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1 Introduction

The problem of what outcomes will arise in decentralized trade amongst arbitrary groups
of agents dates back to Edgeworth (1881). The solution is given by what today we refer
to as the core, i.e., the set of allocations that are immune to any coalitional move that
improves upon them. Edgeworth’s verbal description of contracting and recontracting
was inherently dynamic, and it received elegant formalizations in the analyses of Feldman
(1974) and Green (1974).1 In contrast to these papers, ours considers the possibility of
mistakes in agents’ decision-making within the context of dynamic coalitional exchange.2

Applying the tools developed in evolutionary game theory, our results will point out that
the core may sometimes not correspond to the right notion of stability, i.e., stochastic
stability, which incorporates the small probability of mistakes as a persistent feature of the
system.

Edgeworth (1881) proposed the core as an alternative to the competitive equilibrium
allocations, identified by Walras (1874), and was the first to notice the connection between
the two in large economies. This observation gave rise to the important core conver-
gence/equivalence literature (Debreu and Scarf (1963), Aumann (1964)) as one of the
leading game theoretic justifications of Walrasian equilibrium.3

In Feldman (1974) and Green (1974), a dynamic random process was imposed on a
coalitional game. Starting from an arbitrary feasible allocation, the process allows each
coalition to meet with positive probability in every period. When a coalition meets, they
can choose to stay at the original allocation or move to a new allocation feasible for them
if they all improve as a result. When this happens, the complement coalition is sent back
to their individual endowments (in Feldman (1974)) or to a Pareto efficient allocation of
their resources (in Green (1974)).4 The adjustment of resources of the complement coalition
ensures that the path followed in utility space by the process is not monotonic, and renders
the convergence question interesting and non-trivial. Both Feldman (1974) and Green
(1974) are able to identify sufficient conditions under which Edgeworth’s recontracting
process converges to a core allocation.

In the present paper we analyze a dynamic recontracting process similar to those in
Feldman (1974) and Green (1974).5 The major difference, however, between our analysis

1One other aspect of dynamics and the core is provided by its dynamic non-cooperative implementation
(e.g., Perry and Reny (1994), Dagan et al. (2000)).

2Indeed, papers in cooperative game theory have no mistakes. We shall depart from this noble tradition.
3See Anderson (1992) and Aumann (1987) for surveys. Although the robustness of the equivalence

result is remarkable, several violations thereof have been identified, from which one can learn the role of
certain frictions in markets. These references include Anderson and Zame (1997) for infinite dimensional
commodity spaces, Manelli (1991) for instances of satiation in preferences, and Serrano, Vohra and Volij
(2001) for asymmetric information.

4One interpretation of these dynamic processes is in terms of formation of trading blocks in an in-
ternational trade context. One can then identify patterns of autarchy, followed by the establishment of
long-lasting or short-lived trading unions, and so on.

5One small difference is that when a coalition recontracts, the complement is sent back to their indi-
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and that of Feldman-Green is that we allow agents to make “mistakes” in their recon-
tracting. When a coalition meets and engages in conversations regarding the possible
improvement upon the prevailing status quo, each agent may, with small probability, agree
to a coalitional trade from which he will not benefit.

We investigate the stochastic stability of this recontracting process. This methodol-
ogy, based on the techniques developed for stochastic dynamical systems by Freidlin and
Wentzell (1984), was introduced to evolutionary game theory by Foster and Young (1990),
Kandori, Mailath and Rob (1993) and Young (1993); see also Young (1998) for a clear
exposition.6 The idea is to study the long run behavior of a dynamical system subject
to persistent random shocks. Persistent randomness ensures that the system does not get
stuck at any given state. Instead, it keeps transitting all the time from one state to the
next. Stochastic stability then tells us which states are the ones visited by the system a
positive proportion of time in the very long run.

In most applications to evolutionary biology and game theory, randomness in the system
takes the form of mutations or instances of experimentation. The stochastic stability
results are then interpreted as the patterns of behavior selected by evolution in the long
run. In this paper, as in Ben-Shoham et al. (2000), randomness is identified with the small
probability of mistakes in decision making. Thus, an agent’s preferences do not mutate
or even change over time, but are part of the exogenously specified primitives. Fixing the
preferences of the economy allows us to compare the stochastically stable states to sets
of allocations prescribed by classical solution concepts. Therefore, the interpretation of
the exercise performed here is simply to get a sense of which allocations will be visited by
Edgeworth’s recontracting process a positive proportion of time in the long run if mistakes
are small probability events that all agents make all the time.

Given the finite structure imposed by the methodology based on Markov chains, it is
convenient, and we shall do so here, to work with finite assignment or housing economies ,
as introduced in Shapley and Scarf (1974). When we analyze the recontracting process free
of mistakes, we find a large class of recurrent classes: each core allocation constitutes an
absorbing state, and in addition, we find recurrent classes consisting of cycles of non-core
allocations.

In economies where preferences are strict, we are able to get a remarkable refinement
of this set of predictions when we perturb the system with mistakes. Our first main result
is that the unique stochastically stable state of the recontracting process with mistakes
is the Walrasian allocation, provided that serious mistakes (those where agents end up
worse off as a result) are sufficiently more costly than minor ones (those where the agent
joins a coalition to end up indifferent to how he started). At the heart of this result is

vidual endowments only if necessary for the recontracting move (that is, only if the redistribution of the
blocking coalition’s endowments is not also a redistribution of the commodities they get at the blocked
allocation.

6Other references for evolutionary game theory in general are Weibull (1995), Vega Redondo (1996)
and Samuelson (1997).
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the property of “global dominance” of the Walrasian allocation for this case, uncovered in
Roth and Postlewaite (1977): indeed, for every feasible allocation of the economy, there
exists a coalition that can (weakly) improve upon the status quo with their components
of the Walrasian allocation. This makes it easy to get to the Walrasian allocation from
any other. In the process of coalitional recontracting, the blocking coalition will meet with
positive probability and get their components of the Walrasian allocation, while the rest of
the agents will reach it as an application of trading cycles (see Shapley and Scarf (1974)).
In doing this, the only “mistakes” to be made are agreeing to trades that leave one exactly
indifferent. On the other hand, to go from the Walrasian allocation to any other is much
harder, as it turns out that at least one agent will have to make a serious mistake and
agree to a trade that will make him worse off.

The conclusions of our analysis are quite different in economies with indifferences. We
provide a series of examples to illustrate that the predictions of stochastic stability will
not coincide with any of the classical solution concepts. In particular, we regard our
last example (Example 4) as the other main result of the paper: it shows that non-core
cycles are sometimes stochastically stable, whereas some core allocations are not. Thus,
in recontracting with mistakes, the economy may frequently visit coalitionally unstable
cycles, while entire regions of the core will not be reached but a zero proportion of time in
the very long run. To the best of our knowledge, this also appears to be one of the first
examples in the evolutionary literature where a non-singleton recurrent class turns out to
be stochastically stable.

The paper is organized as follows. Section 2 presents the model and basic definitions.
Section 3 introduces the unperturbed recontracting process. Its perturbed version with
mistakes is found in Section 4. Section 5 contains our result when preferences are strict.
Section 6 focuses on economies with non-singleton indifference sets, and goes through a
series of examples. Section 7 concludes.

2 A Housing Economy

A housing economy is a 4-tuple E ≡ 〈N,H, (�i, ei)i∈N〉, where N is a finite set of indi-
viduals, H is a finite set of houses with |H| = |N |, and for each individual i ∈ N , �i

is a complete and transitive preference relation over H , with �i denoting its associated
strict preference relation and ∼i its indifference relation. Finally, (ei)i∈N is the individual
endowment.

A coalition S of agents is a non-empty subset of N . The complement coalition of S,
N\S, will be sometimes denoted by −S. A feasible allocation for coalition S is a one-to-
one function that assigns to the coalition S a redistribution of the coalitional endowment
(ei)i∈S. Denote the set of feasible allocations for coalition S by AS. We simply write A for
AN .

An allocation x ∈ A is individually rational if there is no individual i ∈ N for whom
ei �i xi.
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An allocation x ∈ A is a core allocation if there is no coalition S and no feasible
allocation for S, y ∈ AS, such that yi �i xi for all i ∈ S.

An allocation x ∈ A is a strong core allocation if there is no coalition S and no feasible
allocation for S, y ∈ AS, such that yi �i xi for all i ∈ S and yj �j xj for some j ∈ S.

An allocation x ∈ A is a Walrasian allocation if there exists p ∈ IRH
+\{0} such that for

all i ∈ N and for all h ∈ H , h �i xi implies ph > pei
.

It has been shown (see Shapley and Scarf (1974)) that an allocation x is Walrasian if
and only if it can be obtained as a result of trading cycles. That is, there exists a partition
of the set of agents {S1, S2, . . . , Sm} such that:

xS1 ∈ AS1, and for every j ∈ S1, xj �j xi for every i ∈ N ; and

for every k = 2, . . . , m, xSk
∈ ASk

, and for every j ∈ Sk, xj �j xi for every i ∈ Sk∪ . . . Sm.

In other words, the agents in S1 redistribute their endowments and get their most preferred
houses; the agents in S2 redistribute their endowments and get their most preferred houses
out of the endowments of S2 ∪ . . . Sm, etc.

Given a housing economy, we shall define a perturbed Markov process as in Kandori,
Mailath and Rob (1993) and Young (1993). The states of the process are the allocations
of the housing economy. In each period a coalition of agents is selected at random and the
system moves from one state to another when the matched agents trade. In the unper-
turbed Markov process M0 of Section 3, agents do not make mistakes in their coalitional
meetings: they trade if and only if there is a strictly beneficial coalitional recontracting
opportunity. In the perturbed process Mε of Section 4, agents will make mistakes with a
small probability, and sign a contract with a coalition even when they do not improve as
a result.

It is often the case that an unperturbed Markov process (and it will certainly be the
case for M0) has many stationary distributions. On the other hand for all ε ∈ (0, 1), the
perturbed processMε is ergodic, which implies that it has a unique stationary distribution.
Denote the unique stationary distribution ofMε by µε. This stationary distribution, which
is independent of the initial state, represents the proportion of time that the system will
spend on each of its states in the long run. It also represents the long run probability that
the process will be at each allocation. In order to define the stochastically stable states,
we check the behavior of the stationary distribution µε as ε goes to 0. It is known that
limε→0 µ

ε exists and further it is one of the stationary distributions of the unperturbed
process M0. The stochastically stable states of the system Mε are defined to be those
states that are assigned positive probability by this limit distribution. We are interested
in these allocations because they are the one that are expected to be observed in the long
run “most of the time.”
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3 An Unperturbed Trading Process

Consider the following unperturbed Markov process M0, adapted from Feldman (1974)
and Green (1974). In each period t, if the system is at the allocation x(t), all coalitions
are chosen with arbitrary, but positive, probability. Suppose coalition S is chosen.

(i) If there exists an S-allocation yS ∈ AS such that yi �i xi(t) for all i ∈ S, the coalition
moves to each such y with positive probability in that period. Then, the new state
is either

x(t+ 1) = (yS, x−S(t)) if x−S(t) ∈ A−S, or

x(t+ 1) = (yS, e−S) if x−S(t) /∈ A−S.

(ii) Otherwise, x(t+ 1) = x(t).

The interpretation of the process is one of coalitional recontracting. Following a status
quo, a coalition can form and modify the status quo if all members of the coalition improve
as a result. When this happens, upon coalition S forming, the complement coalition N\S
continues to have the same houses as before if this is feasible for them. Otherwise, N\S
breaks apart and each of the agents in it receives his individual endowment. If after
coalition S gets together, all its agents cannot find any strict improvement, the original
status quo persists.

It is clear that the absorbing states of this unperturbed process are precisely the core
allocations of the economy. However, the absorbing states are not the only recurrent classes
of M0, as shown by the following example.

Example 1 Let N = {1, 2, 3} and denote by (e1, e2, e3) the individual endowment alloca-
tion. Let the agents’ preferences be as follows:

e3 �1 e2 �1 e1;

e1 �2 e3 �2 e2;

e2 �3 e1 �3 e3.

Consider the following three allocations: x = (e1, e3, e2), y = (e2, e1, e3) and z =
(e3, e2, e1). These three allocations constitute a recurrent class: if the system is at x, the
state changes only when coalition {1, 2} meets, yielding y. At y, the system can move only
to z, when coalition {1, 3} meets. Finally, the system will move out of z only by going
back to x, when coalition {2, 3} meets.

Note that the unique Walrasian allocation w = (e3, e1, e2) also constitutes a singleton
recurrent class.

5



We can prove the following result, characterizing the recurrent classes of the unper-
turbed process M0:

Proposition 1 The recurrent classes of the unperturbed process M0 take the following
two forms:

(i) Singleton recurrent classes, each of which containing each core allocation.

(ii) Non-singleton recurrent classes: in each of them, the allocations are individually
rational but are not core allocations.

Proof: It is clear that each core allocation constitutes an absorbing state of M0, and that
every absorbing state must be a core allocation.

For the second form of recurrent class, note that, by construction of the system, no
state in a recurrent class can ever be non-individually rational: if at state x, ei �i xi, the
coalition {i} is chosen with positive probability. Then, the system moves to the individual
endowment e, never to return to a non-individually rational allocation. It is also clear that
each of the states in the recurrent class cannot be absorbing, i.e., a core allocation.

Thus, each core allocation is an absorbing state of the unperturbed Markov process
M0, and in principle there may be additional non-singleton recurrent classes, as that in
Example 1. Note also that as soon as the economy has more than one core allocation, the
system M0 has many stationary distributions.

4 A Perturbed Trading Process

Next we introduce the perturbed Markov process Mε for an arbitrary ε ∈ (0, 1), a per-
turbation of M0. Suppose the state of the system is the allocation x and that coalition
S meets. We shall say that a member of S makes a “mistake” when he signs a contract
that either leaves him indifferent to the same house he already had or he becomes worse
off upon signing. Each of the members of S may make one of these “mistakes” with a
small probability, as a function of ε > 0, independently of the others. Specifically, for a
small fixed ε ∈ (0, 1), we shall postulate that an agent’s probability of agreeing to a new
allocation that leaves him indifferent is ε, while the probability of agreeing to an allocation
that makes him worse off is ελ for a sufficiently large positive integer λ. That is, the latter
mistakes are much less likely than the former, while both are rare events in the agent’s
decision-making process.

Before we define the perturbed process, we need some notation and definitions. Con-
sider an arbitrary pair of allocations z and z′. Let T (z, z′) ⊆ 2N\{∅} be the set of coalitions
such that, if chosen, can induce the perturbed system to transit from z to z′ in one step.
Note that it is always the case that N ∈ T (z, z′) for any z and z′.
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In the direct transition from z to z′ and for each S ∈ T (z, z′), define the following
numbers:

nI(S, z, z
′) = |{i ∈ S : zi ∼i z

′
i}|,

nW (S, z, z′) = |{i ∈ S : zi �i z
′
i}|,

n(S, z, z′) = λnW (S, z, z′) + nI(S, z, z
′).

In the perturbed Markov process Mε the transition probabilities are calculated as
follows. Suppose that the system is in allocation z. All coalitions are chosen with a fixed
positive probability. Assume coalition S is chosen. If S /∈ T (z, z′), then S moves to z′ with
probability 0. If S ∈ T (z, z′) and n(S, z, z′) > 0, then coalition S agrees to move to z′ with
probability εn(S,z,z′). If S ∈ T (z, z′) and n(S, z, z′) = 0, coalition S moves to those z′ with
some probability bigger than some δ > 0.

For all ε ∈ (0, 1) small enough, the system Mε is a well-defined irreducible Markov
process. As such, it has a unique invariant distribution. This distribution gives the prob-
ability that the system is in each of the allocations in the long run. We are interested
in the limit of the corresponding invariant distributions as ε tends to 0. More precisely,
we are interested in the allocations that are assigned positive probability by this limiting
distribution. These particular allocations are called the stochastically stable allocations.

In order to obtain our results, we will use the techniques developed by Kandori, Mailath
and Rob (1993) and Young (1993). We need some more definitions. These concepts will
be used in the proof of our main result and in the analysis of the examples of Section 6.

Note that by the definition of the perturbed Markov process Mε, for every two allo-
cations z and z′, the direct transition probability µz,z′(ε) converges to the limit transition
probability µz,z′(0) of the unperturbed process M0 at an exponential rate. In particu-
lar, for all allocations z, z′ such that µz,z′ = 0, the convergence is at a rate r(z, z′) =
minS∈T (z,z′) λnW (S, z, z′)+nI(S, z, z

′). We call the value r(z, z′) the resistance of the direct
transition from allocation z to allocation z′.

For any two allocations z, z′, a (z, z′)-path is a sequence of allocations ξ = (i0, i1, . . . , in)
such that i0 = z, in = z′. The resistance of the path ξ is the sum of the resistances of its
transitions.

Let Z0 = {E0, E1, . . . , EQ} be the set of recurrent classes of the unperturbed process
M0 and consider the complete directed graph with vertex set Z0, which is denoted by
Γ. We want to define the resistance of each one of the edges in this graph. For this, let
Ei and Ej be two elements of Z0. The resistance of the edge (Ei, Ej) in Γ, r(Ei, Ej),
is the minimum resistance over all the resistances of the (zi, zj)-paths, where zi ∈ Ei

and zj ∈ Ej . A spanning tree rooted at Ej is a set of Q directed edges such that from
every recurrent class different from Ej , there is a unique directed path in the tree to Ej .
The resistance of a spanning tree rooted at Ej is the sum of the resistances of its edges.
The stochastic potential of the recurrent class Ej is the minimum resistance attained by
a spanning tree rooted at Ej . As shown in Young (1993), the set of stochastically stable
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states of the perturbed process Mε consists of those states included in the recurrent classes
with minimum stochastic potential.

5 Economies with Singleton Indifference Sets

In this section we shall assume that for every agent i ∈ N the preference relation �i is
antisymmetric, which implies that all indifference sets are singletons. Making such an
assumption, Roth and Postlewaite (1977) proved the following result:

Lemma 1 Let E be a housing economy where all preferences are strict. Then,

(i) There is a unique Walrasian allocation w.

(ii) The allocation w is the only strong core allocation.

(iii) For every allocation x ∈ A, x �= w, there exists a coalition S such that wS is feasible
for S and satisfies wi �i xi for all i ∈ S and wj �j xj for some j ∈ S.

Lemma 1 will be useful in proving our first main result, to which we turn now.

Theorem 1 Let E be a housing economy where all preferences are strict. Suppose that
λ > |N | − 2. Then, the unique stochastically stable allocation of the perturbed process
Mε is the Walrasian allocation w.

Proof: Since when |N | = 2, the core consists of the singleton w and there are only two
feasible allocations, it is clear that the statement holds, by Proposition 1. Thus, assume
that |N | ≥ 3. Recall that we denote the set of recurrent classes of the unperturbed
process M0 by {E0, E1, . . . , EQ}, and let E0 be the singleton recurrent class containing
the Walrasian allocation w (again recall Proposition 1 and Lemma 1, parts (i) and (ii)).
Denote the stochastic potential of E0 by sp(E0). We show that the stochastic potential of
any other recurrent class Ek, k = 1, . . . , Q, is greater than sp(E0).

Let Ek �= E0 be an arbitrary recurrent class. Consider a Ek-tree of stochastic potential
sp(Ek). Introduce in it the following two modifications:

(i) Delete the edge that connects the class E0 to its successor Ej on the path to Ek.

(ii) Add a directed edge going from Ek to E0.

Note that the resulting graph is an E0-tree. Moreover, the resistance of this new E0-tree
r(T ) equals

r(T ) = sp(Ek)− r(E0, Ej) + r(Ek, E0).
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To finish the proof, we show in the following two lemmas that r(E0, Ej) > r(Ek, E0).
This means that we would have constructed an E0-tree whose resistance is less than sp(Ek),
thereby showing that sp(E0) < sp(Ek).

Lemma 2 Consider the edge E0 → Ej that is deleted from theEk-tree. Then, r(E0, Ej) ≥
λ.

Proof: Consider a path that attains the resistance r(E0, Ej), of the edge that connect
the Walrasian allocation to the recurrent class Ej, and let x1 be the first allocation in this
path.

We claim that, in the direct transition from w to x1, at least one agent becomes worse
off. Let the coalition involved in this transition be S1. If it were the case that x1

i �i wi

for every i ∈ S1, we would be saying that w is not a strong core allocation, contradicting
Lemma 1, part (ii). Therefore, at least one agent becomes worse off in this direct transition,
from which it follows that r(E0, Ej) ≥ λ.

Lemma 3 Consider the edge Ek → E0 that is added to the Ek-tree. Then, r(Ek, E0) ≤
|N | − 2.

Proof: We calculate an upper bound for r(Ek, E0) as follows. Let x0 ∈ Ek. By Lemma
1, part (iii), there exists a coalition S such that (wi)i∈S ∈ AS, wi �i xi for all i ∈ S and
wj �j xj for some j ∈ S. In the next paragraphs, we refer to S as one of the maximal (in
the sense of set inclusion) such coalitions . We can have two cases.

Case 1: S = N . In this case, the maximum possible resistance associated with the
direct transition from x to w is (|N | − 2), i.e., the one given by the highest number of
indifferences that can occur in N .

Case 2: S �= N . This case admits two subcases:
Subcase 2.1: Suppose that x−S /∈ A−S. Then, when coalition S meets, the system

moves to y = (wS, e−S) with positive probability. The resistance of this transition cannot
be greater than (|N | − 2) because, within S, one can have at most (|S| − 2) indifferences.
But note that from y, the system can move to w with a resistance no bigger than |N\S|−2:
if necessary, the coalition T ⊆ N\S of agents who are not receiving their Walrasian house
at y will be partitioned in subsets (according to the trading cycles), each of which to
perform the necessary trade so that the final result is w. Therefore, since |S| ≤ |N | − 2,
the number of indifferences found in this transition is at most (|N | − 4).

Subcase 2.2: x−S ∈ A−S. In this case, coalition S meets and the system moves to
y = (wS, x−S) with positive probability. But then, by our choice of S and Lemma 1,
part (iii) applied to the subeconomy consisting of agents N\S, it must necessarily be the
case that x−S = w−S. Therefore, N\S = ∅ because otherwise S would not be a maximal
blocking coalition. But in this case S = N and we are back in case 1.
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Therefore, the resistance of the transition Ek → E0 is bounded above by the maximum
of the two expressions involved in the two cases analyzed, which is (|N | − 2).

In consequence, it follows from our assumption on the size of λ that r(Ek, E0) <
r(E0, Ej), which concludes the proof.

6 Economies with Non-Singleton Indifference Sets

In this section we explore how the stochastic process of recontracting with mistakes, Mε,
performs over the class of economies that allow non-singleton indifference sets for some
agents. Over this larger class of economies, recall that Proposition 1 still holds. However,
the conclusions of Lemma 1 do not extend. First, although existence is guaranteed, there
may be multiple Walrasian allocations. Second, the strong core may also contain multiple
allocations, while it may sometimes be empty. And third, the “global dominance” property
of Walrasian allocations as specified in Lemma 1, part (iii), is also lost.

In economies with only strict preferences, the Walrasian allocation correspondence and
the strong core coincide, and under our assumption on λ, the same allocation is the only one
that passes the test of stochastic stability. It is convenient, therefore, to examine the larger
class of economies to disentangle the different forces and understand what conclusions
emerge from our dynamic analysis based on agents’ mistakes. The trading system with
mistakes gives rise to complicated dynamics, and no general result of equivalence can be
established.

We shall present three examples. We arrange them by increasing difficulty and rele-
vance. Indeed, we regard Example 4 as the other main result of the paper. In all three
examples, one agent has a completely flat indifference map, but this is only for simplicity
of exposition. Also, in the examples we shall use the notation z →r

S z
′ to express that the

transition of least resistance from z to z′ takes place through coalition S at a resistance r.
We begin by showing that the set of stochastically stable allocations is not the strong

core. As we just pointed out, the strong core may be empty in these economies, while
stochastic stability always selects at least one allocation; but even when the strong core is
not empty, one can generate examples where it does not coincide with the set of stochas-
tically stable states of Mε.

Example 2 In this example, a non-empty strong core is strictly contained in the set of
stochastically stable allocations. Let N = {1, 2} and agents’ preferences be described as
follows:

e1 ∼1 e2;

e1 �2 e2.

Both allocations are Walrasian and only the allocation resulting from trade is in the
strong core. Note that both allocations are stochastically stable: (e1, e2) →1

N (e2, e1)
and (e2, e1) →1

{1} (e1, e2).
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The next example shows that the set of stochastically stable allocations may be a strict
subset of the strong core and of the set of Walrasian allocations.

Example 3 Let N = {1, 2, 3} and the agents’ preferences be given by:

e1 ∼1 e2 ∼1 e3;

e1 ∼2 e3 �2 e2;

e1 ∼3 e2 �3 e3.

In this economy, all allocations except the initial endowment allocation are Walrasian and
belong to the core. The strong core consists of the following three allocations: (e2, e3, e1),
(e3, e1, e2) and (e1, e3, e2).

The unique stochastically stable allocation is x = (e1, e3, e2). To see that x is the
only allocation with minimum stochastic potential, one can construct one such x-tree as
follows. First, we note that the only recurrent classes of M0 are the five absorbing states
corresponding to each Walrasian allocation. Next, note that to go from (e2, e3, e1) to x can
be done with a resistance of 1 (only one indifference): (e2, e3, e1) →1

{1} (e1, e2, e3) →0
{2,3} x.

The same goes for the transition (e3, e1, e2) to x: (e3, e1, e2) →1
{1} (e1, e2, e3) →0

{2,3} x. As
for the other transitions, we have (e3, e2, e1) →1

{2,3} x and (e2, e1, e3) →1
{2,3} x. Therefore,

the resistance of this x-tree is 4 and one cannot build a cheaper tree than that. On the
other hand, to get out of x, the resistance will always be at least 2, i.e., at least two
indifferences, which implies that, in constructing a tree for any of the other recurrent
classes, its resistance must be at least 5.

The next example shows how different the conclusions one reaches in the analysis of
cooperation with mistakes may be from those of standard cooperative game theory. It
turns out that in a dynamic model where agents may make mistakes in decision-making,
the core may not agree with the set of states that are visited by the process a positive
proportion of time. In contrast, some non-core allocations may fair better in this sense
than some core allocations.

Example 4 7 This example, an outgrowth of Example 1, shows that a cycle of non-core
allocations may be stochastically stable, at the same time as some core allocations having
higher stochastic potential. Let N = {1, 2, 3, 4}, and the agents’ preferences be as follows:

e4 �1 e3 �1 e2 �1 e1;

7As communicated to us by Bob Aumann, a similar story is told in the Talmud: there is a cycle of
three two-person coalitions improving the status quo. The three players involved in the cycle are the two
wives of a man and a third party who buys the man’s estate. The cycle occurs after the man died and left
his estate. The diseased agent naturally corresponds to our agent 4, who has a flat indifference map. See
also Binmore (1985) for a more recent related problem.
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e1 �2 e3 �2 e2 �2 e4;

e2 �3 e1 �3 e3 �3 e4;

e1 ∼4 e2 ∼4 e3 ∼4 e4.

Consider the following three allocations: x = (e1, e3, e2, e4), y = (e2, e1, e3, e4) and
z = (e3, e2, e1, e4). Since agent 4 cannot strictly improve, he cannot be part of any blocking
coalition. In fact, as in Example 1, these three allocations constitute a recurrent class: if
the system is at x, the state changes only when coalition {1, 2} meets, yielding y. At y,
the system can move only to z, when coalition {1, 3} meets. Finally, the system will move
out of z only by going back to x, when coalition {2, 3} meets. That is, x →0

{1,2} y →0
{1,3}

z →0
{2,3} x.
The core consists of the following five allocations: c1 = (e3, e1, e2, e4), c2 = (e4, e1, e2, e3),

c3 = (e4, e1, e3, e2), c4 = (e4, e3, e1, e2), c5 = (e4, e3, e2, e1).
It is easy to see that these five absorbing states –i.e., the core allocations– and the cycle

are the only recurrent classes of the unperturbed system: the 12 allocations where e4 is
allocated to either agent 2 or agent 3 are not even individually rational. And from each of
the remaining four allocations, one gets to one of the already identified recurrent classes
with 0 resistance:
a1 = (e1, e2, e3, e4) →0

{1,2,3} c1, a2 = (e2, e3, e1, e4) →0
{1,2,3} c1, a3 = (e4, e2, e1, e3) →0

{2,3}
x, a4 = (e4, e2, e3, e1) →0

{2,3} c5.
Let E = {x, y, z} be the non-singleton recurrent class consisting of non-core allocations.

Next, we construct an E-tree and show that it has minimum stochastic potential. This
tree must have five edges, coming out of each of the five core allocations. We detail the
transitions below:

c1 →1
{1,4} a4 →0

{2,3} c5,

cj →1
{4} a1 →0

{1,2} y, forj = 2, 3, 4, 5.

Therefore, the class E has minimum stochastic potential.
Note also that there are four Walrasian allocations: c1, c2, c3 and c5. Thus, the example

also shows that there are non-Walrasian stochastically stable allocations.
However, apart from E, the only stochastically stable allocations are the four Walrasian

allocations c1, c2, c3 and c5: there are allocations in the core that are not visited in the
long run but a zero proportion of time. In particular, note how it takes at least two
indifferences to get out of other recurrent classes to go to c4. This implies that c4 cannot
be stochastically stable. As an illustration, we construct a {c4}-tree as follows:

c1 →1
{1,4} a4 →0

{2,3} c5,

cj →1
{4} a1 →0

{1,2} (y ∈ E), forj = 2, 3, 5,

(z ∈ E) →2
N c4.

12



7 Concluding Remarks

1. Theorem 1 uses the “global dominance” property of theWalrasian allocation, as specified
in Lemma 1, part (iii). Although the models are very different, this dominance of the
Walrasian allocation resembles the main driving force of the result in Vega-Redondo (1997).
This paper proposes an evolutionary process based on imitation, and its Walrasian result
relies on the fact that if a firm produces the competitive output in a symmetric oligopoly,
its profit is always higher than that of those firms that produce any other output level.

2. Note that the sufficient condition on the cost of a serious mistake, λ > |N | − 2, used
to obtain Theorem 1, is jeopardized when |N | grows. Thus, for a given specification of λ,
the system may get stuck at other allocations because the number of indifferences required
to abandon a non-Walrasian allocation to go to the Walrasian allocation grows. If one fixes
λ, making the economy large is an obstacle to the Walrasian result: other allocations could
also be visited by the process a positive fraction of time in the long run. This contrasts
with the core convergence literature, based on the existence of more blocking coalitions in
large economies.

3. Along the same lines, if indifferences are present in the economy, the examples
in Section 6 demonstrate that stochastic stability may yield a variety of patterns, and
that the long run prediction may be compatible with the presence of market frictions –
non-Walrasian allocations. In particular, Example 4 suggest that the core may not be
telling the whole story of coalitional stability in a model where mistakes are allowed, as a
complement to one of the central messages of cooperative game theory.

4. Our results are robust if the transition rule in the unperturbed process is that of
coalitional weak blocking, instead of the strict blocking specified in M0. That is, coalition
S moves from xS to yS ∈ AS if yi �i xi for every i ∈ S and yi �i xi for some i ∈ S.
A version of Proposition 1 is obtained: the recurrent classes of this new unperturbed
process are of two kinds: singletons, corresponding to each strong core allocation, and
non-singletons consisting of individually rational allocations that are not in the strong
core. With all preferences being strict, Theorem 1 is still obtained thanks to the “global
dominance” of the Walrasian allocation, but no assumption on λ is required, because in
this new process indifferences constitute no friction if they are accompanied of at least
one strict improvement in the coalition. Finally, one can still sustain stochastically stable
cycles in economies with indifferences: one easy way to see this is to consider an example
with an empty strong core.
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