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Abstract

A subjective expected utility agent is given information about the state

of the world in the form of a set of possible priors. She is allowed to con-

dition her prior on this information. A set of priors may be updated

according to Bayes�rule, prior-by-prior, upon learning that some state of

the world has not obtained. We show that there exists no decision maker

who obeys Bayes�rule, conditions her prior on the available information

(by selecting a prior in the announced set), and who updates the infor-

mation prior-by-prior using Bayes�rule. The result implies that at least
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one of several familiar decision theoretic �paradoxes� is a mathematical

necessity.

1 Introduction

The classical theories of Savage [16] and Anscombe and Aumann [2] serve to

provide behavioral foundations in environments of subjective uncertainty justi-

fying the hypothesis of subjective expected utility. An agent whose behavior

conforms to the axioms of either model can be viewed as if she perceives uncer-

tainty in a probabilistic sense. Thus, she attributes some probability measure

to the set of states of the world, and evaluates state-contingent payo¤s in an

expected utility fashion, with respect to this probability measure. The theories

are very elegant and the behavioral conditions posited are quite intuitive. How-

ever, a signi�cant gap in the theory is that it provides no method of specifying

how such a probability measure should be formed.

Recently, several models have been proposed which attempt to �ll this gap.

One example is the case-based decision theory of Gilboa and Schmeidler [12].

In this model, past experiences of the decision maker are explicitly modelled and

incorporated in the formation of a prior. Other models assume the decision

maker is given some information about the true state of the world, in the form

of a set of priors (for example, see Ahn [1], Damiano [3], Gajdos et al. [8, 9],

Hayashi [13], Klibano¤ et al. [14], and Stinchcombe [18]). The decision-maker

is given the information that the �true�prior lies in some possible set. She is

then allowed to form a subjective probability which depends on this information.
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This is the approach we follow.

To understand this approach, recall the classical Ellsberg paradox [4]. An

urn contains balls of many colors. The decision maker is told that the com-

position (relative proportions of colors) of the balls in the urn lies within some

set, but is told nothing else. A ball is drawn, and the state of the world is the

color of ball drawn. A composition of balls in an urn is identi�ed with a proba-

bility measure over the states. The idea is that the decision maker�s subjective

probability over the states of the world can depend on the information she is

given.

Our primary result in this note demonstrates a fundamental con�ict in such

a model. Informally speaking, we establish that any subjective expected utility

agent who obeys Bayes�rule cannot reasonably condition her subjective proba-

bility on the information given to her. More speci�cally, we take �reasonable�

to mean that if the set of priors revealed to the agent is both closed and convex,

then the agent is required to select a subjective probability from this set.

To understand the result more concretely, return to the Ellsberg urn exam-

ple. Suppose there are three colors of balls in an urn, say, red, blue and, green.

The decision maker is told that the composition of balls lies within some set,

and she constructs a subjective probability over the states (colors) as a function

of this information. Now, suppose that it is revealed to the decision maker that

all green balls have been removed from the urn. This is equivalent to being told

that the state of the world is not green, so the decision maker should naturally

update her subjective probability according to Bayes�rule (conditioning on the
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event that red or blue occurs). Moreover, the decision maker�s objective infor-

mation has also clearly changed. For any possible composition of balls that the

decision maker was originally given, the composition has changed so that there

are no green balls. Viewing a composition as a probability, the new compositon

is simply the Bayes�update of the original probability conditional on the event

that the green state did not obtain. Thus, the decision maker possesses an

information set now which is the prior-by-prior update of the original informa-

tion set (the new set consists of the set of Bayesian updates of the priors in the

original set).

It is important to stress here that the set of priors models objective infor-

mation. Prior-by-prior updating is totally objective in this environment. This

stands in stark contrast to models which feature a set of subjective priors, where

di¤erent subjective updating rules have been proposed (see, for example, Gilboa

and Schmeidler [11]).

We require that the Bayesian update of the decision maker�s original prior in

this environment is exactly the prior she would have selected had she originally

been told the updated set of priors. A decision maker who behaves in such a

way always looks ahead, considering what she would do if one or more states

does not obtain. A decision maker who does not behave in this way faces two

situations with identical information, and treats them di¤erently depending on

how she arrived at the information.

The impossibility result demonstrates that such a decision maker does not

exist. It is impossible for a subjective expected utility decision maker to obey
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Bayes�rule, always select a prior from the information set given to her, and al-

ways treat situations independently of how she arrived at them. Thus, we estab-

lish that all decision makers must violate one of the principles speci�ed above.

We believe this provides a mathematical argument explaining the prevalence of

various decision-theoretic paradoxes (the Ellsberg paradox, non-Bayesian up-

dating). All decision makers must exhibit behavior that can be described as

�paradoxical,�at least according to a subjective expected utilty standpoint.

Section 2 discusses and proves the main theorem. Section 3 discusses the

implications of the result and concludes. An Appendix extends the analysis

to an environment in which decision makers are allowed to make set-valued

selections. The results in this environment are surprisingly not much more

promising.

2 The model and primary result

Let 
 be a �nite set of states of the world. For any nonempty subset E � 
,

the set of probability measures over E is denoted �(E). The set of all convex

and compact subsets of �(E) is denoted P (E). The set of all convex and

compact subsets of �(E) consisting only of measures having full support on E

is denoted Pfs (E).

A prior selection problem consists of a nonempty subset of 
, say, E,

and a set P 2 P (E). The domain of all prior selection problems will be written

X , and the domain of all prior selection problems (E;P ) for which P 2 Pfs (E)
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is denoted X fs.

A prior selection rule is a function  : X !
S
E22
n?�(E), such that for

all (E;P ) 2 X ,  (E;P ) 2 P . A full support prior selection rule takes as

domain X fs. We generalize the notion of a prior selection rule in the appendix,

in order to accommodate the possibility of an agent who selects a set of priors.

Our main interest is in studying the prior-by-prior updating rule for sets

of priors, and in understanding when a prior selection rule is consistent with

respect to Bayesian updating. To this end, we will be concerned only with full

support prior selection rules (so as not to worry about the case in which one

must update on a set of probability zero). Thus, for all nonempty E � 
, and

for all nonempty F � E, for all P � Pfs (E), the set PF � Pfs (F ) is given by

PF �
�

p

p (F )
j2F : p 2 P

�
:

Hence, PF is simply that set of probabilities that results from updating P prior-

by-prior.

A full support prior selection rule is Bayesian consistent if for all (E;P ) 2

X fs, and for all nonempty F � E,  
�
F; PF

�
(�) =  (E;P ) (�jF ). In other

words, the prior selected when information about the state is revealed is simply

the Bayesian update of the originally selected prior.

The primary purpose of this note is to establish that there exists no full

support prior selection rule satisfying Bayesian consistency.

Theorem: Suppose that j
j � 3. Then there exists no Bayesian consistent

full support prior selection rule.
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Proof. Let E � 
 such that jEj = 3. Without loss of generality, label

E � fa; b; cg. We will construct four elements of Pfs (E) These four sets are

illustrated in Figure 1 1. Here, conv denotes the convex hull). To do so, we

need to de�ne some preliminary elements of �(E). De�ne
�
pi
	6
i=1

as follows:

a b c

p1 3=13 9=13 1=13

p2 3=7 3=7 1=7

p3 1=5 3=5 1=5

p4 1=3 1=3 1=3

p5 3=5 1=5 1=5

p6 3=7 1=7 3=7

:

We de�ne the following elements of P (E).

P1 � conv
�
p1; p2; p3

	
;

P2 � conv
�
p2; p3; p4

	
;

P3 � conv
�
p2; p4; p5

	
;

P4 � conv
�
p4; p5; p6

	
:

Consider the problems (E;P1) ; (E;P2) ; (E;P3) ; (E;P4) � X fs. We claim that

P1 \ P4 = ?. This is obvious; for all p 2 P1, p (b) � 3p (c). However, for all

p 2 P4, p (c) � p (b).

We will now establish that  (E;P1) =  (E;P4), which is a contradiction.

The argument is very geometric, so we will illustrate the �rst step in Figure
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2 2.

Let p� =  (E;P1). Clearly, P
fa;bg
1 =

conv
�
p1 (�j fa; bg) ; p2 (�j fa; bg) ; p3 (�j fa; bg)

	
and P

fa;cg
1 =

conv
�
p1 (�j fa; cg) ; p2 (�j fa; cg) ; p3 (�j fa; cg)

	
. By Bayesian consistency,

 
�
fa; bg ; P fa;bg1

�
(�) = p� (�j fa; bg) and  

�
fa; cg ; P fa;cg1

�
(�) = p� (�j fa; cg).

The shaded lines on the faces of the simplex on Figure 2 are P fa;bg1 and

P
fa;cg
1 . In particular, this illustrates geometrically how to �nd the Bayesian

update of an information set. It is a projection of the information set onto the

corresponding face of the simplex from the opposite vertex.

But note that P fa;bg2 = P
fa;bg
1 and that P fa;cg2 = P

fa;cg
1 . (This is also

cleary visible from Figure 2). Therefore,  
�
fa; bg ; P fa;bg2

�
(�) = p� (�j fa; bg)

and  
�
fa; cg ; P fa;cg2

�
(�) = p� (�j fa; cg). Let p�� =  (E;P2). By Bayesian

consistency, p�� (�j fa; bg) = p� (�j fa; bg) and p�� (�j fa; cg) = p� (�j fa; cg). But

this is only possible if p�� = p�. Hence, we conclude that  (E;P2) =  (E;P1),

and it has to lie on the facet on which P1 and P2 intersect.

The remainder of the proof lies in establishing that  (E;P3) =  (E;P2)

and that  (E;P4) =  (E;P3). That  (E;P3) =  (E;P2) follows from the

fact that P fa;cg3 = P
fa;cg
2 and P fb;cg3 = P

fb;cg
2 , and an identical argument using

Bayesian consistency, and it has to be the point at which P1, P2, P3 intersect.

That  (E;P4) =  (E;P3) follows from the fact that P fa;bg4 = P
fa;bg
3 and

P
fa;cg
4 = P

fa;cg
3 , and an identical argument using Bayesian consistency. Hence,

 (E;P4) =  (E;P1), which demonstrates the existence of p� 2 P1 \ P4, a

contradiction. �

8



a

b c

P1

P2

P3 P4

Figure 1: Information sets

a

b c

P1

P2

Figure 2: Constructing Bayesian updates of information sets
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3 Discussion and conclusion

Our impossibility result demonstrates that there can be no Bayesian consistent

prior selection rule. But what does this really mean for the theory? As we

see it, it demonstrates the impossibility of the conjunction of several principles

taken all at once. The primary point of this note is to demonstrate that one of

these principles must be violated.

What are these principles? The �rst is the subjective expected utility hy-

pothesis. The second is the selection hypothesis. The third is the dynamic

consistency hypothesis. The fourth we shall refer to as the history indepen-

dence hypothesis. Our claim is that at least one of these principles must be

violated for any decision maker. We discuss each of these principles in turn.

3.1 The subjective expected utility hypothesis

Our model relies on the assumption that the decision maker obeys the axioms

of subjective expected utility. There are many models which have been de-

veloped generalizing subjective expected utility (for example, see Gilboa and

Schmeidler [10] and Schmeidler [17]). These models are originally developed

to accommodate the �Ellsberg paradox.� The Ellsberg paradox demonstrates

a type of nonseparability in beliefs. One version of the paradox works like

this: An urn is �lled with three colors of balls. They are colored either blue,

green, or red. Two-thirds of the balls are either blue or green, and one third

is red. A decision maker is o¤ered a choice between a bet on the draw of a

blue or green ball or a bet on the draw of a red or green ball. Many decision
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makers prefer the �rst bet, as the total proportion of blue and green balls is

known. However, when o¤ered a choice between a bet on the draw of a blue

ball or on the bet on the draw of a red ball, many decision makers would prefer

the second bet But such a decision maker cannot conform to the subjective

expected utility axioms. Of course, an agent who does not even select a prior

violates the most basic of our assumptions. Hence, such a decision maker is

not ruled out by our other axioms. However, in the appendix, we show that

an agent whose behavior conforms to the multiple priors model [10] and who

uses a prior-by-prior updating rule also cannot exist, at least when she always

makes a nontrivial selection from the information set given to her.

3.2 The selection hypothesis

The next possibility we mention is the idea that a decision maker need not select

a prior belonging to the set of priors that is revealed to her. While this is of

course possible, for a �rational� decision maker, some very mild requirements

on behavior will rule this out. Suppose that the utility index of a decision

maker is a¢ ne (one can do this in the Anscombe-Aumann theory) and that the

decision maker�s behavior satis�es the following. For every possible prior in the

information set, the expectation of a given bet is greater than zero. If she would

always accept such a bet under her subjective prior, then a simple separation

argument establishes that she must select a prior from the information given to

her. Nevertheless, a decision maker who does not always select a prior from the

information set o¤ered to her is not ruled out by our remaining assumptions.
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3.3 The dynamic consistency hypothesis (Bayesian updat-

ing)

What about an expected utility agent who does not update her prior in a

Bayesian fashion? Indeed, this is again observed often in the experimental

literature, and a new theoretical literature has risen up to explain this type of

behavior (see Epstein [5] and Epstein et al. [7]). Bayesian updating and dy-

namic consistency are implicit in many axiomatizations of subjective expected

utility (see for example, Epstein and LeBreton [6]) Nevertheless, an agent who

does not update her prior according to Bayes� rule escapes the impossibility

result.

3.4 The history independence hypothesis

We lastly discuss the idea of history independence built into our model. Start-

ing from a particular set of states, when a certain state is ruled out, the decision

maker is not allowed to take into consideration the original problem being faced.

Thus, two information sets whose Bayesian updates induce the same new infor-

mation set are treated equivalently after updating. Independence of this type is

implicit in the decision maker. Non-expected utility models suggest that it may

be normatively sound to allow decisions to depend on the original information

set before updating (see, for example, Machina [15], who expounds upon the

argument in an objective setting). Thus, the only remaining way to avoid our

impossibility result is to allow the choice of a prior to depend nontrivially on

any original information set faced in the past. As mentioned in the introduc-
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tion, a decision maker of this type may face two situations which are identical in

their information, but behave di¤erently depending on how she arrived at this

information.

3.5 Conclusion

All of the preceding types of behavior have been discussed before in the liter-

ature. Each of them has been recognized by decision theorists, and argued

both experimentally and normatively for many years. What is new here is

the mathematical necessity of behavior of one of the preceding types. In the

Appendix, we show that the situation does not change much when moving to

the multiple priors model with prior-by-prior updating. While multiple priors

decision makers exist that are Bayesian consistent, such decision makers exhibit

pathological behavior. For a large class of information sets (including those

which are the convex hulls of two priors), such a decision maker is not allowed

to make any kind of subjective judgment. Her set of subjective priors must

coincide with the objective information given to her. This is a powerful state-

ment about the behavior of decision makers facing objective information in the

form of a set of priors. Such a decision maker, when facing certain sets, is

required to use the objective information as subjective information. Note that

the setup of the standard Ellsberg paradox mentioned above is the convex hull

of two priors, so this is in the realm of our corollary (up to some modi�cation�we

have worked throughout with probability measures with full support in order to

make our results more powerful. The classical Ellsberg paradox uses an infor-

13



mation set that includes probability measures without full support. However,

the argument is easily extended to such information sets).

4 Appendix: Set-valued selections

When set-valued selections are allowed, obviously the identity mapping is

Bayesian consistent. However, below we show that there is no �nontrivial�selec-

tion which is Bayesian consistent. Set-valued selections are interesting as there

is a large literature devoted to the �multiple priors�model, initiated axiomati-

cally by Gilboa and Schmeidler [10]. In this model, the decision maker forms a

set of priors as her subjective belief. The subjective prior-by-prior updating rule

is often advocated as a method of updating ambiguous beliefs (though there is

not nearly as much consensus on this issue as there is in the subjective expected

utility case).

Let us rede�ne the problem so as to include set-valued selections.

A prior selection problem consists of a nonempty subset of 
, say, E,

and a set P 2 P (E). The domain of all prior selection problems will be written

X , and the domain of all prior selection problems (E;P ) for which P 2 Pfs (E)

is denoted X fs.

A prior selection rule is a function  : X !
S
E22
n? P(E), such that for

all (E;P ) 2 X ,  (E;P ) � P . A full support prior selection rule takes as

domain X fs.

Similarly as before, for all nonempty E � 
, and for all nonempty F � E,
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for all P � Pfs (E), the set PF � Pfs (F ) is given by

PF �
�

p

p (F )
j2F : p 2 P

�
:

Hence, PF is simply that set of probabilities that results from updating P prior-

by-prior.

A full support prior selection rule is Bayesian consistent if for all (E;P ) 2

X fs, and for all nonempty F � E,  
�
F; PF

�
=  (E;P )

F .Also, a selection rule

 is proper if  (E;P ) is a proper subset of P whenever P is non-singleton.

Corollary 1: Suppose that j
j � 3. Then there is no full support prior selec-

tion rule that is proper and Bayesian consistent.

Proof. Suppose, by means of contradiction, that a full support prior

selection rule exists that is both proper and Bayesian consistent, say,  . We

will derive a contradiction.

Order the set of all Bayesian consistent rules by ' � '0 if for all (E;P ) 2 X fs

'0 (E;P ) � ' (E;P ) .

Note that for all (E;P ) 2 X fs and for all Bayesian consistent rules �,

 
�
F;'

�
F; PF

��
=  

�
F;' (E;P )

F
�
=  (E;' (E;P ))

F ,

by a double application of Bayesian consistency. Hence, �0 de�ned by

'0 (E;P ) =  (E;' (E;P ))

is also a Bayesian consistent rule.
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Now let
�
'�
	
�2� be a chain according to �. We claim that there exists a

maximal element of this chain, say '�. De�ne, for all (E;P ) 2 X fs,

'� (E;P ) =
\
�2�

'� (E;P ) .

Since '� (E;P ) is a nested, decreasing chain of compact sets, its intersection

is nonempty and compact. Clearly, for all (E;P ) 2 X fs, and all � 2 �,

'� (E;P ) � '� (E;P ). It remains to show that '� is itself Bayesian consistent.

For all (E;P ) 2 X fs,

'� (E;P )
F

=

"\
�2�

'� (E;P )

#F
=

\
�2�

'� (E;P )
F

=
\
�2�

'�
�
F; PF

�
= '�

�
F; PF

�
.

To see that the second equality is true, suppose that p 2
"\
�2�

'� (E;P )

#F
.

Then there exists p� 2
\
�2�

'� (E;P ) for which p� (�jF ) = p. Hence, p 2

'� (E;P )
F for all �, or p 2

\
�2�

'� (E;P )
F . Conversely, suppose that p 2\

�2�
'� (E;P )

F . Then for all � 2 �, there exists p� 2 '� (E;P ) for which

p� (�jF ) = p. Let p� be a limit point of p�; clearly, p� 2
\
�2�

'� (E;P ); and

moreover, p� (�jF ) = p. Hence p 2
\
�2�

'� (E;P ). Therefore, for all � 2 �,

'� � '�.

As each chain has a maximal element, Zorn�s Lemma implies that the set

of all Bayesian consistent prior selection rules has a maximal element, say,  �.
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We claim that this maximal element must be singleton-valued. If it is not, then

there exists some (E;P ) 2 X fs for which  � (E;P ) is nonsingleton. As  is

proper, it follows that  (E; � (E;P )) is a proper subset of  � (E;P ). De�ning

 �� so that for all (E0; P 0) 2 X fs,

 �� (E0; P 0) =  (E; � (E0; P 0)) ,

we know that  �� is both Bayesian consistent and that  �� �  � (where  � �

 �� is false). This contradicts the maximality of  �, so that  � must be

singleton-valued. However, we know that there cannot exist a singleton-valued

Bayesian consistent prior selection rule. This is a contradiction. �

The preceding corollary indicates that the most natural selection rule for a

multiple prior decision maker who uses the prior-by-prior updating rule is to

select the entire information set. In fact, the corollary can be used to show

that for all information sets P which are the convex hull of at most two points,

any Bayesian consistent full support prior selection rule must coincide with the

identity.

Corollary 2: Suppose that j
j � 3. Let  be a full support Bayesian

consistent prior selection rule, and let (E;P ) 2 X fs such that P =

f�p+ (1� �) q : p; q 2 �(E) , � 2 [0; 1]g. Then  (E;P ) = P .

Proof. By Corollary 1, any full support Bayesian consistent prior selection

rule  cannot be proper; hence, there exists (E;P ) 2 X fs for which P is non-

singleton, and for which  (E;P ) = P . Since P is nonsingleton, jEj � 2. If

jEj > 2, then there exist !1; !2 2 E and p1; p2 2 P for which p1(!2)
p1(!1)

< p2(!2)
p2(!1)

.
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Let F = f!1; !2g. Clearly, PF is nonsingleton. By Bayesian consistency,

 
�
F; PF

�
=  (E;P )

F
= PF . This argument establishes that we may without

loss of generality assume that jEj = 2.

Let !3 2 
n f!1; !2g, and let E0 = f!1; !3g. Let P 0 2 Pfs (E0) be arbitrary.

We claim that  (E0; P 0) = P 0. If P 0 is a singleton, this is obvious. Otherwise,

let p; q 2 P be extreme points of P for which p (!1) > q (!1), and let p0; q0 2 P 0

be extreme points of P 0 for which p0 (!1) > q0 (!1). Let G = f!1; !2; !3g, and

de�ne p�; q� 2 �fs (G) so that

p� (!1)

p� (!2)
=

p (!1)

p (!2)
,

p� (!1)

p� (!3)
=

p0 (!1)

p0 (!3)
,

q� (!1)

q� (!2)
=

q (!1)

q (!2)
,

and

q� (!1)

q� (!3)
=
q0 (!1)

q0 (!3)
.

Note that these linear inequalities in addition to the fact that p� and q� are

probability measures, uniquely determine p� and q�. De�neQ 2 Pfs (G) asQ =

f�p� + (1� �) q� : � 2 [0; 1]g. Clearly, QE = P and QE
0
= P 0. Moreover, as

p 2  (E;P ) and as  (E;P ) =  (G;Q)
E , it must be that p� 2  (G;Q) (as p� is

the unique element of Q for which p� (�jG) = p). A similar argument establishes

that q� 2  (G;Q). Hence,  (G;Q) = Q, and by Bayesian consistency, we
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conclude

P 0

= QE
0

=  (G;Q)
E0

=  
�
E0; QE

0
�

=  (E0; P 0) .

It is now trivial to extend the argument to all problems (E;P ) 2 X fs for which

jEj = 2 and P is of the required form. Now, let (E;P ) 2 X fs be arbitrary,

where P is of the required form. It is clear that  (E;P ) = P ; otherwise, there

exists some F � E such that jF j = 2 and  (E;P )F is a proper subset of PF .

�

This statement is quite strong. It says that for the special case in which

an information set is the convex hull of two priors, no subjective judgment is

permitted. In fact, the argument is easy to generalize to certain classes of

simplicies, but we will not provide such a statement.
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