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Abstract

For impartial division, each participant reports only her opinion
about the fair relative shares of the other participants, and this report
has no effect on her own share. If a specific division is compatible with
all reports, it is implemented.
We propose a natural method meeting these requirements, for a

division among four or more participants. No such method exists for
a division among three participants.

1 Introduction

How to divide a dollar, or any amount of a divisible commodity, in a way that
respects the claims of the potential recipients of the money? If the profile of
claims is not in dispute, i.e., everyone agrees on a list of “objective” claims
(e.g., verifiable liabilities in a bankruptcy), the most common ethical norm
is proportionality, which we retain here1. But our problem is different.how
should we proceed if the participants disagree in their evaluations of the
claims, and no outside authority has knowledge comparable to that of the
claimants ?

We propose to aggregate impartial opinions about the division of the
dollar, when each participant voices opinions only about the relative claims
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1 It goes back to Aristotle’s Nichomachean Ethics. A recent axiomatic literature dis-

cusses alternative norms for fair division under objective claims: see Thomson [2003] for
a survey.
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of the other participants. In spirit this mutual evaluation process is related
to the problem of ranking web pages or academic journals by the graph of
"links" or "cites" connecting them (Palacio-Huerta and Volij (2004), Slutski
and Volij (2005), Tennenholz (2004)). The vertices of the graph are the
participants, and the (possibly weighted) edges going out of a given vertex
are interpreted as its opinion about the relative importance of other vertices.
Although the ranking selected by all usual methods is vulnerable to a variety
of strategic manipulations (e.g., Cheng and Friedman (2005)), in practice
with a large number of participants it is plausible to assume each individual
opinion to be disinterested hence impartial.

Whe achieve impartiality in the division of a privately consumed com-
modity by requiring the two following properties of a division rule:

• everyone reports opinions only about the (relative) shares that other
agents deserve; no one makes any statement about his/her own share
of the pie;

• the share of any participant is determined exclusively by the reports of
other agents, her own report has no influence at all on her final share.

The first principle takes literally the old adage that a man is never a
good judge of his own cause. Voicing an opinion about my own share of the
dollar creates the archetypal conflict of interest, it is prima facie evidence
of partiality. If the first principle eliminates overt partiality, the second one
takes care of the covert form of partiality that begets selfish agents, tempted
to use their report strategically so as to indirectly increase their share. The
combination of these two properties of the division rule, and the assumption
that participants care only about their own share, make Borda’s "honest
man" a rational agent as well.

Our third principle conveys the idea that the eventual division should be
a compromise between the various opinions. This is the consensus property:

• if the profile of opinions points to a consensual division (if there is a
way to divide the pie that agrees with all individual reports), this is
the solution.

Of our three requirements, only this one links the substantive content of
the reports to the actual shares of the pie. It is a very weak link, because
it puts no restriction at all on the outcome when there is even a modicum
of disagreement among the participants. Yet, in combination with the first
two properties, the consensus property has much bite.
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Our model is very general, in that it requires no assumption on the
nature of individual claims, or on the origin of the disagreement. Individual
claims may reward contributions toward the creation of the surplus, e.g.,
the level of effort supplied by each “partner”; or measure the relative needs
for the resource, as when one distribute relief after a catastrophic loss; or
represent exogenous rights, as in a bankruptcy or inheritance situation; or
a combination of these factors. An objective set of claims may exist (based,
perhaps, on legal rights), yet be imperfectly known to the participants (some
records are lost, thus claims are not verifiable), who make honest mistakes
when evaluating the claims. Or the claims may be inherently subjective,
as when partners with heterogenous skills divide their joint profit. Finally
we may be dividing a cost, in which case the claims turn into individual
liabilities, with a similar array of possible interpretations.

Because my share is independent of my own report, my preferences over
my own share do not affect the choice of my report. Moreover the distri-
bution of shares among the other participants may be a matter of ethical
concern, but not one that affects my individual welfare. This is the key re-
strictive assumption of our model: without it I would still be tempted to use
my report strategically; with it every message is a dominant strategy in the
non cooperative reporting game. A similar assumption inspires the related
Condorcet Jury problem, and more generally the literature on the pooling
of expert opinions,2 as well as bargaining theory, to which our approach is
however orthogonal.

Overview of the results
Our model requires at least three agents. With exactly three, there is

a unique impartial and consensual division rule (Proposition 1), but that
rule distributes the full dollar only in the case where the three reports are
consistent; otherwise it distributes strictly less than $1. By contrast, with
four or more agents, we can find many anonymous, impartial and consensual
rules that always distribute the entire dollar (Theorem 1).

To construct such division rules, we introduce a family of “wasteful”
rules (generally distributing less than the full dollar), in which the share
of a given agent i is computed by aggregating the reports on the relative
share of j versus i into a single ratio. Different methods can be used to
aggregate the reports (e.g. median, maximum, geometric and arithmetic
means). Theorem 2 in section 6.2 is a characterization of these rules based
on this separability property.

2Recent contributions include List and Petitt (2002), Dokow and Holzman (2005),
Nehring and Puppe (2005)
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We construct non-wasteful rules from the wasteful ones by dividing the
amount to be allocated into as many equal parts as there are agents, leaving
one agent’s opinion out of the allocation of each part, and allowing that
agent to receive the residual from the “wasteful” division of that part.

We note that the divisionrules in Theorem 1 are easily adapted to sit-
uations in which some participants are only able to evaluate the relative
contributions of a subset of other agents.

Finally in section 5 (see also section 6.4) we assume that our agents
make honest mistakes, as in Condorcet’s Jury problem, and we interpret our
rules as estimators of the correct shares. We evaluate numerically different
aggregators by assessing the relative accuracy of the associated estimators.

Throughout the main paper we make the simplifying assumption that
all reports assign a positive share to each participant. At the cost of some
restrictions on the aggregation operation mentioned above, all results are
preserved when individual reports may include zero shares for some partic-
ipants: section 6.3.

2 The model

In Sections 2 to 4, we assume that every participant must receive a positive
share of the dollar, and that individual reports respect this constraint. At
some technical cost and with some qualifications, our results extend to the
case where an agent can recommend a null share for some of the other agents:
Section 6.3.

We introduce some notation first. Write M for a set of two or more
agents, M2 for the set of pairs (i, j) in M , and R[M ] for the following
subset of RM2

:

r ∈ R[M ]⇔{∀i, j, k ∈M, rij > 0, rii = 1, rij · rjk · rki = 1}

In particular, rij · rji = 1. There is a natural bijection from R[M ] into the

interior of the M−simplex, namely
◦
∆(M) = {x ∈ RM |xi > 0,

P
M xj = 1}.

It is given by the system

rij =
xi
xj
, for all i, j ∈M (1)

A vector r ∈ R[M ] is interpreted as an evaluation of the relative shares of
all agents in M : it is derived via equation (1) from a unique division x of a
dollar among these agents.
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Definition 1.
Given a set N of three or more agents, a mutual evaluation problem
is a list (N, ri, i ∈ N) where ri ∈ R[NÂ{i}] for all i. This problem is

consensual if there exists a vector x ∈
◦
∆(N) such that

rkij =
xi
xj
, for all k ∈ N , and all i, j ∈ NÂ{k} (2)

The assumption rkij > 0 means that in everyone’s evaluation, everyone else
deserves a positive share of the pie.

Lemma 1.
If N = {1, 2, 3}, the problem (N, r) is consensual if and only if r123· r231·r312 =
1.
If |N | ≥ 4, the problem (N, r) is consensual if and only if

rkij = rlij for all k, l ∈ N, and all k, l ∈ NÂ{i, j}

If (N, r) is consensual, the corresponding division is

xi =
1

1 +
P

NÂ{i} rji

where rji is the common value of rkij (the naturalness of this expression can
be seen by replacing rji by

xj
xi
).

We omit the straightforward proof.

Definition 2.
Given N , a division rule f assigns to each mutual evaluation problem
(N, r) a vector f(N, r) = x ∈ RN

+ . The rule f is exact if
P

N xi = 1 for
all r; it is (gain-)feasible if

P
N xi ≤ 1 for all r; it is cost-feasible ifP

N xi ≥ 1 for all r
The dollar to be divided can be interpreted as a net gain, or as a net cost.

If the division rule is exact, both interpretations are valid. For an inexact
rule, the feasibility constraint depends on the interpretation of the dollar as
a gain or a cost. Although our main interest is in exact rules, gain-feasible

rules are also relevant (Propositions 1 and 2): they are a key ingredient in
the construction of the exact rules of Theorem 1. On the other hand, cost
feasible rules play no role in our model (as explained in Propositions 1 and
2), so we focus on the gain interpretation: when we speak below of a feasible
rule, we always mean gain-feasible.

Definition 3.
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Given N , the division rule f is consensual if it chooses the consensus
division when the problem (N, r) is consensual. It is anonymous if it is a
symmetric mapping with respect to permutations of N . It is impartial if
the share of an agent is independent of her own report: for all r, r0 and all i

{rj = r0j for all j ∈ NÂ{i}}⇒ fi(N, r) = fi(N, r0)

Consensuality restricts the choice of a rule only in the knife-edge case
where all reports agree over the relative shares of all pairs of agents. Suppose
now that the reports agree on a particular pair i, j of agents: rkij = rlij for
all k, l ∈ NÂ{i, j}. In the spirit of the independence properties familiar in
axiomatic work, it is natural to require that the actual shares agree with
this common value: fi(N,r)

fj(N,r) = rij , even in the absence of agreement over other
pairs. But this strengthening of Consensuality is much too demanding. Fix
a > 0, N = {1, 2, · · · , n}, and consider the following reports

rji,i+1 = a for all i, j such that j 6= i, i+ 1

where we use the convention n+ 1 = 1. The above property would require
xi
xi+1

= a for all i, which is impossible for a 6= 1.
If I care only about the size of my own share, impartiality is the familiar

strategy-proofness property: my report is selfless, it has no impact on my
own welfare, therefore “gaming” is irrelevant. This is no longer true if I care
about the profile of shares of the other agents, or if a coalition of agents
choose their reports strategically.

It is easy to construct an anonymous, impartial and exact division rule.

Given a problem (N, r), let xi ∈
◦
∆(NÂ{i}) be the division of the dollar

among NÂ{i} proposed by agent i (system (1)), and xi∗ ∈
◦
∆(N) be the

“same” division of the dollar among N where the share of i is zero: then
f(r) = 1

n

P
N xi∗ is such a rule. But this rule is not consensual.

Proposition 1.
For N = {1, 2, 3}, there is a unique impartial and consensual division rule
f∗:

f∗(r) = (
1

1 + r231 + r321
,

1

1 + r312 + r132
,

1

1 + r123 + r213
) for all r (3)

This rule is anonymous and feasible; it distributes the whole dollar only if
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the problem is consensual:

r123 · r231 · r312 6= 1⇒
3X
1

f∗i (r) < 1

r123 · r231 · r312 = 1⇒
3X
1

f∗i (r) = 1

Proof.
Pick a rule f impartial and consensual. The share of agent 1 takes the
form f1(r

2, r3). For any r2, r3, choose r1 so that (r1, r2, r3) is consensual:
r123 = r321r

2
13, and r123r

1
32 = 1. The solution x of system (2) is then

x = (
1

1 + r231 + r321
,

1

r312(1 + r231 + r321)
,

1

r213(1 + r231 + r321)
)

and consensuality gives the desired share f∗1 (r). Therefore f = f∗. Fea-
sibility of f∗, and the fact that f∗ wastes some money whenever r is not
consensual, follow at once from Lemma 4 in the Appendix. ¥

A consequence of Proposition 1 is that among three agents, no impartial
and consensual division rule is cost-feasible.

The above impossibility result no longer holds with four or more agents:
we construct in Section 4 impartial, consensual and exact division rules for
such problems. Our construction starts with a family of feasible yet inexact
rules generalizing f∗ in (3) to any number of agents.

3 Separable division rules

Consider agent 1. For each j, j 6= 1, every agent i in NÂ{1, j} contributes
an opinion rij1 about the relative shares of j and 1. The rules we construct
aggregate the ratios {rij1, i ∈ NÂ{1, j}} into a single representative ratio.

Definition 4.
Given an integer m, an m-aggregator is a symmetric, continuous and non
decreasing mapping ρm from Rm

++ into R++, such that

ρm(a, · · · , a) = a for all a > 0

The familiar arithmetic, geometric, and harmonic means are examples of
aggregators. Of particular interest to us are the “rank order” aggregators

and their convex combinations. For all z ∈ Rm
++, let z

∗ obtain from z by

7



rearranging its coordinates increasingly: z∗1 ≤ z∗2 ≤ · · · ≤ z∗m For any set of
convex weights λ ∈ ∆(m), the equation ρm(z) =

Pm
1 λiz

∗
i defines an aggre-

gator. Note that for any aggregator ρm we have mini zi ≤ ρm(z) ≤ maxi zi,
therefore mini zi and maxi zi are respectively the smallest and largest aggre-
gators.

Proposition 2.
Fix N = {1, 2, · · · , n}, n ≥ 3, and a (n− 2)-aggregator ρ. For any problem
(N, r), write ρ(rji) = ρ(rkji; k ∈ NÂ{i, j}), and define the division rule fρ

as follows

fρi (r) =
1

1 +
P

j∈NÂ{i} ρ(rji)
for all i and r (4)

i) This rule is anonymous, impartial and consensual;
ii) It is not cost-feasible:

inf
r

nX
1

fρi (r) = 0

iii) It is feasible if and only if

ρ(z) · ρ(1
z
) ≥ 1 for all z ∈ Rn−2

++ , where
1

z
= (

1

z1
, · · · , 1

zn−2
) (5)

iv) If, in addition to (5), ρ satisfies for all z

ρ(z) · ρ(1
z
) = 1⇐⇒ z1 = z2 = · · · = zn−2 (6)

then for all problems r we have

nX
1

fρi (r) = 1⇐⇒ r is consensual. (7)

Proof.
Statement i) is clear. For statement ii) consider the problem defined imme-
diately after Definition 3

rji,i+1 = a for all i, j such that j 6= i, i+ 1.

The unanimity property of ρ implies ρ(ri+1,i) = 1
ε for all i, therefore f

ρ
i (r) ≤

1
1+ρ(ri+1,i)

≤ a. Choosing a arbitrarily small establishes the claim.
For statement iii), assume first that ρ meets inequalities (5). Fix a problem
(N, r), then apply the first statement of Lemma 4 to yij = ρ(rij), taking
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into account rkijr
k
ji = 1: this gives

P
N fρi (r) ≤ 1. Conversely we must show

that ρ satisfies (5) if fρ is feasible. Fix z1, · · · , zn−2 ∈ Rn−2
++ and consider

the following profile of reports:

r12i = λ, r1ij = 1 for all i, j ≥ 3; r21i = λ, r2ij = 1 for all i, j ≥ 3
for k ≥ 3 : rk12 = zk, r

k
1i = λzk, r

k
2i = λ, rkij = 1 for all i, j ≥ 3

and the other coordinates deduced by rkijr
k
ji = 1. Check that for all i ≥ 3,

fρi (r)→ 0 as λ→ +∞, whereas

fρ1 (r)→
1

1 + ρ( 1z1 , · · · ,
1

zn−2
)
; fρ2 (r)→

1

1 + ρ(z1, · · · , zn−2)

Now feasibility implies inequality (5) at once.
For statement iv) we apply again the first statement of Lemma 4: for any r,
equality

Pn
1 f

ρ
i (r) = 1 holds only if ρ(rij) · ρ(rji) = 1 for all i, j. If ρ meets

(6) this implies that rkij is independent of k ∈ NÂ{i, j}, thus r is consensual
by Lemma 1. ¥

For n = 3, there is only one aggregator ρn−2, and Proposition 2 repeats
Proposition 1.

For n ≥ 4, the harmonic mean fails (5)3, therefore this aggregator is not
useful in our problem.

The geometric mean ρg meets (5) but fails (6); in fact ρg(z) · ρg(1z ) = 1
holds for every z ∈ Rn−2

++ .
The arithmetic mean ρa satisfies (5) and (6) (a simple consequence of the

Schwartz inequality; or see Lemma 2 below). Therefore the corresponding
rule divides the entire dollar only in a consensual problem.

Recall that ρg ≤ ρa. By (4) this implies f
ρa ≤ fρg , in particular the rule

fρg is less “wasteful” than fρa ; for instance fρg allocates the entire dollar in
many non consensual problems. Thus the desirability of property (7) is not
straightforward. If the participants engage in extensive discussions before
sending their reports, it gives them a strong collective incentive to reach a
consensus. If on the other hand individual reports result from decentralized
introspection, we will prefer a rule that wastes as little money as rarely as
possible, and to this end a rule ensuring ρ(z) · ρ(1z ) = 1 for all z is clearly
optimal: no other aggregator ρ0 can meet (5) and be everywhere smaller
than ρ. Examples include the geometric mean, and, if m = 2m0 − 1 is odd,

3This is clear for n− 2 = 2, and just as easy to show for any n.
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the median aggregator ρ(z) = z∗m0 .
Proposition 4 in section 6.3 gives an alternative justification of (7) for the

aggregators used in Theorem 1 to construct exact rules: when this property
holds, it is especially difficult to assign a zero share to any agent.

Lemma 2.
Consider a convex combination of rank order aggregators ρ(z) =

Pn−2
1 λiz

∗
i ,

and write m = bac for the largest integer no greater than a.
i) Property (5) holds if and only if

kX
1

λi ≤
kX
1

λn−i−1, for all k = 1, · · · , b
n

2
c− 1 (8)

ii) Given (8), property (6) holds if and only if λn−2 > 0.

Proof.
Statement i). For any λ, λ0 ∈ ∆(n − 2), we define the familiar stochastic
dominance relation:

λ º λ0 ⇔
kX
1

λi ≤
kX
1

λ0i for k = 1, · · · , n− 3

Call λ symmetric if λi = λn−i−1 for all i = 1, · · · , bn2 c. We claim that λ
satisfies system (8) if and only if

λ º λ0 for some symmetric λ0

For if, note that λ º λ0 implies λ1 ≤ λ01 and λ0n−2 ≤ λn−2, hence λ1 ≤ λn−2
by the symmetry of λ0. Similarly λ1 + λ2 ≤ λ01 + λ02 = λ0n−3 + λ0n−2 ≤
λn−3+λn−2, and so on. For only if, assume λ satisfies system (8), define λ0,
symmetric, by λ0i = λ0n−i−1 =

λi+λn−i−1
2 , and check λ º λ0. This proves the

claim.
Assume now that λ is symmetric and compute for all z

ρ(
1

z
) =

n−2X
1

λi
z∗n−i−1

=
n−2X
1

λi
z∗i
⇒ ρ(z)·ρ(1

z
) = (

n−2X
1

λiz
∗
i )·(

n−2X
1

λi
z∗i
) ≥

n−2X
1

λi = 1

where the last inequality follows by applying Schwarz’s inequality to the
vectors ( 2

p
λiz∗i ) and (

2

q
λi
z∗i
). Thus (5) holds for symmetric λ. Next assume

λ º λ0, write a · b for the scalar product in Rn−2, and note that ρλ(z) =
λ · z∗ ≥ λ0 · z∗ = ρλ0(z), as z

∗
i is non decreasing in i. Therefore ρλ meets (5)

if ρλ0 does. The if statement is proven.
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For only if, fix k, 1 ≤ k ≤ bn2 c− 1, ε > 0, and define z by zi = 1− ε for
i ≤ k,= 1 for k + 1 ≤ i ≤ n− k − 2,= 1 + ε for n− k − 1 ≤ i ≤ n− 2. Fix
λ of which the corresponding aggregator meets (5), and set a =

Pk
1 λi, b =Pn−2

n−k−1 λi, c = 1− a− b. Compute

ρ(z) · ρ(1
z
) = ((1− ε)a+ c+ (1 + ε)b) · ( a

1 + ε
+ c+

b

1− ε
)

The RHS equals 1 for ε = 0, hence by (5) its derivative at ε = 0 is non
negative. This implies a ≤ b as desired.
Statement ii). Take λ satisfying (8), so it dominates a symmetric distrib-
ution λ0. If λn−2 > 0, we can choose λ0 such that λ01 = λ0n−2 > 0. By the
above proof, ρλ(z) · ρλ(1z ) = 1 implies ρλ0(z) · ρλ0(

1
z ) = 1, and by Schwarz’s

inequality, the vectors ( 2
p
λ0iz

∗
i ) and (

2

q
λ0i
z∗i
) must be parallel. This gives at

once z∗1 = z∗n−2, namely z1 = z2 = · · · = zn−2. This proves if. Conversely, if
λn−2 = 0, (8) implies λ1 = 0, so z = (1, 2, · · · , 2, 3) has ρ(z) · ρ(1z ) = 1, yet
all coordinates of z are not equal. ¥

The proof shows that (8) holds if the weights λi are symmetric. Exam-
ples include the arithmetic mean, the median λbn

2
c = 1 if n is odd, λbn

2
c−1 =

λbn
2
c =

1
2 if n is even, and ρ(z) = 1

2(mini zi + maxi zi). Another suffi-
cient condition for (8) is that the support of λ be entirely contained in
{bn2 c, · · · , n − 2}: examples are the rank order aggregators ρ(z) = z∗k for
bn2 c ≤ k ≤ n− 2.

We conclude this section by explaining its title, namely the separability
property shared by all division rules, not necessarily feasible, of the form
(4) for some aggregator ρ. Consider two profiles of reports r−1 and s−1

by the agents other than agent 1, that only differ in the reports ri21, for
i = 3, · · · , n. As ρ(rj1) = ρ(sj1) for all j = 3, · · · , n, we can tell if agent 1’s
share goes up or down simply by comparing ρ(r21) and ρ(s21), and for this
we only need to know the numbers ri21 and si21, for i = 3, · · · , n. Thus the
impact of a change in the reports ri21 on agent 1’s share can be evaluated
independently of the rest of the reports. In the Appendix we show that, in
combination with anonymity, impartiality and consensuality, this property
essentially characterizes the division rules (4).

4 Four agents or more: exact rules

Given N , with |N | = n, we choose two aggregators of different dimensions,
ρn−2 and ρn−3. We use the notation in Proposition 2 as well as ρn−3(r−jki ) =

11



ρn−3(rlki; l ∈ NÂ{i, j, k}), and define a division rule as follows:

fi(r) =
1

n
[1 +

X
j∈NÂ{i}

(f−ji (r)− f−ij (r))] where (9)

f−ji (r) =
1

1 + ρn−2(rji) +
P

k∈NÂ{i,j} ρ
n−3(r−jki )

for all i, j distinct (10)

Theorem 1.
Fix N , s.t. |N | = n ≥ 4. If both aggregators ρn−2 and ρn−3 meet inequali-
ties (5), equations (9) and (10) define an anonymous, impartial, consensual
and exact division rule.

Proof.
Think of agent 1 as the residual claimant, and distribute to agent j, j =
2, · · · , n a share resembling her share under fρn−2 , with the difference that
we omit agent 1’s report in equation (4): this share is f−1j (r), where the term

ρ(rkj) in (4) has become ρn−3(r
−j
ki ) because we ignore 1’s report, and the

term ρ(r1j) in (4) is unchanged because it does not depend on r1 anyway.
We claim that agent 1’s residual share 1 −

Pn−2
2 f−1j (r) is non negative.

Setting N∗ = NÂ{1} we have

f−1j (r) =
1

1 + ρn−2(r1j) +
P

k∈NÂ{1,j} ρ
n−3(r−1kj )

≤ 1

1 +
P

k∈N∗Â{j} ρ
n−3(r−1kj )

where the RHS is simply the share of agent j in the division rule among N∗

corresponding to the aggregator ρn−3 in equation (4). Thus Proposition 2
implies

P
j∈N∗ f

−1
j (r) ≤ 1 as claimed.

We just constructed an exact yet non anonymous division rule, in which
agent 1 is the passive residual claimant. This rule is obviously impartial.
To check that it is consensual, suppose r is associated with the consensual
division x. Then for j ≥ 2 we have ρn−2(r1j) = x1

xj
, ρn−3(r−1kj ) =

xk
xj
so that

f−1j (r) = xj , and 1’s residual share is 1−
Pn−2
2 xj = x1.

The rule f defined by (9)(10) is simply the average of the n asymmetric
rules where each agent in turn is the residual claimant. The latter is anony-
mous, and the other three properties are preserved by convex combinations.
¥

We emphasize that there are many other rules meeting the four proper-
ties in Theorem 1. First these properties are stable by convex combinations,
and we have many choices of the aggregators ρn−2 and ρn−3. Next we can
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construct rules that do not need any aggregator. Suppose n = 4; when 1

is the residual claimant, the share gf−12 (r−1) is now an average of the two

terms 1
1+ri12 +r

4
32+r

3
42
for i = 3, 4, and other shares gf−ij (r

−i) are deduced by

symmetry. Now f1(r) takes the form f1(r) =
1
4 [1+

1
2T −

1
2T

0], where T is the
sum of 6 terms like 1

1+r321 +r
4
31+r

3
41
, and T 0 that of 6 terms like 1

1+r312 +r
4
32+r

3
42
.

As mentioned in section 1, we can also apply our division rules to situa-
tions in which some agents are unable to evaluate the relative contributions
of some of the other agents, provided that for each pair of agents i, j, there
are at least two agents other than i and j who are able to evaluate both
i and j. Whatever aggregator we use is simply applied to the information
from all agents who are able to evaluate both i and j.

Here is another natural variant, in case our agents are able to specify the
precision of their estimates of relative contributions of other agents. Then for
any aggregator that has a natural extension to a weighted variant (arithmetic
mean, geometric mean, median, etc.), we can allocate the voting power of
each agent among pairs in proportion to the inverses of the variances of her
estimates of the ratios and then aggregate according to weighted variant of
the aggregator.

We conclude Section 4 by listing several more desirable features shared
by all rules in Theorem 1, irrespective of the choice of the two aggregators.

First a simple monotonicity property: if agent k alone changes her
report in favor of agent i, keeping the ratios between all agents in NÂ{i, k}
unchanged, the share of agent i cannot decrease. This is clear from the
monotonicity of ρ: in equation (4) all terms ρ(rji), j 6= k, i go down or stay
put, all terms ρ(rij) go up or stay put, and all terms ρ(rjj0), j, j0 6= i are
unchanged.

Next we have two continuity properties. The share of every agent
depends continuously upon the profile of individual reports (because aggre-
gators are continuous functions). Moreover, if the reports are almost con-
sensual, then the outcome is similarly close to the almost-consensus. Define
the problem (N, r) to be ε-consensual if there exists a vector x ∈ ∆(N)
such that

rkij ≤ (1 + ε)
xi
xj
, for all k ∈ N , and all i, j ∈ NÂ{k}

If the problem (N, r) is ε-consensual with respect to x, then |f(N, r)− x| =
O(ε). In words, if all opinions are “close” to an underlying compromise x,
our methods implement a division which is comparably close.

Finally we note that the (inexact) rule fmax, namely the smallest of all
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separable rules in Proposition 2, is a lower bound for all the rules constructed
in Theorem 1:

fi(r) ≥ fmaxi (r) =
1

1 +
P

j∈NÂ{i}maxNÂ{i,j} r
k
ji

(11)

Lemma 3.
Every division rule in Theorem 1 meets inequalities (11) for all i and r.

Proof.
We fix i and r, and we refine the inequality

P
j∈N∗ f

−i
j (r) ≤ 1 with the

help of Lemma 4 in section 6.1. Set aj = ρn−2(rij), and ykj = ρn−3(r−ikj )

for k, j ∈ N∗. Inequalities (5) for ρn−3 imply ykjyjk ≥ 1, so we apply the
second statement of Lemma 4 to N∗, together with property (5) for ρn−2:X
j∈N∗

f−ij (r) =
X
j∈N∗

1

1 + aj +
P

N∗Â{j} ykj
≤ 1− 1

1 +
P

N∗
1
aj

≤ 1− 1

1 +
P

N∗ ρ
n−2(rji)

As ρn−2(rji) ≤ maxNÂ{i,j} rkji, we now have

1−
X
j∈N∗

f−ij (r) ≥
1

1 +
P

N∗ ρ
n−2(rji)

≥ fmaxi (r)

Finally, ρn−3(r−jki ) = ρn−3(rlki; l ∈ NÂ{i, j, k}) ≤ maxNÂ{k,i} rlji, therefore
for all j ∈ N∗

f−ji (r) ≥ 1

1 +
P

k∈N∗ maxNÂ{k,i} r
l
ji

= fmaxi (r)

Combining the last two inequalities in (6), the desired conclusion (9) obtains.
¥

5 Exact rules interpreted as estimators

To evaluate feasible aggregators (equation 5), we consider the possibility
that there is a “correct” share si > 0 that agent i deserves (for example,
agent i’s marginal product), and that each agent provides an honest opinion
about every other agent’s correct share. This assumption is sensible since
the division rule is impartial. A division rule then represents an estimator
of the correct shares, and an aggregator is attractive if the implied division
rule divides the dollar accurately. A reasonable measure of an estimator’s
accuracy is its mean square error (MSE), the sum of the estimator’s bias

14



and its variance. We use the MSE to assess the relative accuracy of the
estimators that emerge from the four most intuitive aggregators that meet
(5): geometric mean, geometric median, arithmetic mean, and maximum.4

To evaluate the MSEs arising from different aggregators, we determine
each agent’s opinion as a draw from a Dirichlet distribution (a multivariate
Beta distribution). Because there are no closed-form solutions for estima-
tors of Dirichlet share parameters that permit us to evaluate the MSEs
algebraically, we assess their properties numerically. We describe the setup
of our simulations in the last section of the appendix.

We find that all four aggregators are biased, and that the bias varies
nonlinearly with share size, number of agents, and variance of the individ-
ual opinions. In Figures 1 - 3, we summarize the results for all share sizes in
graphs that show the average MSE as well as the range of MSEs (for different
divisions of the rest of the dollar) for a range of share sizes for n = 4, 5, 6 for
a very large and a very small variance of the individual opinions. For n = 4,
the maximum aggregator has the smallest MSE for medium share sizes, while
the geometric median (= geometric mean) aggregator has the smallest MSE
for very small and very large share sizes. The arithmetic mean aggregator
is in between. For n > 4, the maximum aggregator becomes worse, espe-
cially when the variance of the individual opinions is small. This is intuitive
because the number of incorrect individual opinions increases with n and
the maximum aggregator always chooses the most inflated individual opin-
ion. The arithmetic mean aggregator becomes best as n increases, but the
geometric mean and median aggregators are almost as good. Because the
average of a larger number of honest individual opinions yields a better es-
timate of the correct share, these results are intuitive as well. What is not
entirely obvious — and herein lies the value of our simulations — is the way the
MSEs vary with share size and with the variance of the individual opinions.
It is interesting to note that (a) for all four aggregators, the average MSE is
generally lowest for small and large share sizes, (b) for medium share sizes,
the variance of the geometric mean aggregator over different divisions of the
rest of the dollar greatly exceeds the variance of the geometric median and
arithmetic mean aggregators, and (c) the relative accuracy of the geometric
mean and median aggregators compared to the arithmetic mean aggregator
improves greatly as the variance of the individual opinions falls.

4The MSE is the mean of the squared difference between the estimated and the correct
share and thereby provides information about an estimator’s absolute accuracy. We also
assessed each estimator’s relative accuracy through the mean of the squared log of the
ratio of the estimated to the correct share. The results are qualitatively identical to those
of the MSE and available upon request.
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Overall, our simulations suggest that the maximum aggregator is most
attractive for very small groups with agents whose “correct” shares are of
similar magnitude, while the arithmetic mean aggregator is best for groups
with more than 4 agents. However, we undertook our simulations under the
assumptions that the agents do not behave maliciously. While all aggrega-
tors are impartial, the maximum aggregator allows any agent to minimize
any other agent’s share, and the geometric mean and arithmetic mean ag-
gregators permit significant mischief of this sort. The geometric median
aggregator is highly resistant to such misbehavior.

References

[1] A. Cheng and E. Friedman, (2005), Sybilproof reputation mecha-
nisms, SIGCOMM’05 Workshops,August 22-26, Philadelphia, USA.

[2] E. Dokow and R. Holzman, (2005), Aggregation of binary evalua-
tions, mimeo, Technion, Israel.

[3] W. M. Gorman, (1968), The structure of utility functions, Rev. of
Econ. Studies, 35, 367-390.

[4] C. List and P. Pettit, (2002), Aggregating sets of judgments: an im-
possibility result, Economics and Philosophy, 18, 89-110.

[5] K. Nehring and C. Puppe, (2005), Consistent judgment aggregation:
a characterization, mimeo, UC Davis.

[6] I. Palacio-Huerta and O. Volij, (2004), The measurement of intellec-
tual influence, Econometrica, 72, 3, 963-977.

[7] G. Slutzki andO. Volij, (2005), Scoring of web pages and tournaments:
axiomatizations, mimeo, Iowa State University.

[8] M. Tennenholz, (2004), Reputations systems: an axiomatic approach,
Proceedings of the 20th Conference on uncertainty in Artificial intelli-
gence,

[9] W. Thomson, (2003), Axiomatic and game-theoretic analysis of bank-
ruptcy and taxation problems: a survey, Mathematical Social Sciences,
45, 249-297.

16



6 Appendix

6.1 Auxiliary results

Lemma 4
For any distinct i, j in N , pick a positive number yij, and assume yij ·yji ≥ 1
for all i, j. Then

•
P

N
1

1+ NÂ {i} yji
≤ 1, and equality holds if and only if yij ·yji = 1 and

yij · yjk · yki = 1 for all i, j, k distinct;

• for any a ∈ RN
++,

P
N

1
1+ai+ NÂ {i} yji

≤ 1 − 1
1+ N

1
ai

, and equality

holds if and only if yij =
aj
ai
for all i, j.

Proof. We start with the second statement. Set ϕ(y) =
P

N
1

1+ai+ NÂ {i} yji
,

a smooth function of y over Rn(n−1)
++ .

Our first step is to show that ϕ reaches its maximum in Rn(n−1)
++ . We

consider the following subset A of [R+ ∪ {+∞}]n(n−1): A contains y iff
for all distinct i, j, either yij , yji are both in R++ and yij · yji = 1, or
{yij , yji} = {0,∞}. We extend in the obvious way the definition of ϕ to A,
and note that the extended function is continuous on A. We let the reader
check that ϕ reaches its maximum on A. In the summation defining ϕ(y),
set z = y12,

1
z = y21, and note that the variable z affects the following two

terms

1

1 + a2 +
P

NÂ{1,2} yj2 + z
+

1

1 + a1 +
P

NÂ{1,2} yj1 +
1
z

Observe that for all b, b0 > 0, the function of the variable z, 0 ≤ z ≤ ∞

1

1 + b+ z
+

1

1 + b0 + 1
z

reaches its maximum uniquely at z = b
b0 (it is strictly increasing at 0, and

strictly decreasing at ∞). Thus 0 < y12, y21 < ∞. As the choice of the
pair 1, 2 was arbitrary, we conclude that ϕ reaches its maximum at some
y ∈ Rn(n−1)

++ . Moreover we have

y21 =
a1 +

P
j≥3 yj1

a2 +
P

j≥3 yj2
⇔ y21(a2 +

X
j≥3

yj2) = a1 +
X
j≥3

yj1
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Adding 1 + y21 on both sides of this equation and taking y21 · y12 = 1 into
account, we get

y21 =
1 + a1 + s1
1 + a2 + s2

where si =
X

NÂ{i}
yji (12)

The above equation holds for all i, j. Now computeX
N

1

1 + ai + si
=

1

1 + a1 + s1
+
X

NÂ{1}

yj1
1 + a1 + s1

=
1 + s1

1 + a1 + s1
= 1− a1

1 + a1 + s1

(13)
Again, the choice of 1 was arbitrary, therefore for all i, j

ai
1 + ai + si

=
aj

1 + aj + sj
⇒ yij =

aj
ai

and ϕ reaches its maximum at a single y. Moreover

1 + ai + si = ai(1 +
X
N

1

ai
)⇒

X
N

1

1 + ai + si
=

P
N

1
ai

1 +
P

N
1
ai

concluding the proof of the second statement.
For the first statement, we show similarly that ψ(y) =

P
N

1
1+ NÂ {i} yji

reaches its maximum at some interior points of the positive orthant, and at
those points, yij ·yji = 1 for all i, j. Taking a = 0, the same computations as
above, up to equations (12) (13), give yji = 1+si

1+sj
for all i, j, and

P
N

1
1+si

=

1, as was to be proved. Note that, unlike ϕ, ψ reaches its maximum on an
entire manifold of vectors y. ¥

Lemma 5.
For any distinct i, j in N , pick yij ∈ [0,∞], and assume yij · yji ≥ 1 for
all i, j (recall our convention 0 ·∞ = 1). Then

P
N

1
1+ NÂ {i} yji

≤ 1, and
equality holds if and only if there exists a non empty subset N+ of N such
that if we write N− = NÂN+, we have

yij = 0 if i ∈ N−, j ∈ N+, =∞ if i ∈ N+, j ∈ N−, 0 < yij <∞ if i, j ∈ N+
(14)

yij · yji = 1 and yij · yjk · yki = 1 for all i, j, k ∈ N+

Proof.
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Define N− = {i ∈ N |yij = 0 for some j ∈ N}, N+ = NÂN−, and for all i,
δi =

1
1+ NÂ {i} yji

. If i ∈ N− and yij = 0, our assumption yij ·yji ≥ 1 implies
yji =∞, hence δi = 0. Now pick i ∈ N+ and observe

δi =
1

1 +
P

N−
yki +

P
N+Â{i} yji

≤ 1

1 +
P

N+Â{i} yji
= βi (15)

The first statement of Lemma 4 applied to N+ shows
P

N+
βi ≤ 1 implyingP

N+
δi ≤ 1.

It remains to check that if
P

N δi = 1, then y satisfies the system (14)
(the converse statement following from Lemma 4). Define N−, N+ as above:
we have δi = 0 for i ∈ N− thus

P
N+

δi = 1. Combined with inequalities
(15) and

P
N+

βi ≤ 1, this implies
P

N+
βi = 1 and

P
N− yki = 0 for all

i ∈ N+, hence the first statement in (14), and the second as well because
yij ·yji ≥ 1. If |N+| = 1, we are done, so we assume |N+| ≥ 2. For i, j ∈ N+,
yji = 0 is excluded by definition of N+ so yji > 0. Assume next yji =∞ for
some i, j ∈ N+which implies βi = 0. For all k ∈ N+Â{i} we have yik > 0
therefore

βk =
1

1 +
P

N+Â{k} yjk
<

1

1 +
P
(N+Â{i})Â{k} yjk

= β0k

Now Lemma 4 gives
P

N+Â{i} β
0
k ≤ 1, contradicting

P
N+Â{i} βk = 1. We

have shown 0 < yji <∞ if i, j ∈ N+. Now we apply Lemma 4 to
P

N+
βi = 1

to derive the rest of properties (14). ¥

6.2 A characterization of the rules fρ

The objective of this section is to show that the separability property de-
scribed at the end of section 3 is characteristic of the rules fρ.

Observe that for any division rule in Definition 2 (every report awards
positive shares to everyone else), agent i’s payoff depends only on the re-
ported ratios that concern him directly (rkij for all j, k ∈ NÂ{i}). Indeed
the vector (rkij)j∈N\{i,k} entirely characterizes agent k’s report, given the
definition of R[N \ {k}]. We now impose some properties on the functional
dependence between agent i’s payoff and the ratios rkij for j, k ∈ NÂ{i}.

Definition 5.
A division rule f is non-decreasing if fi(r) ≥ fi(r̂), for all i and all
evaluation profiles r, r̂ such that rkij ≥ r̂kij for each j, k ∈ NÂ{i}.

Definition 6.
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A division rule f generates a separable ordering of the payoffs if
for all i ∈ N , and all evaluation profiles r, r̂, s, ŝ, for which there exists
j ∈ N \ {i} such that

1. rlik = r̂lik and slik = ŝlik, for all k 6= i, j, and all l 6= i, k,

2. rlij = slij and r̂lij = ŝlij, for all l 6= i, j,

we have fi(r) ≥ fi(r̂) ⇔ fi(s) ≥ fi(ŝ).

We interpret the separability property as follows. Condition 1 means
that all the agents other than i report the same ratios in r and r̂ (resp. s and
ŝ) when comparing agent i to any other agent different from j. Under these
premises, Separability says that the only information relevant to determine
whether fi(r) is larger than fi(r̂) (resp. fi(s) is larger than fi(ŝ)) is the
agents’ reports concerning the pair i, j: as r and s (resp. r̂ and ŝ) coincide
as far as ij-ratios are concerned (condition 2), fi(r) is larger/smaller than
fi(r̂) if and only if fi(s) is larger/smaller than fi(ŝ).

Theorem 2.
Fix N , such that |N | = n ≥ 4. A division rule f is anonymous, consensual,
continuous, impartial, feasible, non-decreasing, and generates a separable
ordering of the payoffs if and only if

fρi (r) =
1

1 +
P

j∈NÂ{i} ρ(rji)

for some (n−2)-aggregator ρ that satisfies (5). Recall the notation ρ(rji) =
ρ(rkji; k ∈ NÂ{i, j}).

Proof.
If. We only need to show that fρ generates a separable ordering of the
payoffs. The other properties have either already been discussed in section
3, or are straightforward. Consider some evaluation profiles r, r̂, s, ŝ and a
pair of agents i, j, as in Definition 6. Condition 1 implies {fρi (r) ≥ fρi (r̂)⇔
ρ(rji) ≤ ρ(r̂ji)} and {fρi (s) ≥ fρi (ŝ)⇔ ρ(sji) ≤ ρ(ŝji)}. Condition 2 implies
ρ(rji) = ρ(sji) and ρ(r̂ji) = ρ(ŝji).

Only if. For each pair i, j in N and each x ∈ RN\{i,j}
++ , let s(x, ij) be the

following evaluation profile:

sikk0(x, ij) = 1 for all k, k
0 6= i

skij(x, ij) = xk for all k 6= i, j

skij0(x, ij) = 1 for all j
0 6= j and k 6= i, j0
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The rest of the profile is determined by the consistency conditions (1). Define
next a real valued function gij as follows:

gij(x) = fi(s(x, ij)) for all x ∈ RN\{i,j}
++

The functions gij are all identical because f is anonymous. Let g be this
common function. Anonymity implies that g is symmetric. In addition, g
inherits from f the properties of non-decreasingness and continuity. For any
a, a > 0, let c(a) ∈ RN\{i,j}

++ be the vector ck(a) = a for all k ∈ N \ {i, j}.
For all agents i, j, it is easy to construct a consensual evaluation profile
ŝ(c(a), ij) such that ŝk(c(a), ij) = sk(c(a), ij), for all k 6= i. Impartiality
implies

g(c(a)) = fi(ŝ(c(a), ij)) =
1

(n− 1) + 1/a (16)

(see Lemma 1). Because g is non-decreasing, g(x) ≤ g(c(maxN\{i,j} xk)),
hence equation (16) implies g(x) ≤ 1

n−1 .
Define now ρ on Rn−2

++ as follows:

ρ(x) =
1

g( 1x)
− (n− 1)

The range of ρ is R++ because that of g is ]0, 1
n−1 [. Next ρ inherits from

g the properties of continuity, non-decreasingness and symmetry. Finally
ρ(c(a)) = a for a > 0 ((16)). Thus ρ is an (n− 2)-aggregator (Definition 4).

Let r and r̂ be two evaluation profiles and let i be an agent. We claim

{ρ(rji) = ρ(r̂ji)for all j ∈ NÂ{i}}⇒ fi(r) = fi(r̂)

We sketch the proof of this claim for i = 1 and n = 4. It is not difficult to
extend the argument to any number of agents, as in Gorman (1968, Lemma
1). Impartiality and the consistency of the other agents’ reports implies that
f1(r) depends only on (r321, r

4
21, r

2
13, r

4
13, r

2
14, r

3
14). If ρ(r

3
21, r

4
21) = ρ(r̂321, r̂

4
21),

then g(r312, r
4
12) = g(r̂312, r̂

4
12), i.e. f1(s((r

3
12, r

4
12), 12)) = f1(s((r̂

3
12, r̂

4
12), 12).

Separability implies f1(r) = f1(r̃), where r̃ is such that

(r̃312, r̃
4
12) = (r̂

3
12, r̂

4
12), (r̃

2
13, r̃

4
13) = (r

2
13, r

4
13), (r̃

2
14, r̃

3
14) = (r

2
14, r

3
14)

Similarly ρ(r231, r
4
31) = ρ(r̂231, r̂

4
31) implies f1(s((r

2
13, r

4
13), 13)) = f1(s((r̂

2
13, r̂

4
13), 13),

and by Separability f1(r̃) = f1(r
0), where

(r0312, r
04
12) = (r̃

3
12, r̃

4
12), (r

02
13, r

04
13) = (r̂

2
13, r̂

4
13), (r

02
14, r

03
14) = (r̃

2
14, r̃

3
14)
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And so on.
Now we pick i ∈ N , and r an evaluation profile, both arbitrary. Define

r̂ as follows, for all j, k ∈ NÂ{i}:

r̂kji = ρ(rji); r̂ijk =
r̂kji

r̂jki

Clearly ρ(rji) = ρ(r̂ji) for j ∈ NÂ{i}, so the claim gives fi(r) = fi(r̂). On
the other hand, r̂ is consensual (Lemma 1) hence fi(r̂) = 1

1+ j∈NÂ {i} ρ(rji)
=

fρi (r). Finally, the feasibility of f implies that ρ satisfies (5) (iii) in Propo-
sition 2). ¥

6.3 Zero shares

Reporting that some agents deserve no share of the dollar is ruled out by
the definition of evaluations ri used so far (Definition 1), and indeed the
separable rules in Section 3, and their exact extension in Section 4, guarantee
a positive share to every participant. We now enlarge the domain R[M ] of
individual reports ri to allow for zero shares: the new set is denoted R∗[M ].

A report r ∈ R∗[M ] consists of a pair (S, r[S]), where S ⊂
6=

M and

r[S] ∈ R[S]. The interpretation is that agents in S receive a positive share
and the others get zero. There is a natural bijection from R∗[M ] into the
M−simplex ∆(M) = {x ∈ RM |xi ≥ 0,

P
M xj = 1}.

Definition 7.
Given N , a mutual evaluation problem is a list (N, ri, i ∈ N) where ri ∈
R∗[NÂ{i}] for all i. This problem is consensual if

• either there exists N+,N+ ⊆ N and |N+| ≥ 2, such that Si = N+Â{i}
for all i, and there exists a vector x ∈ ∆(N+) such that rkij = xi

xj
, for

all k ∈ N , and all i, j ∈ N+Â{k},

• or there exists i+ ∈ N such that Si = {i+} for all i ∈ NÂ{i+}.

The definition of a division rule (Definition 2) is unchanged, and so is that
of an anonymous or impartial rule. In a consensual problem with |N+| ≥ 2,
a consensual rule must divide the dollar as the corresponding x ∈ ∆(N+);
if on the other hand Si = {i+} for all i 6= i+, consensuality requires giving
everything to i+ (in the latter case agent i+’s own opinion is irrelevant).

For three-person problems, Proposition 1 is preserved, including equation
(3), provided we adopt the convention that if agent i reports Si = {j}, then

22



rijk =∞, rikj = 0. As in the proof of Proposition 1 we compute f1(r
2, r3) =

f1(r
2
31, r

3
21) for a consensual rule. If r

2
31 = ∞ then S2 = {3} so a report

r123 = 0 ⇔ S1 = {3} makes (r1, r2, r3) consensual (Definition 7), implying
f1(r

2, r3) = 0. Thus the share of agent 1 is zero if at least one of agents 2, 3
gives him nothing. If r231 = r321 = 0, we have S

2 = S3 = {1}, so (r1, r2, r3) is
consensual for any r1 and f1(r

2, r3) = 1 If r231 = 0 and 0 < r321 <∞, then a
report r123 =∞⇔ S1 = {2} makes (r1, r2, r3) consensual with N+ = {1, 2}
and (x1, x2) = ( 1

1+r321
,

r321
1+r321

).
Next we extend the separable rules of Section 3 to allow for zero shares.

Equation (4) now involves ratios rkji that can be 0 or ∞, and aggregators
ρm defined on [0,∞]m. Specifically we define rkji = 0 if i ∈ Sk, j /∈ Sk, and
rkji = ∞ if i /∈ Sk, j ∈ Sk. There is no natural definition of rkji if j, i /∈ Sk,
and positing an arbitrary value for rkji in this case may change the value of
the term ρ(rji), hence of the share f

ρ
i in (4). Fortunately, some choices of

the aggregator ρ remove this difficulty. If j, i /∈ Sk, rkji is not defined, and
neither is ρ(rji); however rkj0i =∞ for any j0 in Sk and for some aggregators
this implies ρ(rj0i) =∞, so that

P
l∈NÂ{i} ρ(rli) =∞ and (4) reads fρi = 0

irrespective of rkji. For this argument the key property of ρ is

for all z ∈ [0,∞]n−2 max
i

zi =∞⇒ ρ(z) =∞ (17)

In order to state the analog of Proposition 2, we endow [0,∞] with the
standard topology, and define an (extended) m-aggregator to be a symmet-
ric, continuous and non decreasing mapping ρm from [0,∞]m into [0,∞]
such that ρm(a, · · · , a) = a for all a ∈ [0,∞]. The operation z → 1

z extends
continuously to [0,∞]m; the multiplication in [0,∞] extends as well, with
the convention 0 ·∞ = 1. However this extension is not continuous.

Properties (5) and (6) are now meaningful for extended aggregators.
Using the notation in Proposition 2, we have

Proposition 3.
Fix N = {1, 2, · · · , n}, n ≥ 3, and a (n − 2)-aggregator ρ on [0,∞]n−2
satisfying (12).
i)The division rule fρ given by (4) is well defined, anonymous, impartial
and consensual;
ii) It is not cost-feasible;
iii) It is feasible if and only if ρ satisfies (5);
iv) If ρ satisfies (5), (6), as well as

for all z ∈ [0,∞]n−2, ρ(z) = 0⇒ z = 0 (18)
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then fρ(r) divides the entire dollar if and only if the problem r is consensual.
Proof.

We explained before the statement of Proposition 3 why property (17) en-
sures that equation (4) is well defined. Anonymity and impartiality are
clear. For consensuality, note that if |N+| ≥ 2, fρi (r) = 0 for all i /∈ N+, and
the sum

P
fρi (r) reduces to that for a consensual problem in N+ with all

reports 0 < rijk <∞.
Statement ii) requires no proof either: we use the same profile of reports

as in the proof of Proposition 2.
The if part of statement iii) follows immediately from Lemma 5 extend-

ing Lemma 4 in the Appendix. For the only if part, we fix z1, · · · , zn−2 ∈
[0,∞]n−2 and observe that if zk = ∞ for some k, (17) implies ρ(z) = ∞
hence ρ(z) · ρ(1z ) ≥ 1 by our convention 0 ·∞ = 1. Similarly zk = 0 for some
k implies ρ(1z ) =∞. Thus we are left with the case z1, · · · , zn−2 ∈ R

n−2
++ as

in Proposition 2.
Only statement iv) requires a little work. Fix a problem r such that

P
N

fρi (r) = 1. Lemma 5 implies the existence of a non empty subset N+ such
that, if we set N− = NÂN+

ρ(rij) = 0 if i ∈ N−, j ∈ N+; =∞ if i ∈ N+, j ∈ N−

and if |N+| ≥ 2, (ρ(rij))i,j∈N+ ∈ R[N+]

If N− = ∅ we are back to Proposition 2, so we assume N− 6= ∅ and
distinguish two cases. If N+ = {i+} we have ρ(rii+) = 0 for all i 6= i+
therefore by (18) rkii+ = 0 for all i, k 6= i+, so Sk = {i+} for all k 6= i+ and
our problem is consensual (and of course (4) implies that fρ gives everything
to i+). The second case is |N+| ≥ 2. Then ρ(rij) = 0 for all i ∈ N−, j ∈ N+,
and by (18) rkij = 0 for all k = i, j. This implies Sk ⊆ N+ for all k ∈ N .
From (ρ(rij)) ∈ R[N+] we get 0 < ρ(rij) < ∞ for all i, j ∈ N+, so by (17)
rkij <∞ for all such i, j and k 6= i, j. This gives Sk = N+ for all k ∈ N Now
for i, j ∈ N+, ρ(rij) · ρ(rji) = 1 implies by (6) that rkij does not depend on
k, and we conclude that the restriction of r to N+ is consensual. ¥

Recall that the extended report ri ∈ R∗[NÂ{i}] can be described as a
point in the simplex ∆(NÂ{i}); if we endow R∗[NÂ{i}] with the topology
induced by that of ∆(NÂ{i}), one checks that the rule fρ is continuous
(provided ρ satisfies (17)).

For the convex combinations of rank order aggregators ρ(z) =
Pn−2
1 λiz

∗
i ,

both (17) and (18) follow at once from λn−2 > 0. From Lemma 2 we see
that the inequalities (8) and λn−2 > 0 ensure that fρ meets all the proper-
ties listed in Proposition 3. This leaves us with a large set of aggregators to
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choose from.
Extending the definition of the exact rules in Section 4 is now a simple

matter. We choose two aggregators ρn−2 and ρn−3 meeting (5) and (17),
and define f−ji (r) by the same equation (10). This definition is meaningful
for the same reason as that of fρ is. The statement of Theorem 1 is now
identical in the extended model, except for the additional assumption (17)
on ρn−2 and ρn−3.

The new feature of the extended division rules, whether exact or not, is
that an agent can receive no money at all. For instance consider the rule fρ

in Proposition 3 where the (n− 2)-aggregator ρ is a convex combination of
rank orders such that λn−2 > 0. If agent k reports i /∈ Sk ⇔ {rkji = ∞ for
all j ∈ Sk}, then fρi (r) = 0: in other words any agent can single-handedly
bar any other agent (even n − 2 other agents) from any positive benefit!
What we would like instead is to protect each participant from the ill-will
of a single “enemy”.

Within the family of exact rules in Theorem 1 it turns out that the
combination of properties (6) and (18) implies maximal protection for each
participant in the following sense: agent i will receive no money at all only
if every other participant agrees that this is fair, and moreover they agree
on the relative shares of the dollar among themselves. And a symmetrical
statement for the case where agent i receives the whole dollar (resp., is
assigned the entire cost): this will only happen if all other agents agree that
i should receive (resp., pay) the entire dollar (resp., cost).

Contrast the above “protection” with the situation when ρn−2 and ρn−3

are for instance the median aggregators: if a strict majority of NÂ{i} re-
ports that i should get a zero share, and the shares f−ij (r), j ∈ NÂ{i} sum
to 1 (which does not require consensus over the relative shares in NÂ{i}),
then agent i gets zero.

Given N, i and a report rj ∈ R∗[NÂ{j}] for some j 6= i, note that if i /∈
Sj the projection rj [−i] of rj on NÂ{i} (an element of R∗[(NÂ{i})Â{j}])
is well defined because rj assigns a zero share to i.

Proposition 4.
Fix N = {1, 2, · · · , n}, n ≥ 4, and two aggregators, ρn−2 on [0,∞]n−2 and
ρn−3 on [0,∞]n−3, satisfying (5),(6),(17),and (18). Let f be the exact divi-
sion rule defined by equations (9) and (10). For all problem r and all agent
i, we have:

fi(r) = 0⇐⇒ {i /∈ Sj for all j ∈ NÂ{i} and (rj [−i])j∈NÂ{i} is consensual
}

fi(r) = 1⇐⇒ {Sk = {i} for all k ∈ NÂ{i}}
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Proof.
Set N∗ = NÂ{i} and note that fi(r) is the average of the terms f−ji (r) and
1−

P
N∗ f

−i
j (r), all in [0, 1]. Thus fi(r) = 0 implies

P
N∗ f

−i
j (r) = 1. As in

the proof of Theorem 1, we have

f−ij (r) ≤
1

1 +
P

k∈N∗Â{j} ρ
n−3(r−ikj )

= γj

where γj is agent j’s share in the division rule f
ρn−3 among N∗. Proposition

2 says
P

N∗ γj ≤ 1, so we must have
P

N∗ γj = 1 and f−ij (r) = γj ⇔
ρn−2(rij) = 0 for all j ∈ N∗. By (18) the latter gives rkij = 0 for all
j, k ∈ N∗. By statement iv) in Proposition 3,

P
N∗ γj = 1 implies that the

projection of r on N∗ is consensual.
If fi(r) = 1, each term f−ji (r) = 1, which by equation (10) means

ρn−2(rji) = ρn−3(r−jki ) = 0 for all k, j 6= i. Now property (18) gives rkji = 0
and the desired conclusion. ¥

6.4 Numerical Simulations

This section presents the setup of the numerical simulations that support
the results of section 5. Let si > 0 be the true value of the share that agent
i deserves. We determine the vector of agent j0s opinion of xji , i 6= j, as a
draw from a Dirichlet distribution with parameters αi = si · c, where c is a
constant that defines the variance of agent j’s opinions. We calculate MSEs
as functions of the number of agents, the variance of the opinions, and the
distribution of the si’s.

The mean and variance of a Dirichlet share xji are

E[xki ] =
αiP
αl

and

V ar[xji ] =
αi(
P

αl − αi)

(
P

αl)2(
P

αl + 1)
,

respectively. We undertake simulations for two different values of c that we
chose so that the variance of the xji for which E[xji ] = 1/2 takes the values
0.08333 and 0.001. The value 0.08333 was chosen because it corresponds to
a flat distribution of the share for which E[xji ] = 1/2. It is thus the greatest
variance that is reasonable to consider. To keep the number of analyses
manageable, we undertake all simulations under the simplifying assumption
that V ar[xji ] does not vary with j.
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For all combinations of n = 4, 5, 6 and both values of c, we calculate the
MSEs from 10, 000 draws each for all possible odd-integer combinations of
dividing 9n.5 For example, for n = 5 we examine the 960 combinations of
shares s = (1, 1, 1, 1, 41), (1, 1, 1, 3, 39), . . . , (9, 9, 9, 9, 9). Analyzing odd inte-
gers only brings us as close to extreme distributions where one or more agents
receive nothing as we get to distributions that are midway between our lat-
tice points. Because the draws for permutations of a combination of si’s are
qualitatively identical, we examine only one permutation of each combina-
tion (that is, we examine s = (1, 1, 1, 3, 39) but not s = (1, 1, 3, 1, 39)). We
find that the MSE varies nonlinearly with share size, which implies that it
is important to analyze the entire simplex of possible divisions of a dollar.

5Dividing (2k + 1)n for a positive integer k permits us to analyze the case of n equal
shares.
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Figure 1a.  Relationship between share size and MSE for 4 agents and variance 0.0833 
for geometric median, arithmetic mean, and maximum. 

 
Figure 1b.  Relationship between share size and MSE for 4 agents and variance 0.001 for 

geometric median, arithmetic mean, and maximum. 
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Figure 2a.  Relationship between share size and MSE for 5 agents and variance 0.0833 

for all four aggregators. 

 
Figure 2b.  Relationship between share size and MSE for 5 agents and variance 0.001 for 

all four aggregators. 
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Figure 3a.  Relationship between share size and MSE for 6 agents and variance 0.0833 

for all four aggregators. 

 
Figure 3b.  Relationship between share size and MSE for 6 agents and variance 0.001 for 

all four aggregators. 
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