Positive Association: For all i 2 I; all Pi 2 Pi; all P�i 2 X�i; and all s;
s0 2 S; if '(Pi; P�i)(i) = s and s0 Pi s; then '(P s$s

0
i ; P�i)(i) = s:

First of all, note that SOSM already satis�es this requirement. This is
because when the ranking of the school he is placed to improves in the pref-
erences of a student i, because other students�preferences (as well as the
priority orders) remain unchanged, at the new problem (i.e., at the problem
where the two positions of the two schools in student i�s preferences are ex-
changed) no student applies to a school he did not apply to at the initial
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student placement problem (i.e., at the problem where the two positions of
the two schools in student i�s preferences were not exchanged) and moreover,
a student may even apply to less schools now. Also, note that the DA algo-
rithms for the two problems are identical until the step of the DA algorithm
(applied to the new problem) at which student i applies to the school he is
placed to at the initial problem. Then student i can not be rejected from that
school and he is placed to the same school at the new problem. An important
observation here is that the school a student is placed to is not a¤ected by
which schools he was rejected from before applying to that school.18

The fact that EADAM satis�es positive association can intuitively be
seen as follows. EADAM algorithm mimics the DA algorithm to a certain
extent. Suppose a student i is placed to a school s at the EADAM outcome.
By Proposition 7, at Round 0, he must have applied to school s at some step
of the DA algorithm and he could have been rejected from school s at a later
step in that round. If student i was rejected from school s at some step of
the DA algorithm ran in Round 0, then by the way the EADAM algorithm
is designed, he is placed back at school s at a later round, because of the
schools he applied to after school s. That is student i�s choices after school s
matter for determining his placement at the EADAM outcome (not those he
applied to before applying to that school!). When we exchange the positions
of schools s and s0 where s0 Pi s in student i�s preferences, the ranking of
the schools which he used to value worse than school s are una¤ected. We
consider two cases:
Case 1. At the end of Round 0, student i is placed to school s : Then

the same idea why SOSM satis�es positive association applies and student
i�s placement does not change.
Case 2. At the end of Round 0, student i is placed to a worse school

for him than school s : At Round 0 of EADAM algorithm applied to the
new problem, student i is again rejected from school s: After being rejected
from school s; because other students�preferences are una¤ected, student i
is also rejected from the schools he used to rank between schools s and s0

(and he can not initiate any rejection chains that would cause any student
to be identi�ed as a blocker for these schools since if this was possible, it
would happen at the initial problem). Since the ranking of the schools which
student i used to value worse than school s are una¤ected, the outcome of
EADAM does not change.

18This may a¤ect the placement of other students, though.
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Q.E.D.

7.3 Appendix C: Proofs of Section 5

LEMMA 3 Given a student placement problem and a step of the ETTCM
algorithm, if the best choice of a student i among the remaining seats is a
seat at school s; then student i does not ever point to a pair which contains
a seat from a di¤erent school until no vacant seats at school s remain.

PROOF OF LEMMA 3
This is due to the fact that for each school s whose seats remained to

be inherited from earlier steps, the to-be-inherited seats are assigned to the
remaining students, right after the step at the end of which no student who
was assigned a seat of school s at an earlier step is left.

Q.E.D.

PROOF OF PROPOSITION 11
A critical observation about the ETTCM algorithm is that by Lemma 3,

if a school still has vacant seats at a step of the ETTCM algorithm, then
there is a student-seat pair containing a seat from that school at that step.
Then, the idea behind the Pareto e¢ ciency of ETTCM is the same as that
of TTCM. Given a student placement problem, each student who leaves at
the �rst step is placed to his best choice, hence he can not be made better
o¤. Each student who leaves at the second step is placed to his best choice
among the remaining seats, hence he can not be made better o¤ without
making someone who left at the �rst step worse o¤. Continuing in this way,
no student can be made better o¤ without making someone who left at an
earlier step worse o¤.

Q.E.D.

LEMMA 4 Given a student placement problem ((�s)s2S; (Pi)i2I), suppose a
student i is removed at a Step t of the ETTCM algorithm and, if he submits
preferences R0i instead of Ri; then he is removed at a Step t

0. Then the
remaining students, available seats of schools, and to-be-inherited seats of
schools at the beginning of Step minft; t0g are the same.
PROOF OF LEMMA 4
Given a student placement problem ((�s)s2S; (Pi)i2I), because no student-

seat pair containing student i participates in a cycle before Step minft; t0g;
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the same cycles form until Step minft; t0g and the same students are placed
to the same seats until Step minft; t0g:

Q.E.D.

LEMMA 5 Given a student placement problem, if a student-seat pair (i; s)
is pointing to another student-seat pair (i0; s0) at some step of the ETTCM
algorithm, then student-seat pair (i; s) keeps pointing to the student-seat pair
(i0; s0) as long as student i0 is not removed.

PROOF OF LEMMA 5
Given a student placement problem, if a student-seat pair (i; s) is pointing

to another student-seat pair (i0; s0) at a Step t, then school s0 is the best
choice of student i among the remaining schools. Furthermore, student i0 is
the student among those who are assigned a seat from school s0 who has the
highest priority for school s: By Lemma 3, student i will keep pointing to a
pair containing a seat from school s0 until no vacant seats at school s remain.
Then the only case student-seat pair (i; s) can point to another student-seat
pair (i00; s00) before student i0 is removed is when (i) s00 = s0 and (ii) student
i00 has higher priority than student i0 for school s: But this is only possible if
student i00 is assigned a seat of school s through inheritance at some Step t0;
t0 > t: But no inheritance of seats of school s0 takes place before student i is
removed.

Q.E.D.

PROOF OF PROPOSITION 12
Given a student placement problem ((�s)s2S; (Pi)i2I) and a student i; let

t be the step at which student i is removed and s be the school he is placed
to. We will show that if student i submits fake preferences R0i; he can not be
placed to a school which is better for him than school s. Let t0 be the step
at which student i is removed when he submits R0i and s

00 be the school he
is placed to at this step. We consider two cases:
Case 1. t � t0 : Consider Step t0: By Lemma 4, at the beginning of this

step, the remaining students and seats are the same. Note that by Lemma 5,
each student-seat pair (i0; s0) that is pointing to a pair containing student i
keeps pointing to that pair as long as student i stays. Similarly, each student-
seat pair (i00; s00) that is pointing to the pair (i0; s0) keeps pointing to that pair
as long as student i0 stays which is the case as long as student i stays, and so
on. Consequently, at Step t, student i has the opportunity to participate in
any of the cycles he participates under fake preferences R0i: Since under his
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true preferences, he is pointing to his best choice at Step t, school s can not
be worse than school s0 for student i:
Case 2. t < t0 : By Lemma 4, at the beginning of Step t, the remaining

students and seats are the same. Since student i is placed to his best choice
at this step, he can not be placed to a better school at a later step.

Q.E.D.
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