
Cooperation in Queues ∗

Akshay-Kumar Katta† Jay Sethuraman ‡

March 2006

Abstract

A set of agents arrive simultaneously to a service facility. Each agent requires the facility for

a certain length of time and incurs a cost for each unit of time spent in queue. Attached to each

agent is an index, which is the ratio of her waiting cost rate to processing time. Efficiency dictates

that the agents be served in decreasing order of their indices. If monetary compensations are

disallowed, fairness suggests that agents be served in a random order, each ordering of the agents

being equally likely. The efficient ordering is unfair to agents with low indices; the random service

order is typically extremely inefficient. It is well-known that this gap can be bridged by using

monetary compensations. This paper is motivated by the need to design compensation schemes

that are fair to all the agents. To that end, we propose two solution concepts (RP and CRP cores),

which serve to place upper bounds on the cost share of any coalition of agents. The solutions differ

in the definition of the expected worth of a coalition, when the agents are served in a random order.

A detailed study of these two concepts as well as their compatibility with other fairness criteria

(such as the LB core, due to Maniquet) are the main focus of this paper. We show that the RP core

may be empty; but the CRP core is always nonempty, is compatible with the LB core, and contains

the equal gains solution. Moreover, we provide an efficient algorithm to find the the egalitarian

solution proposed by Dutta and Ray [8], which equalizes costs among all core solutions. We also

explore two natural special-cases: identical waiting cost rates and identical processing times. When

the waiting cost rates are identical, we prove that the RP core is nonempty, compatible with the LB

core, and in fact contains both the equal gains solution and the equal costs. For the case of identical

processing times, we show that the RP core is nonempty and contains all envy-free solutions, but

is, in general, incompatible with the LB core.

∗This research was supported by an NSF grant DMI-0093981.
†Department of Industrial Engineering and Operations Research, Columbia University, New York, NY; email:

ark2001@columbia.edu
‡Department of Industrial Engineering and Operations Research, Columbia University, New York, NY; email:

jay@ieor.columbia.edu

1

1 Introduction

Consider a set of agents arriving simultaneously to a service facility. The facility can serve only

one agent at a time; moreover, once an agent begins service, he occupies the service facility until

completion. Each agent i requires a processing time pi at the service facility, and incurs a cost ci for

each unit of time spent in queue. (An agent does not incur any cost when being served.) Moreover,

these parameters are observable and do not need to be elicited from the agents. Since the facility can

serve only one agent at a time, a queue needs to be formed. How should the agents be served? The

answer to this question, of course, depends on the objective of the service provider or the planner. If

efficiency is the goal, the agents must be served in decreasing order of their c/p ratios. However, if

the service discipline must be fair, and if monetary compensations are disallowed, then a reasonable

approach is to serve the agents in a random order, always picking the next agent to be served uniformly

from the remaining set of agents. It is clear that the efficient solution is “unfair,” especially to agents

with low waiting costs or those with large processing times; similarly, it is easy to see that the “fair”

service discipline—serving the agents in a random order—is highly inefficient. Our study is motivated

by the following question: if monetary compensations are allowed, and if agents are served in an

efficient order, what compensations can be viewed as being fair? Equivalently, how should the agents

share their joint costs?

The cost sharing problem is a fundamental problem in economics, and has a rich literature [14].

A successful and often-used approach to “fair” cost sharing is to associate with the problem an ap-

propriate cooperative game, and then use a standard solution concept from the theory of cooperative

games: for a good overview of this approach in the scheduling context, we refer the reader to Curiel

et al. [5]. Our work is inspired by a recent paper of Maniquet [11], who considers the special case of

the scheduling problem in which all the agents have identical processing times. In Maniquet [11], the

“worth” of a coalition is defined as the least possible cost incurred by that coalition, if no other agents

are present; then, monetary compensations are designed so that each agent’s utility is precisely her

Shapley value in this cooperative game. Chun [3] studies the same problem, but defines the worth of

a coalition as the least possible cost incurred by the coalition, assuming the agents not in the coalition

are served before the coalition members; again, money transfers are designed so as to yield the Shapley

value utilities. Both Maniquet [11] and Chun [3] axiomatize their solutions. Curiel et al. [6] consider a

model in which the initial ordering of the agents is known; if this initial ordering is not efficient, then

the agents could achieve a lower cost by rearranging themselves in an efficient manner. Curiel et al. [6]

consider equitable ways of distributing the savings among the agents; they show that the “mid-point”

solution (in which each pair of agents split the savings they generate by cooperation) is in the core of

an associated cooperative game.

In the model we study, we assume that the waiting costs and processing times are observable. If

this is not the case, strategic aspects have to be modeled as well. Dolan [7] provides an incentive

compatible (but not budget-balanced) mechanism for eliciting the waiting-costs of the agents; in

2

addition to the case with a fixed number of agents, Dolan [7] examines the case where agents arrive

over time. Suijs [18] proves the existence of a budget balanced incentive-compatible mechanisms for

waiting-cost revelation when there are at least three agents. Mitra [13] considers the case of identical

processing times, and identifies the cost structures for which the problems are first best implementable.

In two recent papers, Moulin [15, 16] discusses ways of designing mechanisms to prevent agents from

“merging” or “splitting” jobs; this is appropriate in situations where the service provider can monitor

the processing time of a job, but not the identity of the agent.

Motivation. The starting point for our investigation is the solution proposed by Maniquet [11],

which can be justified by the following principle: the cost borne by any subset S of agents should be at

least their stand-alone cost L(S), which is the least cost they incur if no other agents are present. For

the scheduling problem considered here, L(S) is supermodular, so the associated cooperative game is

convex, and the Shapley value of this game is always in its core. In the rest of this paper, we refer

to the core of this game as the Lower Bound (LB) core; the Shapley value of this game will be called

simply the Shapley solution.

In contrast, our work finds upper bounds on the cost of any coalition of agents. The key motivation

behind our approach is the following simple idea: if monetary compensations are not allowed, and

the agents do not cooperate among themselves, then a “reasonable” scheduling policy is the one that

serves the agents in a random order, each ordering of the agents being equally likely. We take this

to be the standard against which any “solution” to the problem is measured. This leads naturally to

the question of finding monetary compensations such that agents prefer the efficient order (along with

the proposed compensation scheme) to the random service order. This question is straightforward to

interpret for individual agents: each agent’s cost under the proposed compensation scheme should be

no larger than her expected cost under the random service order. But if arbitrary subsets of agents

can cooperate, then it becomes necessary to define the expected cost of a coalition of agents under the

random service order; to do this, we need to specify precisely what an arbitrary coalition of agents

can and cannot do. The two solutions concepts we propose, Random Priority (RP) and Constrained

Random Priority (CRP), differ only in this respect, and are discussed next.

Consider an arbitrary subset S of agents, and let s = |S|. We view the agents in S as owning

a random set of s positions, each subset of size s being equally likely. In RP, the agents are free

to rearrange themselves in any manner as long as they use only the s positions they jointly own;

in CRP, however, the agents who rearrange themselves should form contiguous blocks. In either

case, the cooperating agents will rearrange themselves so as to minimize their total waiting cost. To

clarify the difference between RP and CRP, suppose S = {1, 2, 4} and the random ordering of the

agents is (4132). Under RP, the agents in S can rearrange themselves in any manner using the first,

second, and fourth position; under CRP, only agents 1 and 4 can rearrange themselves using the first

two positions, because agent 3, a non-coalition member, is “in between” agent 1 and agent 2. This

restriction imposed by CRP is especially meaningful if p2 is much bigger than p4 and p1 (because

3

allowing agent 2 to move ahead of agent 3 in that case will increase the waiting time of agent 3).

The question about monetary compensations posed earlier now becomes the following: can one design

compensation schemes in which the cost of every subset of agents is no more than their expected cost in

the random service order? Solutions satisfying this property will be called RP and CRP core solutions

respectively, depending on whether the expected cost is computed under RP or CRP. (The expected

cost of a coalition under RP will in general be smaller than its expected cost under CRP.) We view

the presence in the RP or CRP core as our main fairness criterion. To select a solution in the core,

we use additional criteria such as equalizing costs, equalizing gains, etc.

Illustrative examples.

Example 1. Suppose there are 3 agents with identical processing times (normalized to 1), but

with waiting cost rates c1 = c2 = 12, and c3 = 6. Let (w1, w2, w3) be the cost vector of the agents in

the proposed solution. The LB core constraints are:

w1 + w2 ≥ 12, w1 + w3 ≥ 6, w2 + w3 ≥ 6,

w1 + w2 + w3 = 24, w1, w2, w3 ≥ 0.

The cost vector associated with the Shapley solution is (9, 9, 6). While this solution is “fair” in that

it belongs to the LB core, one could argue that this solution overcharges the coalition {2, 3}: the

joint cost of this coalition is 15 in the Shapley solution, but its expected cost in a random ordering is

easily seen to be 14. The solution with cost vector (10, 10, 4) is immune to such difficulties: it is easy

to check that in this solution (a) no coalition is charged more than its expected cost in the random

ordering; and (b) no coalition is charged less than its stand-alone cost. Thus, the latter solution is a

more compelling way for the agents to share their joint costs.

Example 2. Suppose there are 3 agents with identical waiting costs (normalized to 1), but with

processing times p1 = 4, p2 = 6, and p3 = 10. Let (w1, w2, w3) be the cost vector of the agents in the

proposed solution. The LB core constraints are:

w1 + w2 ≥ 4, w1 + w3 ≥ 4, w2 + w3 ≥ 6,

w1 + w2 + w3 = 14, w1, w2, w3 ≥ 0.

The cost vector associated with the Shapley solution is (4, 5, 5). It is easy to check that this solution

is also in the RP core. While this solution is “fair” in that it belongs to both the RP core and the LB

core, there are “better” solutions. The cost vector (14/3, 14/3, 14/3) is also in the RP core as well as

the LB core: moreover it equalizes the costs of all the agents. Clearly, the latter solution is a more

compelling way for the agents to share their joint costs if the goal is to “equalize costs” among the

core solutions.

4

To summarize, while the Shapley solution is attractive and enjoys several desirable properties, there

could be other solutions to this class of fair cost-sharing problems that are at least as compelling. Our

main objective in this paper is to explore such solutions systematically.

Contributions. In this work we analyze the RP and CRP cooperative games, explore the properties

of the corresponding cores, and discuss their relationship to the solutions in the LB core. First, we

consider the RP game. When the waiting cost rates are identical, we prove that

• the RP game is convex; and

• the RP core is compatible with the LB core, and in fact contains the Shapley solution; both the

equal gains solution and the equal costs solution are also in the RP core.

For the case of identical processing times, we show that

• the RP core is non-empty and contains all envy-free solutions;

• the Shapley solution, the equal gains solution (which distributes the net benefit equally among

the agents) and the equal costs solution need not be in the RP core, but the unique anonymous

budget-balanced VCG solution is; and

• the RP core is, in general, incompatible with the LB core: we construct an example in which

none of the RP core solutions satisfies the LB core condition, even for individual agents!

However, even with identical processing times, the RP game may not be convex. Moreover, if process-

ing times and waiting cost rates are arbitrary, the RP core could be empty! This motivates the need

for the CRP game. We show that the CRP game is convex, even with arbitrary processing times and

waiting costs. The CRP core contains the Shapley solution (hence is compatible with the LB core),

and the equal gains solution. As the CRP game is convex, the egalitarian solution proposed by Dutta

and Ray [8] equalizes costs among all core solutions, and, in fact, Lorenz dominates all core solutions;

we provide an efficient algorithm to find this solution. We then show how to find solutions in the

intersection of the LB core and the CRP core, while satisfying auxiliary conditions such as equalizing

costs, etc. These problems are submodular optimization problems that can be solved in polynomial

time, but we provide faster algorithms for solving them.

The rest of the paper is organized as follows. In §2 we describe the model in detail and formally

define the RP and CRP games and their associated cores; in §3, we discuss three standard solution

concepts that are used extensively in the rest of the paper: the Shapley solution, the equal costs

solution, and the equal gains solution. Sections 4 and 5 are devoted to the analysis of the RP and

CRP games, respectively. We conclude by exploring solutions that are at the intersection of the LB

core and the CRP core.

5

2 Model

2.1 Problem Description

A set of agents N = {1, 2, . . . , n} arrive to a service facility simultaneously for service. Agent i needs

to be served for pi time units and incurs a cost of ci for each unit of time spent in queue. We assume

that agents incur a cost only when they wait in queue, and do not incur a cost when in service. The

facility can serve only one agent at a time. Furthermore, we assume that once the facility starts serving

an agent, he has to be served till completion; in standard scheduling terminology, this is the same

as requiring non-preemptive service. As we shall see later, even if preemption is allowed, efficiency

considerations will force the system manager to adopt a non-preemptive discipline, and so this last

assumption is neither unreasonable nor restrictive. Any “solution” to this problem consists of two

parts: the order in which the agents are served, which is any permutation of the set of agents N , and

the monetary compensations received by the agents from the service provider. Let σi be the position

of agent i in the service order: thus σi = k simply means that agent i is served as the kth agent.

Also, let ti be the money received by agent i from the service provider (if ti < 0, then agent i pays

the service provider −ti). Any solution to the problem is thus completely specified by the quantities

σ = (σ1, σ2, . . . , σn) and t = (t1, t2, . . . , tn), so the cost of agent i is simply

wi(σ; t) = ci(
∑

j:σj<σi

pj)− ti

A solution z = (σ, t) is feasible if σ is a permutation of the agents and
∑n

i=1 ti ≤ 0. The net transfer

from the service provider should be non-positive in a feasible solution because we do not want the

service provider to incur a loss while serving all the agents. A feasible solution z is efficient whenever

it minimizes the sum of the costs of all the agents among all feasible solutions. It is not difficult to

see that a feasible solution z = (σ, t) is efficient if and only if (i) σ minimizes the sum of the waiting

costs of the agents over all possible permutations of the agents; and (ii) the net transfer
∑n

i=1 ti is

zero. Smith [17] proved that for this simple scheduling problem the sum of the waiting costs of the

agents is minimized by serving them in decreasing order of the ratios ci/pi, with ties broken arbitrarily.

This implies that finding an efficient solution to the scheduling problem is simple: sequence the agents

according to Smith’s rule, and let t1 = t2 = . . . = tn = 0. Although this is an efficient solution, it

could be very unfair: as an extreme example, suppose all the agents have identical p and c values; in

the proposed solution, the agent served first has a zero cost, but the agent served last has a huge cost.

In the next sections, we explore the possibility of finding efficient solutions that are also “fair.”

2.2 Games and associated Cores

Given a finite set N of agents, a cooperative game with transferable utility is completely specified by

its characteristic function v(·) on every non-empty subset of agents. In this section we define two

6

natural cooperative games—RP and CRP games—that are used to find a solution to the scheduling

problem.

Random Priority (RP) Game. Let S be a coalition of agents. In the RP game, the agents in

S are allowed to exchange the (random) positions they own and rearrange themselves in a way that

minimizes their collective cost; this minimum expected total cost is the “worth” of the coalition S in

the RP game, and is denoted CRP (S). A cost vector (w1, w2, . . . , wn) is in the RP core if and only if
∑

i∈N wi = CRP (N), and
∑

i∈S

wi ≤ CRP (S), ∀S ⊂ N.

Constrained Random Priority (CRP) Game. Let S be a coalition of agents. In the CRP

game, the agents in S are allowed to exchange the random positions they own, but with an additional

restriction: only contiguous subsets of the agents in S agents can rearrange themselves. It is reasonable

to assume that they rearrange themselves in a way that minimizes their collective cost; this minimum

expected total cost (subject to the contiguity restriction) defines the “worth”, C CRP (S), of the coalition

S in the CRP game. A cost vector (w1, w2, . . . , wn) is in the CRP core if and only if
∑

i∈N wi =

CCRP (N), and
∑

i∈S

wi ≤ CCRP (S), ∀S ⊂ N.

The RP and CRP core solutions find cost vectors that place an upper bound on the cost of any

coalition of agents. In contrast, the LB core solution places a lower bound on the cost any coalition of

agents should bear. The formal definition of the LB game described in Maniquet [11] is the following:

Lower Bound (LB) Game. The worth of a coalition S of agents is their minimum cost, assuming

the agents in S are served in the first |S| positions. Let L(S) denote the worth of coalition S in the

LB game. A cost vector (w1, w2, . . . , wn) is in the LB core if and only if
∑

i∈N wi = L(N), and

∑

i∈S

wi ≥ L(S), ∀S ⊂ N.

3 Standard solution concepts

In this section we review three standard solution concepts in cooperative game theory and show how

to compute them explicitly for the model discussed here. This serves two purposes: first, for some

special cases of the model, similar approaches have been used to find compelling solutions; and second,

we shall use many of these ideas in the latter sections. To avoid cumbersome notation, we adopt the

following convention throughout the paper:

7

Convention. The agents are served in the order (1, 2, . . . , n), and this is an efficient queue. In

particular, the agents are labeled so that

c1/p1 ≥ c2/p2 ≥ . . . ≥ cn/pn.

3.1 Shapley solution

Recall that the Shapley solution is the Shapley value of the LB game. Thus, when the ratios ci/pi are

decreasing in i, the worth of a coalition S is given by

v(S) = L(S) =
∑

i∈S

ci

∑

j:j<i

pj.

Given this definition, the Shapley value of agent an i ∈ N is

SVi =
∑

S⊆N−i

|S|!(|N | − |S| − 1)!

|N |!
[v(S ∪ {i}) − v(S)].

The Shapley value can be computationally expensive to compute, but has an appealing interpretation,

which is often useful in computing it. Suppose the agents “arrive” in a random order, every ordering

of the agents being equally likely. Suppose also that each agent is asked to pay for the additional

cost she imposes on the agents who are already present. The Shapley value of an agent i is then

simply her expected payment: this is because i pays (v(S ∪ {i}) − v(S)) if and only if the set of

agents arriving before her is exactly the agents in S (in any order), and this event has a probability

of |S|!(|N | − |S| − 1)!/|N |!. Therefore, the Shapley value of agent i is simply

SVi = E[v(S ∪ {i}) − v(S)],

where the expectation is with respect to S, the (random) set of agents who arrive before i in a

uniform random ordering of N . We now turn to computing the Shapley value of an agent using this

interpretation.

Recall that the agents are served in the order (1, 2, . . . , n) in an efficient queue. If S is the subset

of agents before i, in a uniformly random order, then for any agent j 6= i, Pr[j ∈ S] = Pr[j 6∈ S] = 1/2.

Also, given a subset S of agents not containing i, the marginal contribution of agent i to S consists of

two parts: first, the waiting cost of agent i herself; and second, the additional cost imposed by agent

i on all the members of S. Thus,

v(S ∪ {i}) − v(S) = ci

∑

j∈S:j<i

pj + pi

∑

j∈S:j>i

cj . (1)

Taking expectations in Eq. (1), we have

SVi =
1

2

[

ci

∑

j:j<i

pj + pi

∑

j:j>i

cj

]

. (2)

8

The Shapley value rule for a problem q = (N ;C,P) finds an efficient solution in which each agent’s

utility is exactly her Shapley value. Let (σ, t) be such a solution. Assuming σ = (1, 2, . . . , n), we shall

find the transfer vector (t1, t2, . . . , tn) that achieves the Shapley solution utility for each agent. In

other words, we want

SVi = wi(σ, z) = ci

∑

j:j<i

pj − ti. (3)

Using Eq. (2) in Eq. (3), we find

ti =
1

2

[

ci

∑

j:j<i

pj − pi

∑

j:j<i

cj

]

. (4)

We end this section by giving an alternative expression for SVi that will be helpful in establishing

the presence of the Shapley solution in CRP core later. Equation (2) can be rewritten as:

SVi =
ci

2

∑

j:j 6=i

pj −
1

2

∑

j:j>i

(cipj − cjpi)

= ci
P − pi

2
−

1

2

∑

j:j>i

(cipj − cjpi) (5)

where P =
∑

j∈N pj.

3.2 Equalizing costs

In this section we consider the objective of equalizing costs. The aim is to distribute the overall waiting

costs as “equally” as possible among all the agents. We first define the notion of Lorenz domination,

followed by strict and weak notions of equalizing costs.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two given vectors. Let x(i) and y(i) denote the

ith smallest component of x and y respectively. We say that x Lorenz dominates y if and only if

k
∑

i=1

x(i) ≥

k
∑

i=1

y(i), k = 1, 2, . . . , n.

Suppose W is a set of acceptable cost vectors. (For example, W may be the set of CRP core

solutions.) We say that w ∈ W equalizes costs in the strict sense if w Lorenz dominates every w ′ ∈ W.

We say that w ∈ W equalizes costs in the weak sense if there is no w ′ ∈ W that Lorenz dominates w.

Note that a solution that equalizes costs in the strict sense also equalizes costs in the weak sense, but

not vice-versa.

The equal costs solution is one in which the overall cost W =
∑

i∈N ci

(
∑

j<i pj

)

is split equally

among all agents, i.e. w1 = w2 = . . . = wn = W/n. We note that if the equal costs solution is in W,

then it equalizes costs in the strict sense.

9

3.3 Equalizing Gains

Analogous to equalizing costs, we define the notion of equalizing gains. If the agents do not coop-

erate and we implement the random service order solution, then agent i’s expected waiting time is
∑

j:j 6=i pj/2. Letting

di = ci

∑

j:j 6=i

pj/2 (6)

the vector of costs in the random service order is (d1, d2, · · · , dn). Now, if the vector of costs is

(w1, w2, . . . , wn), then agent i gains (di − wi) by cooperating. Thus, every cost vector has a gains

vector associated with it. Recall that, in any efficient solution,
∑

i:i∈N wi =
∑

i∈N

∑

j:j<i cipj . Hence,

the net benefits from cooperation is given by

B =

n
∑

k=1

dk −

n
∑

k=1

wk =
1

2

n
∑

k=1

ck

∑

j 6=k

pj −

n
∑

k=1

ck

∑

j<k

pj. (7)

In the equalizing gains objective, our aim is to distribute this overall gain B as “equally” as possible

among all the agents. Again, it is possible to define the notion of equalizing gains in the weak and

strict senses. The cost vector w = (w1, w2, . . . , wn) equalizes gains in the strict sense if its associated

gain vector Lorenz dominates the gain vector associated with any other acceptable cost vector. The

cost vector w equalizes gains in the weak sense if its associated gain vector is not Lorenz dominated

by the gain vector associated with any other acceptable cost vector.

Paralleling the definition of the equal costs solution, we obtain the equal gains solution by letting

wi = di−B/n, for i = 1, 2, . . . , n. Clearly, if the equal gains solution is among the acceptable solutions,

then it equalizes gains in the strict sense.

4 RP Game

In this section we study the RP game. We first consider the case with identical waiting cost rates,

followed by the case with identical processing times. In both cases we show that the RP core is non-

empty, and discuss the structure of the core solutions. We end this section by showing that the core

may be empty for the case with arbitrary waiting cost rates and processing times.

4.1 Identical waiting-cost rates

Consider the case in which agents have identical waiting cost rates, which, without loss of generality,

we take to be 1. Recall that, by our convention, agents are labeled so that p1 ≤ p2 ≤ . . . ≤ pn. When

the agents of a coalition S rearrange themselves, they may affect the welfare of some of the agents who

are not in the coalition. However, since any efficient rearrangement will result in jobs with smaller

processing times being placed earlier, the waiting time of any non-coalition agent can only go down.

Therefore, the rules of cooperation under RP are realistic.

10

Computing CRP (·). Consider a coalition S = {a1, a2, . . . , as} with pa1
≤ pa2

≤ . . . ≤ pas . By

definition, CRP (S) is the expected total cost of the agents in S, when the agents are ordered uniformly

at random, and when the members of S rearrange themselves in the order (a1, a2, . . . , as) using the

positions they occupy. In the absence of any cooperation, the expected cost of agent i is
∑

j∈N,j 6=i pj/2,

which can be rewritten as (P − pi)/2, where P :=
∑

j∈N pj is the sum of the processing times of all

the jobs. Thus, in the absence of any cooperation, the total expected waiting cost of the agents in S

is
1

2

[

sP −

s
∑

i=1

pai

]

.

By cooperating, the agents in S generate some cost savings, which can be found as follows: suppose

i < j, and ai appears after aj, and no agent between them is in S. Then, by exchanging their

positions, ai and aj generate a saving of (paj
− pai

). Given any random order, it is straightforward

to see that the agents in S can rearrange themselves in an efficient queue by making such exchanges

between “adjacent” pairs of coalitional agents. Note that here “adjacent” does not necessarily mean

that ai and aj are in positions that are actually adjacent to each other; it just means that there are no

other coalitional members between them at the time of exchange. Since any pair of agents will swap

positions with probability 1/2, the expected savings generated by S is simply

1

2

s−1
∑

i=1

s
∑

j=i+1

(paj
− pai

).

Therefore,

CRP (S) =
1

2

[

sP −
∑

i∈S

pi −
∑

i,j∈S:i<j

(pj − pi)
]

(8)

=
1

2

[

sP −

s
∑

i=1

pai
−

s−1
∑

i=1

s
∑

j=i+1

(paj
− pai

)
]

(9)

=
1

2

[

sP +
s

∑

i=1

(s− 2i)pai

]

(10)

=
s

2

∑

j:j /∈S

pj +

s
∑

i=1

(s− i)pai
(11)

We are now ready to prove the main result of this section.

Theorem 1 The RP game is convex and hence its core is non-empty.

Proof. The Theorem follows if we show that CRP (·) is a submodular set function. Let S ⊂ T , and

let k 6∈ T . Submodularity of CRP (·) follows if we prove the following inequality:

CRP (S ∪ {k})− CRP (S) ≥ CRP (T ∪ {k}) − CRP (T). (12)

11

From equation (8), we have

CRP (S ∪ {k}) −CRP (S) =
1

2

[

(P − pk)−
∑

i∈S

|pk − pi|
]

,

and

CRP (T ∪ {k}) −CRP (T) =
1

2

[

(P − pk)−
∑

i∈T

|pk − pi|
]

.

Since
∑

i∈S |pk − pi| ≤
∑

i∈T |pk − pi|, inequality (12) holds.

4.1.1 Selection from the RP core

We now turn to the problem of selecting an appealing solution in the RP core. We show that the RP

core contains the Shapley solution, the equal gains solution, and the equal costs solution.

The Shapley solution. Recall that the RP core constraints give an upper bound on the cost of

each coalition of agents; in contrast, the LB core constraints give a lower bound on the cost of each

coalition of agents. Particularly appealing solutions are those that are members of both cores; we

show next that the Shapley solution is one such solution.

When the waiting cost rates are identically one, equation (5) reduces to

SVi =
P − pi

2
−

1

2

∑

j:j>i

(pj − pi),

where P :=
∑

j∈N pj . Consider a coalition S, with |S| = s . The sum of the (Shapley value) costs of

all the agents in S is given by

∑

i∈S

SVi =
∑

i∈S

P − pi

2
−

1

2

∑

i∈S

∑

j:j>i

(pj − pi)

=
1

2

[

sP −
∑

i∈S

pi

]

−
1

2

∑

i,j∈S:i<j

(pj − pi)−
1

2

∑

i∈S

∑

j:j>i,j/∈S

(pj − pi)

≤
1

2

[

sP −
∑

i∈S

pi

]

−
1

2

∑

i,j∈S:i<j

(pj − pi) [as pj ≥ pi ∀ j : j > i]

= CRP (S). [By (8)]

Since this is true for an arbitrary coalition S, it follows that the Shapley solution is in the RP core.

Note that, by definition, the Shapley solution is in the LB core.

12

Equal gains solution. When all agents have a unit waiting cost rate, the cost of agent i in the

equal gains solution is given by

wi =
∑

j:j 6=i

pj/2 −B/n = (P − pi)/2−B/n,

where

B =
1

2

n
∑

k=1

∑

j 6=k

pj −

n
∑

k=1

∑

j<k

pj =
1

2

n
∑

k=1

∑

j>k

pj −
1

2

n
∑

k=1

∑

j<k

pj

=
1

2

n
∑

i=1

(2i− 1− n)pi =
1

2

bn/2c
∑

i=1

(n− 2i + 1)(pn−i+1 − pi). (13)

Let S = {a1, a2, . . . , as} be any subset of agents. Let D(S) be the cost savings achieved by the agents in

S by cooperating among themselves in a random solution, i.e., let D(S) =
∑s

i=1(P −pai
)/2−CRP (S).

From equation (9), we have

D(S) =
1

2

s−1
∑

i=1

s
∑

j=i+1

(paj
− pai

) =
1

2

s
∑

i=1

(2i− 1− s)pai

=
1

2

bs/2c
∑

i=1

(s− 2i + 1)(pas−i+1
− pai

). (14)

For the equal gains solution to be in the core, we need
∑s

i=1 wai
≤ CRP (S). Substituting for the wai

and CRP (S), we get to
s

∑

i=1

P − pai

2
−

s

n
B ≤

s
∑

i=1

P − pai

2
−D(s),

which is equivalent to

B ≥
n

s
D(S) (15)

Since B ≥ 0, (15) holds for all single-person coalitions. Suppose | S |= s ≥ 2. We have

13

B =
1

2

bs/2c
∑

i=1

(n− 2i + 1)(pn−i+1 − pi)
[

From equation (13)
]

≥
1

2

bs/2c
∑

i=1

(n− 2i + 1)(pas−i+1
− pai

)

[

as pn−i+1 − pi ≥ pas−i+1
− pai

∀ i ≤ bs/2c
]

=
1

2

n− 1

s− 1

bs/2c
∑

i=1

(n− 2i + 1)(s− 1)

n− 1
(pas−i+1

− pai
)

≥
1

2

n− 1

s− 1

bs/2c
∑

i=1

(s− 2i + 1)(pas−i+1
− pai

)

[

as
(n− 2i + 1)(s− 1)

n− 1
≥ (s− 2i + 1) ∀ n ≥ s and i ≥ 1

]

=
n− 1

s− 1
D(S)

[

from equation (14)
]

≥
n

s
D(S)

[

as
n− 1

s− 1
≤

n

s
∀ s ≤ n

]

Therefore, (15) holds for all coalitions, and so the equal gains solution is in the RP core.

Equal costs solution. The equal costs solution is given by wi = W/n for all i, where W =
∑n

i=1(n− i)pi. To show that this solution is in the RP core, we first prove the following result.

Lemma 2 Let CRP (S) be the expected waiting cost of S under RP when the waiting costs are all

identical. Let

g(s) = CRP

({

1, 2, . . . ,

⌊

s

2

⌋}

∪

{

n, n− 1, n− 2, . . . , n−

⌈

s

2

⌉

+ 1

})

, s = 1, 2, . . . , n.

Then,

g(s) = min
S⊆N,|S|=s

CRP (S), ∀s = 1, . . . , n.

Proof. Consider the second term of the RHS of Eq. (10). For any fixed value of s, the first bs/2c terms

within the summation have a non-negative coefficient, whereas the remaining ds/2e terms within the

summation have a negative coefficient. Also, recall that the processing times are weakly increasing.

To minimize CRP (S), it is therefore optimal to match the largest ds/2e processing times with the

negative coefficients, and the smallest bs/2c processing times with the non-negative coefficients. The

result follows.

14

Note that in the equal costs solution, the cost of any coalition of s agents is sW/n. In particular,

the cost of a coalition depends only on its cardinality. So to check that the equal costs solution is in

the RP core, it is enough to prove that

s

n
W ≤ g(s), s = 1, 2, . . . , n. (16)

We do this by showing the following result.

Lemma 3 g(s) is a concave function of s, that is,

g(s− 1) + g(s + 1)

2
≤ g(s), s = 1, 2, . . . , n− 1.

Proof. Consider any k < n/2 . From equation (11), we have

g(2k + 1)− g(2k) =
2k + 1

2

[

pk+1 + · · ·+ pn−k−1

]

+ p1 + · · ·+ pk + kpn−k

−
2k

2

[

pk+1 + · · · + pn−k

]

=
1

2

[

pk+1 + · · · + pn−k−1

]

+ p1 + · · ·+ pk−1 + pk,

and

g(2k) − g(2k − 1) =
2k

2

[

pk+1 + · · · + pn−k

]

+ p1 + · · ·+ pk−1 + kpk

−
2k − 1

2

[

pk + · · · + pn−k

]

=
1

2

[

pk+1 + · · ·+ pn−k−1

]

+ p1 + · · ·+ pk−1 +
1

2
pn−k +

1

2
pk.

Using these expressions, we can check that

g(2k − 1) + g(2k + 1)

2
− g(2k) =

1

4
(pk − pn−k) ≤ 0,

and that
g(2k − 2) + g(2k)

2
− g(2k − 1) = 0.

Note that the inequality (16) is satisfied as an equality for s = 0 and for s = n. Its LHS grows

linearly in s, whereas its RHS is concave in s (due to Lemma 3). Therefore, for every intermediate

value of s, the LHS can be no more than the RHS, and so (16) is satisfied for all values of s. It follows

that the equal costs solution is in the RP core.

15

4.2 Identical Processing Times

We turn to the case in which jobs have identical processing times; without loss of generality we take

this common processing time to be 1. Recall that, by our convention, the agents are labeled so that

c1 ≥ c2 ≥ . . . ≥ cn. When the agents of a coalition S rearrange themselves, they do not affect the

welfare of any non-coalition member, regardless of where such agents appear, making the rules of

cooperation under RP appealing and realistic.

Computing CRP (·). Consider a coalition, S = {a1, a2, . . . , as}, of s members with ca1
≥ ca2

≥

. . . ≥ cas . Now suppose that the processing order is chosen uniformly at random from the n! pos-

sible orderings. Clearly, the cooperating coalition members will rearrange themselves in the order

(a1, a2, . . . , as) using the time slots they occupy in the chosen processing order. For i = 1, 2, . . . , s− 1,

let Ni be the (random) number of non-coalition members between ai and ai+1; also, let N0 be the

number of non-coalition members before a1, and Ns be the number of non-coalition members after as.

Clearly, the (s + 1) random variables N0, N1, . . . , Ns are identically distributed, and add up to n− s,

so E[Ni] = (n − s)/(s + 1). Thus, the expected number of agents served before ai, which is also the

expected waiting time of ai, is (i − 1) + i(n − s)/(s + 1) = (n− s)/(s + 1) + (i − 1)(n + 1)/(s + 1),

for i = 1, 2, . . . , s. Using all this, we have

CRP (S) =
n− s

s + 1

s
∑

i=1

cai
+

n + 1

s + 1

s−1
∑

i=2

(i− 1)cai
. (17)

Our first main result is that the RP core is non-empty. We prove this result by showing that it

contains all envy-free solutions, defined as follows: Given a solution z = (σ, t), we say i does not envy

j in z if i prefers her allocation to that of j’s, that is, if

(σi − 1)ci − ti ≤ (σj − 1)ci − tj.

A solution z is envy-free if no agent envies any other agent. Note that in the definition of envy-freeness,

we assume that transfers are attached to the “positions,” not the individual agents, so tj is the transfer

to the agent served at position σj. We are now ready to state and prove the main result of this section.

The proof is similar to a proof of Klijn et al. [10] for a different problem.

Theorem 4 Every envy-free solution is in the RP core. In particular, the RP core is non-empty.

Proof. Let (σ, t) be an envy-free solution to the scheduling problem. Let Π be the set of all the

orderings of N ; since each ordering is equally likely in a uniformly random solution, for any π ∈ Π,

Pr[π] = 1/N !. Recall that the cost of agent i is wi = (σi − 1)ci − ti.

For any π ∈ Π, let πS(i) be the position of agent i when the cooperating coalition of agents is

S. (Thus, the agents in S will rearrange themselves in an efficient way—agents with higher cost will

16

appear earlier— using the slots they occupy in π.) Then, the expected waiting cost of coalition S is

given by

CRP (S) =
1

N !

∑

π∈Π

∑

i∈S

(πS(i) − 1)ci.

This expression will be the same as the expression in Eq. (17), but it will be convenient here to think

of it in these terms. We have:

∑

i∈S

wi =
∑

i∈S

(

(σi − 1)ci − ti

)

=
1

N !

∑

π∈Π

∑

i∈S

(

(σi − 1)ci − ti
)

=
1

N !

∑

π∈Π

∑

i∈S

(

(σi − 1)ci − ti + tπS(i)

)

−
1

N !

∑

π∈Π

∑

i∈S

tπS(i)

≤
1

N !

∑

π∈Π

∑

i∈S

(

πS(i)− 1
)

ci −
1

N !

∑

π∈Π

∑

i∈S

tπS(i)

[

envy-freeness implies (σi − 1)ci − ti ≤ (πS(i)− 1)ci − tπS(i)

]

= CRP (S)−
1

N !

∑

π∈Π

∑

i∈S

tπS(i)

But, note that 1
N !

∑

π∈Π

∑

i∈S tπS(i) = 0, because every position will be occupied the same number

of times on average and
∑n

i=1 ti = 0. So, for any envy-free solution (σ, t), and any coalition of agents

S,
∑

i∈S

wi ≤ CRP (S).

Therefore all envy-free solutions are in the RP core.

It is easy to verify that the efficient queue (1, 2, . . . , n), and the transfer vector given by

t1 = −
(n− 1)c2 + (n− 2)c3 + . . . cn

n
,

ti = t1 + c2 + . . . + ci, i = 2, . . . , n,

constitutes an efficient, envy-free solution.

Remarks.

(a) Chun [4] explores the role of envy in such scheduling problems. It is not hard to show that the

solution (σ = (1, 2, . . . , n), t) is envy-free if and only if

ci+1 ≤ ti+1 − ti ≤ ci, ∀i = 1, 2, . . . , n− 1.

17

(b) The converse of Theorem 4 is not true: not all core solutions are envy-free. For instance, suppose

there are three agents with c1 > c2 > c3. Consider the solution given by

t1 = −
2c2 + c3

3
, t2 =

c2 − c3

3
+ δ, t3 =

c2 + 2c3

2
− δ

It is easy to check that this solution is in the RP core for a small enough δ > 0. But agent 3

envies agent 2 in this solution.

4.2.1 Selection from the RP core

We know that the RP core contains all envy-free solutions and some other solutions as well. We now

consider the problem of selecting an appealing solution (or subset of solutions) from the RP core.

The Shapley solution and the LB core. When there are only two agents, it is easy to check

that the cost vector (c2/2, c2/2) (achieved by σ = (1, 2), t2 = −t1 = c2/2) is in both the RP core and

the LB core. Unfortunately, if there are 3 or more agents, it is sometimes impossible to find such a

solution: there are instances of the scheduling problem in which any solution in the RP core is not in

the LB core. As we show next, such solutions do not even satisfy the LB core constraints for individual

agents. (These constraints require no agent to be subsidized by the system for participation.)

Example 3. Suppose there are three agents with costs c1 ≥ c2 ≥ c3. The RP core constraints are:

w1 ≤ c1 w2 ≤ c2 w3 ≤ c3,

w1 + w2 ≤
c1

3
+

5

3
c2 w1 + w3 ≤

c1

3
+

5

3
c3 w2 + w3 ≤

c2

3
+

5

3
c3,

and

w1 + w2 + w3 = c2 + 2c3.

The LB core constraints for individual agents simply say that w1, w2, w3 ≥ 0. Suppose c1 = c2 = 3. If

c3 = 0, we see that w3 is forced to be 0, which implies w1 ≤ 1 and w2 ≤ 1. But, the last constraint of

the RP core requires w1 + w2 + w3 = 3, which is not possible.

Since the Shapley solution discussed in §3.1 is always in the LB core, the same example proves

that the Shapley solution need not always be in the RP core. Moreover, in Example 3 the equal costs

solution—w1 = w2 = w3 = 1— is not in the RP core.

Equal gains solution. The equal gains solution may not always be in the RP core either. Suppose

there are four agents with costs c1 ≥ c2 ≥ c3 ≥ c4. The equal gains solution to the scheduling problem

18

is

w1 =
9

8
c1 −

1

8
c2 +

1

8
c3 +

3

8
c4,

w2 = −
3

8
c1 +

11

8
c2 +

1

8
c3 +

3

8
c4,

w3 = −
3

8
c1 −

1

8
c2 +

13

8
c3 +

3

8
c4,

w4 = −
3

8
c1 −

1

8
c2 +

1

8
c3 +

15

8
c4.

The RP core constraint for the coalition {1, 2, 3} of agents is

w1 + w2 + w3 ≤
c1

4
+

3

2
c2 +

11

4
c3.

If c1 = 8, and c2 = c3 = c4 = 0, the equal gains solution has w1 = 9, w2 = w3 = w4 = −3, so

w1 + w2 + w3 = 3; but this violates the RP core constraint.

Thus, even though the RP core is always non-empty, it may not contain the Shapley solution, the

equal costs solution, or the equal gains solution. In fact, CRP (S) may not be submodular as shown in

the following example.

Example 4. Suppose n = 3, c1 = 3, c2 = 0, and c3 = 0. Let S = {1}, T = {1, 2} and k = 3 . It is

straightforward to verify that:

CRP (S) = 3, CRP (S ∪ {k}) = 1, CRP (T) = 1, CRP (T ∪ {k}) = 0.

Therefore, we have

CRP (S ∪ {k}) − CRP (S) = −2, CRP (T ∪ {k})− CRP (T) = −1

Hence CRP (S ∪ {k}) − CRP (S) < CRP (T ∪ {k}) − CRP (T), and so the function CRP (S) is not

submodular. Thus the RP game is not convex.

We end this section, however, on a positive note: we show that the (unique) anonymous budget-

balanced VCG solution is in the RP core.

Budget-balanced VCG solution. When there are at least three agents, Suijs [18] showed that

the budget-balanced VCG transfers are given by

ti =
1

2

∑

j<i

cj −
1

2

∑

j>i

cj −
1

n− 2

∑

j:j 6=i

∑

(k:k 6=i,k<j)

1

2
(ck − cj).

To show that this solution is in the RP core, it is enough to show that it is envy-free, which follows

(see Chun [4]) if ti+1 − ti ∈ [ci+1, ci]. We have:

ti+1 − ti =
ci

2
+

ci+1

2
+

2i− n

2(n− 2)
[ci − ci+1] =

n− i− 1

n− 2
ci +

i− 1

n− 2
ci+1. (18)

Thus, ti+1 − ti is a convex combination of ci and ci+1; the solution induced by these transfers is

envy-free and so is in the RP core.

19

Remark. The expressions for the transfers are valid only when n ≥ 3. If n = 2, the transfer vector

t2 = −t1 = c2/2 is in the RP core (and in the LB core).

4.3 Arbitrary processing times and waiting costs

We turn to the general case in which agent i has processing time ci and processing time requirement

pi. By our convention, the agents are labeled so that c1/p1 ≥ c2/p2 ≥ . . . ≥ cn/pn. Our earlier

discussion suggested that RP may not be reasonable in this case because allowing arbitrary coalition

members to exchange their positions may increase the waiting time of an agent who is not part of the

cooperating coalition. This suggests that the expected cost of a coalition S under RP is too optimistic,

and that distributing the costs among the agents to meet this optimistic bound for all coalitions may

be impossible. This is formally shown in the following example.

Example 5. Suppose n = 3, and suppose c1 = 5, c2 = 0.8, c3 = 3, p1 = 5, p2 = 1, and p3 = 4. It

is straightforward to verify that the RP core for this model is characterized by the constraints:

w1 ≤ c1
p2 + p3

2
, w2 ≤ c2

p1 + p3

2
, w3 ≤ c3

p1 + p2

2
,

w1 + w2 ≤ c2p1 + p3
c1 + 2c2

3
, w1 + w3 ≤ c3p1 + p2

c1 + 2c3

3
, w2 + w3 ≤ c3p2 + p1

c2 + 2c3

3
,

and

w1 + w2 + w3 = c2p1 + c3(p1 + p2).

For the particular choice of numbers, we get (among other inequalities)

w3 ≤ 9, w1 + w2 ≤ 12.8, w1 + w2 + w3 = 22,

and this subsystem of inequalities is inconsistent.

This example justifies the need for the CRP game, which we analyze next.

5 CRP game

Recall that in the CRP game, only contiguous subsets of cooperating agents can rearrange themselves

using the slots they occupy. It is straightforward to see that the efficient ordering of the agents of a

coalition S, subject to the contiguity requirement, can be achieved by a series of exchanges between

(physically) adjacent coalitional members. Our goal in this section is to study the properties of the

CRP core. As we shall see, the CRP game is convex even for the case of arbitrary waiting cost rates

and processing times, so we analyze this general case directly. Recall that the agents are labeled so

that c1/p1 ≥ c2/p2 ≥ . . . ≥ cn/pn.

20

Computing CCRP (·). We begin by computing the characteristic function of the CRP game. Con-

sider a coalition, S, of agents with |S| = s. If the agents are ordered uniformly at random, the expected

total cost of the agents in S in the absence of cooperation will be

∑

i∈S

ci
(P − pi)

2
,

where P is the sum of processing times of all the jobs. By cooperating the agents in S generate

some cost-savings, which can be found as follows: Consider two agents i and j, with i < j. (By our

convention, ci/pi ≥ cj/pj .) If both i and j are part of a cooperating coalition S, under what conditions

will they change their relative order? This will occur if and only if (i) j is before i in the random

order; and (ii) every agent between j and i in the random order is a member of S. (Recall that not all

the members of S need to be contiguous for i and j to exchange their positions.) Since these events

do not depend on the identity of S, only on its cardinality, we denote this probability by Ks. We

compute Ks from the following simple observation: one way to generate a uniform random ordering

of the agents is to start with a fixed ordering of the agents, and place them in “queue” randomly, one

at a time; for k ≥ 2, the kth agent is placed in any one of the k possible slots, each possibility being

equally likely. Suppose we start with the ordering [i, j,N \S, S \{i, j}]. We first place agent i, we then

place agent j randomly in one of the two possible slots, after which we sequentially place each of the

agents of N \ S (the order within this set does not matter) randomly in one of the available slots and

finally we sequentially place the agents of S \ {i, j} (again the order within this set does not matter)

randomly in one of the available slots. For i and j to exchange positions, j must appear before i,

and every agent between i and j should be a member of S. The former has a probability of 1/2; the

latter occurs only if each of the n − s members of N \ S is not placed between j and i, which has a

probability of 2/3× 3/4× . . .× (n− s + 1)/(n− s + 2) = 2/(n− s + 2). Hence, Ks = 1/(n− s + 2).

Since our argument did not depend on the identity of i and j, we may conclude that the probability

of an exchange between any two members of the coalition S is the same, and equals 1/(n − s + 2).

Also, since i and j will be in adjacent slots when they swap their positions, the cost-savings from a

rearrangement between i and j is cipj − cjpi; therefore the expected savings due to the rearrangement

of i and j will be (cipj − cjpi)/(n− s + 2). Therefore

CCRP (S) =
∑

i∈S

ci
(P − pi)

2
−

1

n + 2− s

∑

i,j∈S,i<j

(cipj − cjpi). (19)

In contrast to the RP core, the CRP core is well-behaved: the function CCRP (·) is a submodular

function, and so the associated cooperative game is convex.

Theorem 5 The CRP game is convex and hence its core is non-empty.

Proof. We prove the Theorem by showing that CCRP (·) is a submodular set function, that is,

CCRP (S ∪ {k}) − CCRP (S) ≥ CCRP (T ∪ {k}) − CCRP (T), ∀S ⊂ T, k 6∈ S.

21

Observe that

CCRP (S ∪ {k}) −CCRP (S) = ck
P − pk

2
−

1

n + 1− s

∑

i∈S

|ckpi − cipk|

−

(

1

n + 1− s
−

1

n + 2− s

)

∑

i,j∈S,i<j

(cipj − cjpi),

and

CCRP (T ∪ {k})− CCRP (T) = ck
P − pk

2
−

1

n + 1− t

∑

i∈T

|ckpi − cipk|

−

(

1

n + 1− t
−

1

n + 2− t

)

∑

i,j∈T,i<j

(cipj − cjpi).

For S ⊂ T , s < t; it is easy to verify that each term in CCRP (S ∪ {k}) − CCRP (S) dominates the

corresponding term in CCRP (T ∪ {k})− CCRP (T). The submodularity of CCRP (·) follows.

Remark. A closely related result is by Curiel et al. [6], where they establish a similar result with a

fixed initial order. We can prove Theorem 5 by averaging over all initial orders.

We now consider the problem of identifying “good” solutions in the CRP core. As before, we

explore the Shapley solution, and the goals of equalizing gains and equalizing costs.

5.1 The Shapley solution.

By definition, the Shapley solution is in the LB core. Now, we show that it is in the CRP core as well.

Consider a coalition S with |S| = s. Substituting from equation (5), we have

∑

i∈S

SVi =
∑

i∈S

ci
P − pi

2
−

1

2

∑

i∈S

∑

j:j>i

(cipj − cjpi)

=
∑

i∈S

ci
P − pi

2
−

1

2

∑

i,j∈S,i<j

(cipj − cjpi)−
1

2

∑

i∈S

∑

j:j>i,j/∈S

(cipj − cjpi)

≤
∑

i∈S

ci
P − pi

2
−

1

2

∑

i,j∈S,i<j

(cipj − cjpi)
[

as cipj ≥ cjpi ∀ j : j > i
]

≤
∑

i∈S

ci
P − pi

2
−

1

n + 2− s

∑

i,j∈S,i<j

(cipj − cjpi)

[

as cipj ≥ cjpi ∀ i < j and n + 2− s ≥ 2
]

= CCRP (S) (20)

Since S was an arbitrary coalition, it follows that the Shapley solution is in the core.

22

5.2 Equalizing gains

In the equal gains solution, the cost of agent i is wi =
∑

j:j 6=i cipj/2 − B/n = ci(P − pi)/2 − B/n,

where B is given by:

B :=
∑

i,j∈S,i<j

(cipj − cjpi)

2
.

To show that the equal gains solution is in the CRP core, we need to show that for any coalition

S of agents,
∑

i∈S wi ≤ CCRP (S), which is equivalent to proving

s

n
B ≥

1

n− s + 2

∑

i,j∈S,i<j

(cipj − cjpi). (21)

Since B ≥ 0, it is evident that the core constraints will be satisfied for all single person coalitions.

Suppose |S| = s ≥ 2. Then, we have:

s

n
B =

s

n

∑

i,j∈N,i<j

cipj − cjpi

2

=
s

n

n− s + 2

2

1

n− s + 2

∑

i,j∈N,i<j

(cipj − cjpi)

≥
1

n− s + 2

∑

i,j∈N,i<j

(cipj − cjpi)

[

as
s

n

n− s + 2

2
≥ 1 ∀ 2 ≤ s ≤ n

]

≥
1

n− s + 2

∑

i,j∈S,i<j

(cipj − cjpi)

Thus, equation (21) holds and the equal gains solution is in the CRP core.

5.3 Equalizing costs

It is not difficult to show that the equal costs solution is not in the CRP core. Thus, our goal is to

find a core solution that Lorenz dominates every other solution in the CRP core. For convex games,

Dutta and Ray [8] propose an algorithm to find such a solution (called the “egalitarian” solution). As

the CRP game is convex, we can use the Dutta-Ray algorithm to compute the equal costs solution in

the CRP core. Their algorithm, adapted to our problem, is as follows:

(i) Identify the largest coalition S∗ that minimizes CCRP (S)/|S|, over all non-empty subsets S of

N , and let wi = CCRP (S∗)/|S∗| for all i ∈ S∗;

(ii) Define N̂ = N \ S∗, and for every S ⊆ N̂ , define Ĉ(S)← CCRP (S ∪ S∗)− CCRP (S∗); and

(iii) Apply (i) recursively, with N̂ playing the role of N , and Ĉ(·) playing the role of CCRP (·).

23

Note that submodularity of CCRP (·) implies the existence of S∗ in step (i), and the submodularity

of the Ĉ(·) function defined in step (ii). The most expensive computation in this algorithm is the

identification of the “bottleneck” set S∗ in step (i). While this problem can always be solved as a

submodular optimization problem for any convex game, it can be solved much more efficiently here,

as we show next.

Let w = (w1, w2, . . . , wn) denote the vector of costs. Recall that the CRP core constraints are
∑

i∈S

wi ≤ CCRP (S), ∀S ⊂ N,

where CCRP (S) is given by (19). Define zi = (
∑n

j=1 pj)ci/2 − cipi/2 − wi; note that (z1, . . . , zn) is

just the vector of gains of each agent. We may assume zi ≥ 0 for all agents i, otherwise the core

constraint for some individual agent will be violated. Replacing wi by zi + cipi/2− (
∑n

j=1 pj)ci/2, and

substituting for CCRP (S), the CRP core constraints can be rewritten as

−
∑

i∈S

zi +
p1 + · · ·+ pn

2

∑

i∈S

ci −

∑

i∈S cipi

2
;≤ CCRP (S).

Substituting for CCRP (S) from Eq. (19), the core constraints can be expressed in terms of the zi as
∑

i∈S

zi ≥
1

n + 2− s

∑

i,j∈S:i<j

gij , (22)

where gij = |cipj − cjpi|. Defining G(S) =
∑

i,j∈S,i<j gij , and F (S) = G(S)/(n − |S| + 2), the core

constraints become
∑

i∈S

zi ≥ F (S).

Now consider the network shown in Figure 1. This network has a source node s̄, a sink node t̄, a

node ri for each agent i ∈ N , and a node qij for each pair of agents i < j in N . There are n edges of

the form (s̄, ri), with capacity 2zi; n(n− 1)/2 edges of the form (qij , t̄), with capacity gij ; and for each

node qij, there are two infinite capacity edges (ri, qij) and (rj , qij). Finally, there is an edge (ri, rj) for

every i, j ∈ N , with capacity zj .

Let Cuts(S) be the set of cuts in which the nodes ri, i ∈ S are on the source side of the cut and

the nodes ri, i ∈ N \ S are on the sink side. Let MinCut(S) be a cut with minimum capacity among

all the cuts in Cuts(S). Since none of the infinite capacity edges can be in a minimum-cut, all the

nodes of the type qij, where either i ∈ S or j ∈ S, must be on the source side of MinCut(S); all the

remaining nodes of the type qij will be on the sink-side. Therefore, the capacity of MinCut(S) will be
∑

j∈N\S

2zj +
∑

j∈N\S

szj + G(N) −G(N \ S) (23)

where the second term comes from the observation that each node ri, i ∈ S is connected to each node

rj , j ∈ N \ S by an edge of capacity zj . Notice that a minimum cut in the network has to be one

among the set of cuts {MinCut(S) : S ⊆ N}. We now show how the equal costs solution can be

calculated by solving a parametric maximum flow problem on this network.

24

Figure 1: Network for equalizing costs

Implementing the initial step. Let zi = ci(p1 + · · · + pn)/2 − cipi/2 − δ ∀ i ∈ N ; thus we will

have wi = δ ∀ i ∈ N . First, suppose δ = 0. Then, for any S ⊆ N , we have

∑

j∈N\S

(s + 2)zj + G(N) −G(N \ S) ≥
∑

j∈N\S

2zj + G(N) −G(N \ S) [as s ≥ 0]

=
p1 + · · ·+ pn

2
ci −

cipi

2
+ G(N) −

∑

i,j∈N\S

gij

[substituting for zi and G(N \ S)]

≥ G(N)

Thus, the capacity of MinCut(S) for any S ⊆ N, is at least G(N). Moreover, the capacity of

MinCut(N) is exactly G(N). Thus, when δ = 0, MinCut(N) is a minimum capacity cut in the

network and its capacity is G(N).

Increase δ gradually increased from zero, and let δ1 be the smallest positive value of δ for which some

cut MinCut(S) with S ⊂ N is also a minimum-cut of the network (along with MinCut(N)). Assume

that S1 ⊂ N is the minimum cardinality set among all such sets; thus MinCut(S1) is a minimum-

cut of the network when δ = δ1, and δ1 is the smallest break-point of the parametric maximum flow

problem associated with this network. Moreover, as MinCut(N) is still a minimum cut of the network,

the capacity of the minimum-cut in the network is G(N). Therefore, when δ = δ1, the capacity of

25

MinCut(S) is at least G(N) and so
∑

j∈N\S

(s + 2)zj + G(N)−G(N \ S) ≥ G(N)

=⇒
∑

j∈N\S

zj ≥ F (N \ S)

=⇒
p1 + · · ·+ pn

2

∑

i∈N\S

ci −

∑

i∈N\S cipi

2
− (n− s)δ1 ≥ F (N \ S)

=⇒ δ1 ≤

p1+···+pn

2

∑

i∈N\S ci −
P

i∈N\S cipi

2 − F (N \ S)

n− s
=

CCRP (N \ S)

n− s

As all the above inequalities are tight for S = S1, denoting N\S by T , we have δ1 = minT⊂N CCRP (T)/|T |.

This completes the first step in determining the egalitarian solution.

Implementing the subsequent steps. Let

zi =
p1 + · · ·+ pn

2
ci − i

cipi

2
− δ1, ∀i ∈ N \ S1,

and let

zi =
p1 + · · ·+ pn

2
ci − i

cipi

2
− δ, ∀i ∈ S1.

Note that the zi for i ∈ N \S1 are fixed, whereas the zi for i ∈ S1 depend on δ, which is the parameter

that will be varied in this iteration. Augment the network with infinite capacity arcs from the nodes

rj : j ∈ N \ S1 to the sink node t̄; thus these nodes will always be on the sink side of any min-cut

in the augmented network. Note that, when δ = δ1, the capacity of the cut MinCut(S1) in this

augmented network is the same as its capacity in the original network. Moreover, the addition of

positive-capacity arcs to to the network cannot reduce the minimum-cut capacity. Therefore, when

δ = δ1, MinCut(S1) is still a minimum-cut of this augmented network with capacity G(N). Increase

δ gradually from δ1, and let δ2 be the smallest breakpoint of the parametric maximum flow problem

of this modified network. When δ = δ2, the modified network will have a minimum cut of the type

MinCut(S), where S ⊂ S1; let S2 ⊂ S1 be a minimum cardinality set among all such sets. Thus

MinCut(S2) is a minimum-cut of the augmented network when δ = δ2, and its capacity is G(N).

Therefore, the capacity of MinCut(S) is at least G(N) and we will have
∑

j∈N\S

(s + 2)zj + G(N)−G(N \ S) ≥ G(N)

=⇒
∑

j∈N\S

zj ≥ F (N \ S)

=⇒
p1 + · · ·+ pn

2

∑

i∈N\S

ci −

∑

i∈N\S cipi

2
−

∑

i∈N\S1

δ1 −
∑

i∈S1\S

δ2 ≥ F (N \ S)

=⇒ δ2 ≤
CCRP (N \ S)−

∑

i∈N\S1
δ1

s1 − s
=

CCRP (S1 \ S ∪ N \ S1)− CCRP (N \ S1)

s1 − s

26

As all the above inequalities are tight for S = S2, denoting S1 \ S by T , we have

δ2 = min
T⊂S1

CCRP (T ∪N \ S1)− CCRP (N \ S1)

|T |
.

This completes the second iteration. Continuing in the same way, we can find the core solution that

equalizes costs in at most n iterations.

As mentioned earlier, the equalizing costs solution Lorenz dominates every other solution in the

CRP core. By standard results in submodular optimization [9, Theorem 8.2, Theorem 10.1, Corollary

10.2], this solution maximizes the minimum cost as well as minimizes the maximum cost; moreover, the

cost vector found is also lexicographically minimal among all cost vectors in the core. The following

remarks discuss how the computation can be simplified when either the waiting costs or the processing

times are identical.

Remarks.

(a) For the special case with identical waiting cost rates, we already showed that the equal costs

solution, which splits the total cost W equally among all the agents, is in the RP core. As the

CRP core contains the RP core, it follows that this solution is in the CRP core as well. (In

particular, the Dutta-Ray procedure will find this solution!)

(b) Suppose the processing times are identically 1. Let S = {a1, a2, . . . , as}, be a coalition of s

members with ca1
≥ ca2

≥ . . . ≥ cas . For coalition S, we have

CCRP (S) =
n− 1

2
(ca1

+ . . . + cas)−
1

n + 2− s

s
∑

k=1

(s− 2k + 1)cak
.

Note that the coefficient of cak
in the second term increases as k increases, so ca1

has the smallest

coefficient. Also, the coefficient of ca1
is (n − 1)/2 − (s − 1)/(n + 2 − s), which decreases as s

increases, so its smallest value is zero, which occurs when s = n. Thus, for any subset S,

we will have ca1
≥ 0. Hence, the coefficient of cai

in the expression for CCRP (S) is always

non-negative, and increasing with i. So to minimize CCRP (S) among all sets of cardinality s,

it is optimal to include the agents with the s smallest cost coefficients. Thus, we will have

CCRP ({s+1, . . . , n}) = minS⊆N,|S|=n−s CCRP (S), ∀s = 0, 1, . . . , n− 1. From this discussion,

it follows that in the first step of the Dutta and Ray algorithm, the set S∗ will have the form

S∗ = {n, n− 1, . . . , i} for some integer 1 ≤ i ≤ n. Thus, we can identify the bottleneck set S ∗ by

calculating the value of CCRP (n, n− 1, . . . , i)/(n+1− i) for all possible values of i and choosing

the one with the smallest value. Thus the first step can be implemented in linear time. A similar

argument establishes that the bottleneck sets in the intermediate steps consists of a sequence of

contiguous elements, and so can be found in linear time. Thus each iteration of the algorithm

can be implemented in O(n) time, and there are at most n iterations.

27

6 Compatibility with the LB core

In the preceding sections, we have proposed two broad notions of equitable cost sharing: the RP and

the CRP core solutions. Implicit in Maniquet [11] is another notion of fair cost sharing: the LB core

solution. We have already seen the extent to which these two notions can be reconciled:

• The Shapley solution is a member of both the CRP core and the LB core. If the ci are all

identical, the Shapley solution is in the RP core as well.

• The RP core may be empty in the general case, but is always non-empty when the pi are identical.

However, in the latter case, there may not be a solution that is in both the RP core and the LB

core.

This section is motivated by the search for other cost vectors that are members of both the LB

core and the CRP core. (In view of the results mentioned earlier, we do not consider the RP core.)

While the Shapley solution is in both cores, it may not achieve auxiliary objectives such as equalizing

costs or equalizing gains (among all the core solutions). Further, we saw that the equal gains solution

may not be in the LB core, even in the two special cases (i.e. p ≡ 1 or c ≡ 1). Similarly, the

solution that equalizes costs in the CRP core may not be in the LB core, even in the two special cases.

Thus, our goal is to find an “optimal” (w1, w2, . . . , wn) among all such vectors in the intersection of

the CRP core and the LB core. Assuming the objective is a linear (or linearizable) function of the

variables w1, w2, . . . , wn, this is simply a linear programming problem; the only difficulty is that it has

exponentially many constraints, so conventional methods will be inefficient. Fortunately, from standard

results in the theory of linear programming [2, section 8.5], we know that such linear programs can be

solved in polynomial time, provided one can solve the associated separation problem efficiently. In this

case, the separation problem is the following: given a candidate (w1, w2, . . . , wn) vector, either prove

that it satisfies all the constraints, or exhibit a violating constraint. The separation problem is easily

seen to be equivalent to minimizing a submodular function, and so can be solved in polynomial-time [9].

In this section, we discuss more efficient algorithms for the separation problem for the LB core and

the CRP core. Our algorithms are based on solving the maximum-flow problem in an appropriately

defined network. While the construction for the LB core appears to be standard, the construction for

the CRP core is new. Again, we assume the agents are labeled so that c1/p1 ≥ c2/p2 ≥ . . . ≥ cn/pn.

6.1 Separation problem for the LB core

Given a vector (w1, w2, . . . , wn), we wish to either conclude that it is in the LB core, or we wish

to exhibit a violated constraint. For the general case, we can solve this as a simple maximum-flow

problem [1]. For the two special cases, however, much faster algorithms can be given. We start with

the special cases, and then describe the general case.

28

6.1.1 Identical Processing Times

For any S,

L(S) :=
∑

i,j∈S,i<j

cj .

Let w = (w1, w2, . . . , wn) be given, and suppose
∑n

i=1 wi = L(N). The core constraints are

∑

i∈S

wi ≥ L(S), ∀S ⊆ N.

The separation problem can be reformulated as the following optimization problem

max
S⊆N

[

L(S)−
∑

i∈S

wi

]

. (24)

If the optimal value of this optimization problem is non-positive, then w is in the LB core; otherwise,

a set that achieves the maximum value will violate the core condition. Let R be the maximal set that

achieves the optimal value for the optimization problem (24). We have the following result.

Lemma 6 Let R be the maximal set that achieves the optimal value for the optimization problem (24).

Then, k ∈ R if and only if
∑

i∈R;i>k

ci +
∑

i∈R;i<k

ck ≥ wk (25)

Proof. Suppose that k /∈ R. Then we have

L(R ∪ {k}) −
∑

i∈R∪{k}

wi =
∑

i,j∈R;i<j

cj +
∑

i∈R;i>k

ci +
∑

i∈R;i<k

ck −
∑

i∈R

wi − wk

= L(R)−
∑

i∈R

wi +
∑

i∈R;i>k

ci +
∑

i∈R;i<k

ck − wk (26)

Since R is the maximal set that achieves the optimal value for problem (24), we have

L(R ∪ {k})−
∑

i∈R∪{k}

wi < L(R)−
∑

i∈R

wi

=⇒
∑

i∈R;i>k

ci +
∑

i∈R;i<k

ck < wk. (Substituting from equation 26) (27)

Now suppose that k ∈ R. Then, we have

L(R/{k}) −
∑

i∈R/{k}

wi =
∑

i,j∈R/k;i<j

cj −
∑

i∈R/{k}

wi

=
∑

i,j∈R;i<j

cj −
∑

i∈R;i>k

ci −
∑

i∈R;i<k

ck −
∑

i∈R

wi + wk

= L(R)−
∑

i∈R

wi −
∑

i∈R;i>k

ci −
∑

i∈R;i<k

ck + wk (28)

29

Again, since R is the maximal set that achieves the optimal value for problem (24), we have

L(R/{k}) −
∑

i∈R/{k}

wi ≤ L(R)−
∑

i∈R

wi

=⇒
∑

i∈R;i>k

ci +
∑

i∈R;i<k

ck ≥ wk. (Substituting from equation 28) (29)

Using (27) and (29), we can conclude that

k ∈ R ⇐⇒
∑

i∈R;i>k

ci +
∑

i∈R;i<k

ck ≥ wk

We will now describe an algorithm, that uses Lemma 6, to check for the presence of w in the LB

core in O(n2) time. Suppose the size of the set R is m. Then we can directly check whether agent n

is present in R using Eq. (25), because there is no agent following n. Once n’s membership in R is

known, we can check the status of agent (n− 1), again using Eq. (25): this is because the only agent

following n− 1 is n, and we already know whether or not she is in R. By working our way backwards,

we will find a set of agents in R. If the number of agents found is not equal to m, we know that R

cannot have cardinality m, so we discard the set just found; if not, we call this set Rm. By doing this

for m = 1, 2, . . . , n, we will have a collection of at most n sets, one of which optimizes (24). For each

fixed m, the algorithm runs in O(n) time, and there are n possible values of m, so the overall running

time is O(n2).

6.1.2 Identical Waiting Costs

For any S, in this case, L(S) =
∑

i,j∈S,i<j pi. Let w = (w1, w2, . . . , wn) be given, and suppose
∑n

i=1 wi = L(N). The separation problem can again be reformulated as

max
S⊆N

[

L(S)−
∑

i∈S

wi

]

If the optimal value of this optimization problem is non-positive, then w is in the LB core; otherwise,

a set that achieves the maximum value will violate the core condition. The algorithm in this case is

very similar to the one used for the case of identical processing times; the only change is the condition

used to check whether k ∈ R, which now reads:

k ∈ R ⇐⇒
∑

i∈R;i>k

pk +
∑

i∈R;i<k

pi ≥ wk

To check this condition, we proceed forwards (instead of backwards), starting with agent 1, then agent

2, etc. Therefore, as before, we can solve the separation problem in O(n2) time.

30

Figure 2: Network 5

6.1.3 Arbitrary processing times and waiting costs

In this case, for any S, we have

L(S) :=
∑

i,j∈S,i<j

cjpi.

Let w = (w1, w2, . . . , wn) be given, and suppose
∑n

i=1 wi = L(N). The core conditions are

∑

i∈S

wi ≥ L(S).

A fairly standard construction can be used to show that the separation problem can be solved as a

maximum flow problem on an appropriately defined network (we refer the reader to the text by Ahuja

et al. [1]). We provide the construction and the proof here for the sake of completeness.

Denote l(i, j) = cjpi. Consider the network shown in Figure 2. The network has a source node s̄,

a sink node t̄, a node ri for each agent i ∈ N , and a node qij for each pair of agents i < j in N . There

are n edges of the form (s̄, ri), with capacity wi; n(n − 1)/2 edges of the form (qij, t̄), with capacity

lij ; and for each node qij, there are two infinite capacity edges (ri, qij) and (rj , qij). We now show how

the separation problem can be solved by computing the maximum-flow in this network. First, note

that the capacity of all the arcs that can bring flow into the sink is L(N). Thus, the maximum flow

in the network can be no more than L(N).

Suppose that the maximum flow in the network is L(N). We now argue that w is in the LB

core. Observe that the sum of capacities of all the arcs into the sink t̄ is L(N); therefore the flow

in each of these arcs has to be at its capacity. For any subset of agents S, consider the set of nodes

S̄ = {(i, j) : i, j ∈ S, i < j}. Note that the sum of the capacities of all the arcs from these nodes to

the sink S̄ is L(S); hence L(S) units of flow passes through these nodes. But the only nodes that have

31

arcs to the nodes in S̄ are the nodes ri for i ∈ S, which proves that
∑

i∈S wi ≥ L(S), for all S ⊂ N .

Thus, the core constraints are satisfied and w is in the LB core.

Now suppose that the maximum flow in this network is less than L(N). By the max-flow min-cut

theorem, the minimum-cut capacity is less than L(N). Consider any minimum cut, and let S index

all the i such that ri is in the source side of the cut. Since none of the infinite capacity edges can

be in the cut, for any ri in S every qik for all k ∈ N must also be in the source side of the cut. The

minimum-capacity of such a cut is clearly
∑

i/∈S wi +
∑

i∈S,j∈N lij =
∑

i6∈S wi +L(N)−L(N \S). Since

the minimum-cut capacity is at most L(N), we have:

∑

i6∈S

wi + L(N)− L(N \ S) < L(N) =⇒
∑

i6∈S

wi < L(N \ S),

so the core constraint is violated for the set N \ S.

Thus, by solving the maximum flow problem on the network in Figure 2, we either conclude that

the cost vector w is in the LB core or we exhibit a set N \ S for which the core constraint is violated.

Thus, the separation problem can be solved by computing the maximum flow on this network.

6.2 Separation problem for the CRP core

We present an algorithm to solve the separation problem for the general case in which agents have

arbitrary processing times and waiting costs. Let w = (w1, w2, . . . , wn) be the given vector of costs;

define zi = p1+···+pn

2 ci −
cipi

2 −wi ∀i ∈ N . Recall, from equation (22), that the CRP core constraints

can be rewritten as

∑

i∈S

zi ≥
G(S)

n + 2− s
=: F (S),

where G(S) =
∑

i,j∈S,i<j |cipj − cjpi|.

Consider the network in Figure 1, which was used in calculating the equalizing costs solution in

CRP core. Recall, from equation (23), that the minimum-capacity among all cuts in which the nodes

ri, i ∈ S are on the source side of the cut and the nodes ri,∀i ∈ N \ S are on the sink side is given by

∑

j∈N :rj 6∈S

(s + 2)zj + G(N)−G(N \ S) (30)

We now show how the separation problem, for the CRP core, can be solved by computing the minimum-

cut in this network (due to the max-flow min-cut theorem, this is the same as computing the maximum

flow on this network). First, note that the capacity of the cut that separates the sink from all the

other nodes is G(N). Thus, the min-cut capacity can be no more than G(N).

Suppose that the capacity of the minimum-cut is G(N). Thus, the capacity of any cut in the

network will be at least G(N). In particular, for any subset S, the minimum-capacity among all cuts

32

in which the nodes ri, i ∈ S are on the source side of the cut and the nodes ri,∀i ∈ N \ S are on the

sink side will be at least G(N); substituting for this from equation (30), we get

∑

j∈N :rj 6∈S

(s + 2)zj + G(N) −G(N \ S) ≥ G(N)

=⇒
∑

j∈N\S

zj ≥
G(N \ S)

n + 2− (n− s)
= F (N \ S)

Thus the core constraint is satisfied for any set N \ S; since S is arbitrary, this implies all the core

constraints are satisfied.

Suppose that the minimum-cut capacity is less than G(N). Let S1 be the set such that the nodes

ri, i ∈ S1 are on the source side of a min-cut and the nodes ri,∀i ∈ N \ S1 are on the sink side of this

min-cut. Thus, the capacity of the minimum-cut can be got by substituting S = S1 in equation (30).

Since this capacity is less than G(N), we get

∑

j∈N :rj 6∈S1

(s1 + 2)zj + G(N) −G(N \ S1) < G(N)

=⇒
∑

j∈N\S1

zj <
G(N \ S1)

n + 2− (n− s1)
= F (N \ S1)

which is a violation of the core constraint for the set N \ S1.

Thus, by solving the maximum flow (min-cut) problem on the network in Figure 1, we either

conclude that the cost vector w is in the CRP core or we exhibit a set N \ S for which the core

constraint is violated. Thus, the separation problem can be solved by computing the maximum flow

on this network.

6.3 Implementing the solution concepts

In this section we discuss how auxiliary criteria such as weak equalizing of costs, weak equalizing of

gains, etc. can be incorporated.

Equalizing costs. Suppose we want to equalize costs in a weak sense, subject to the restriction that

the cost vector be a member of both the LB core and the CRP core. We can achieve this as follows:

first we maximize the minimum cost among all agents subject to the core conditions, i.e., we solve the

following problem

max x

s.t. L(S) ≤
∑

i∈S

wi ≤ CCRP (S) (31)

wi ≥ x, i = 1, . . . , n.

33

Since the Shapley solution is in the intersection of the LB and the CRP cores, the optimization

problem (31) is always feasible. This problem can be solved in polynomial-time as the associated

separation problem can be solved in polynomial time (as shown in sections 6.1 and 6.2). Let x∗ be

the value of the objective function in an optimal solution. Define S1 to be the set of agents whose

costs are x∗ in all the optimal solutions of (31). Note that S1 can be found efficiently by standard

techniques.

Fixing the costs of the agents in S1 at x∗, we then maximize the minimum cost of the remaining

agents. This can be achieved by solving the optimization problem (31) with the following modifications:

the constraint wi ≥ x is replaced by wi = x∗ for each agent i ∈ S1. Since we had a feasible solution

at the end of the first iteration, this new optimization problem is still feasible, and we will find an

optimal solution. Let x∗∗ be the value of the objective function in an optimal solution of this new

problem, and let S2 be the agents whose cost is x∗∗ in all optimal solutions. Continuing this procedure

for at most n iterations, we will find a solution that is a member of both the LB core and the CRP

core that equalizes costs in a weak sense.

Equalizing costs. A similar procedure can be used to find a solution that equalizes the gains of

the agents in a weak sense among all solutions that are in both the LB and CRP cores. The only

difference is in the definition of the optimization problem, which is now

max x

s.t. L(S) ≤
∑

i∈S

wi ≤ CCRP (S)

x ≤ di − wi, i = 1, . . . , n,

where di is the cost of agent i when the processing order is chosen uniformly at random.

Acknowledgments

A version of this paper was presented at the Spring 2005 Midwest Economic Theory Conference at

Vanderbilt University, Tennessee. We gratefully acknowledge the comments of the participants of that

conference. We thank Herve Moulin for many enlightening conversations about the content of this

paper. In addition, we thank Rakesh Vohra and Chung-Piaw Teo for their comments on an earlier

draft of this paper.

References

[1] Ahuja, Magnanti and Orlin ,“ Network Flows: Theory, Algorithms, and Applications”, Prentice

Hall, 1993.

34

[2] D. Bertsimas and J. Tsitsiklis, “Introduction to Linear Optimization,” Athena Scientific, 1997.

[3] Y.Chun (2004), “A note on Maniquet’s Characterization of the Shapley Value in Queueing Prob-

lems”, Working paper, Rochester University.

[4] Y.Chun (2004), “No-envy in Queuing Problems”, Working paper, Rochester University.

[5] I.Curiel, H.Hammers and F.Klijn (2002), “Sequencing Games : A Survey”, In P.Borm and

H.Peters,editors,Chapter in Game Theory. Theory and Decision Library, Kulwer Academic Pub-

lishers, 2002.

[6] I.Curiel, G.Pederzoli and S.Tijs (1989),“Sequencing Games”, European Journal of Operational

Research, 40, 344-351.

[7] R.Dolan (1978),“Incentive mechanisms for priority queuing problems”,Bell Journal of

Economics,421-436.

[8] B. Dutta and D. Ray (1989), “A concept of Egalitarianism under participation con-

straints”,Econometrica,57(3), 615-635.

[9] S. Fujishige (1988),Submodular functions and optimization, North-Holland, Editor : P.L.Hammer

.

[10] Klijn F., S. Tijs, and H. Hamers (2000): “A Simple Proof of the Total Balancedness of Permutation

Games”, Economics Letters, 69, 323-326

[11] F.Maniquet (2003),“A characterization of the Shapley Value in Queuing Problems”,Journal of

Economic Theory, 109, 90-103.

[12] D.Mishra, B.Rangarajan (2005),“Cost Sharing in a Job Scheduling Problem”,working paper, Uni-

versite Catholique de Louvain.

[13] M.Mitra (2001),“Mechanism Design in Queuing Problems”, Economic Theory, 17(2), 277-305.

[14] H.Moulin , Handbook of Social choice and welfare, Chapter: Axiomatic Cost and Surplus sharing,

North Holland, 2002.

[15] H.Moulin (2004),“On scheduling fees to prevent merging, splitting and transferring of jobs ”,Work-

ing paper, Rice University.

[16] H.Moulin (2004),“Split-proof Probabilistic Scheduling ”,Working paper, Rice University.

[17] W.E.Smith (1956), “Various Optimizers for single stage Production”, Naval Research Logistics

Quarterly, 3, 59-66, 1956.

35

[18] J.Suijs (1996), “On Incentive Compatibility and budget balancedness in public decision making”,

Economic Design, 2. 193-209.

36

